Li_04new2011
九年级英语上册 Unit 3 English around the World Topic 3 Could you give us some advice on how to leran

people.
__4___ I always feel sleepy in English classes.
7
Read 1a and fill in the blanks.
Name
Difficulty
Most of the girls are afraid to walk at night.
11
Language Points
3. At times I feel like giving up.有时候我都想放弃了。
sth.
sth.
feel like
give up
doing sth.
Evaluation only.
( ) take notes ( ) feel sleepy in English class ( ) feel bored and nervous in English class
5
Do you have courage to answer the teacher’s questions in class?
Li Xiang It’s difficult for him to r_e_m_e_m_b_e_r_n_e_w__w_o_rd_s.
8
Match the following phrases with their proper meanings and keep them in your mind.
CopyHrieg_h_dt_a2_r0e_0_no_4t_-2_0sp1e1akAEsnpgolissheinPptuyblLict,da.nd he
2013_Double-in-the-supply-chain-with-uncertain-supply_Li_European-Journal-of-Operational-Research

Production,Manufacturing and LogisticsDouble marginalization and coordination in the supply chain with uncertain supplyXiang Li a ,Yongjian Li b ,⇑,Xiaoqiang Cai caCollege of Economic and Social Development,Nankai University,Tianjin 300071,PR China bBusiness School,Nankai University,Tianjin 300071,PR China cDepartment of Systems Engineering &Engineering Management,The Chinese University of Hong Kong,Shatin,NT,Hong Konga r t i c l e i n f o Article history:Received 6August 2011Accepted 26October 2012Available online 11November 2012Keywords:Supply chain management Uncertain supply Contract designDouble marginalizationa b s t r a c tThis paper explores a generalized supply chain model subject to supply uncertainty after the supplier chooses the production input level.Decentralized systems under wholesale price contracts are investi-gated,with double marginalization effects shown to lead to supply insufficiencies,in the cases of both deterministic and random demands.We then design coordination contracts for each case and find that an accept-all type of contract is required to coordinate the supply chain with random demand,which is a much more complicated situation than that with deterministic demand.Examples are provided to illustrate the application of our findings to specific industrial domains.Moreover,our coordination mech-anisms are shown to be applicable to the multi-supplier situation,which fills the research gap on assem-bly system coordination with random yield and random demand under a voluntary compliance regime.Ó2012Elsevier B.V.All rights reserved.1.IntroductionSupply uncertainty is a major issue in both the industrial and academic worlds.In traditional manufacturing processes,stochas-tic capacity and random yield are regarded as the main causes of supply uncertainty.In the remanufacturing field,uncertainty with-in the supply channel also stems from used product acquisition.These supply uncertainties pose great challenges to supply chain management,and result in substantial revenue losses.In a decen-tralized system,channel performance could be even worse because of the different,and usually conflicting,objectives that the supply chain members attempt to optimize.Therefore,it has been a signif-icant problem to design coordination schemes to increase supply chain performance and to properly allocate the supply risk be-tween the channel members.This paper explores the underlying double marginalization of a supply chain with supply uncertainty and the related problem of coordination contract design.Specifically,a buyer procures a prod-uct from a supplier,who is confronted with uncertain production quantity (output)after deciding a certain production input level because of random disturbance in the production/delivery/supply process.The supplier’s modeling setting (partially or fully)general-izes many of the uncertain supply models in literature.Examples include (i)random yield,such as the models of Gerchak et al.(1994)and Li and Zheng (2006);(2)random capacity,such as those of Ciarallo et al.(1994)and Hsieh and Wu (2008);(3)random deteriorating loss,such as that of Cai et al.(2010);and (4)random used product acquisition,such as that of Kaya (2010).We explore the supply chain model in such a generalized setting and show that double marginalization effect is translated into a lower production input level from the supplier,which leads to supply insufficiency for the buyer.We also investigate coordination mechanisms for the cases of deterministic and random demand.A simple shortage penalty contract is designed to coordinate the supply chain under conditions of deterministic demand,but the coordination issue becomes more complicated when there is a random demand.Our study thus stands on the interface between supply uncer-tainty and supply chain coordination,both of which have attracted a vast amount of research.Most of the papers considering supply uncertainty focus on the production planning problems of uncer-tain production capacity,random manufacturing yield,or unreli-able supplier,such as those of Gerchak et al.(1988),Parlar and Perry (1996),Gupta and Cooper (2005),Chopra et al.(2007),and Pac et al.(2009),among others.The subject of supply chain coordi-nation has been investigated by Muson and Rosenblatt (2001),Cachon and Lariviere (2005),Li and Wang (2007),Chen and Xiao (2009),and Luo et al.(2010),to name just a few.We also refer the reader to Cachon (2003)for an excellent survey of this field.Other than the aforementioned studies,the works most related to this paper involve the study of a supply chain model under con-ditions of uncertain supply from the supplier,which constitutes a rather limited body of literature.Zimmer (2002)investigates the supply chain coordination issue between a buyer facing determin-istic demand and a supplier facing uncertain capacity equal to the sum of newly built capacity and a random leftover.He and Zhang (2008)consider the risk-sharing problem between a retailer and a0377-2217/$-see front matter Ó2012Elsevier B.V.All rights reserved./10.1016/j.ejor.2012.10.047⇑Corresponding author.Tel.:+862223505341.E-mail addresses:xiangli@ (X.Li),liyongjian@ (Y.Li),xqcai@.hk (X.Cai).supplier subject to random production yield and a more expensive emergency production option,but do not address the supply chain coordination issue.In a subsequent work,He and Zhang(2010)fur-ther explore a supply chain with random yield production and a yield-dependent secondary market in which the product is ac-quired or disposed of.Serel(2008)considers a supply chain in which the retailer orders products from one unreliable supplier and one reliable manufacturer,thereby analyzing the retailer’s ordering problem in conjunction with the manufacturer’s pricing problem.Keren(2009)considers a supply chain in which the dis-tributor faces a known demand and orders from the producer sub-ject to a random production yield,and shows that the distributor mayfind it optimal to order more than the demand due to supply uncertainty under a uniform distribution.Li et al.(2012)further extends the problem into a generalized distribution of yield ran-domness,and specifies the condition under which ordering more is optimal.Xu(2010)investigates a supply chain model in which the retailer adopts an option contract and the supplier conforms with random yield production and a more expensive emergency production.None of the above papers,except Zimmer(2002),ad-dresses the supply chain coordination issue.In addition,a number of recent papers explore issues of information asymmetry in set-tings of supply uncertainty based on incentive theory,such as Yang et al.(2009)and Chaturvedi and Martinez-de-Albeniz(2011).There is also research on the supply chain coordination of an assembly system with a random yield supply.Gurnani and Gerchak(2007),for example,explore an assembly system with random yield of component production and deterministic demand for thefinal product.They assume the voluntary compliance of the suppliers and propose two coordination contracts,one with a pen-alty only for each undelivered item and the other with an extra penalty for the worst performing supplier.Yan et al.(2010)extend Gurnani and Gerchak’s model to the case of a positive salvage value and asymmetric suppliers,and derive a new coordination scheme that also falls within a voluntary compliance regime.Guler and Bilgic(2009)explore a similar problem under conditions of both random yield and random demand,but their model assumes forced compliance,i.e.,the suppliers have to make the input pro-duction quantities equal to the manufacturer’s ordered quantities.In contrast,the main contributions of our paper can be summa-rized as follows:(1)We prove theoretically that the wholesale price contractundermines the performance of the entire supply chain by lowering the supplier’s production input level,which is shown as the double marginalization effect in the supply chain with uncertain supply.(2)We consider both deterministic and random demands,pro-vide coordination mechanisms for both cases,and point out the essential differences between them.In the case of deterministic demand,a shortage penalty contract could achieve channel coordination and arbitrary profit allocation, as the buyer will not accept more units than the known demand.In the case of random demand,in contrast,coordi-nation contracts require the buyer to accept all yielded units from the supplier in response to the random disturbance on the demand side.(3)Our results are derived in a very generalized setting and arethus applicable to more specific industrial cases,such as ran-dom yield,uncertain capacity,and stochastic used product collection.Moreover,they can easily be extended into a mul-tiple-supplier scenario.In particular,our model covers the problem of a decentralized assembly system with suppliers subject to random component yields,which is related to the aforementioned papers:Gurnani and Gerchak(2007), Guler and Bilgic(2009),and Yan et al.(2010).However,aswe have reviewed,Gurnani and Gerchak(2007)and Yan et al.(2010)only consider the case of deterministic demand, while Guler and Bilgic(2009)explore the case of random demand but assume forced compliance,and thus their derived schemes can be applied only when the manufacturer is substantially pared to them,our coordina-tion contracts are based on voluntary compliance and unify the cases of deterministic and random demands.To the best of our knowledge,this paper is among thefirst to delve into the coordination mechanisms of an assembly system with both random yields and random demand and under a volun-tary compliance regime.Furthermore,our model is analyzed under a more general setup compatible with,e.g.,non-linear production costs and additive production risk,and thus can applied to wider industrial domains.The reminder of the paper is organized as follows.In Section2, we describe the problem.Sections3and4investigate the cases of deterministic demand and random demand,respectively,explore the double marginalization effects,and derive the coordination contracts.Section5provides examples to illustrate applications to specific industrial cases,and Section6further extends the model to the case of multiple suppliers.Section7concludes the paper with directions for future research.2.Problem descriptionConsider a supply chain consisting of a supplier and a buyer. The buyer contracts the supplier to provide a specific product and sells it on the market to meet deterministic demand d or ran-dom demand D.The supplier determines production input level e, which depending on the specific industrial scenario,could repre-sent the product development effort,invested capacity,planned manufacturing quantity,or any other determinants of production.1 Due to the random disturbance in the production process,the output of production quantity S(e)is stochastic and sensitive to input level e.The production cost for the supplier C(e)satisfies C0(e)>0and C00(e)P0,which implies that the marginal production cost is non-decreasing as the production input level is raised.Such a (non-strictly)concave cost is a commonly used assumption in the production planning literature(see, e.g.,Veinott,1964;Morton, 1978;Smith and Zhang,1998;Yang et al.,2005).In our model,it re-flects the idea that the supplierfirst utilizes his most efficient pat-tern of production.However,as the production volume is asked to increase,it exhausts the most attractive resources that are available to the supplier and he has to pay more in order to acquire additional resources to generate the extra output.We assume that the production quantity can be expressed by (1)S(e)=s(e)+e or(2)S(e)=s(e)Áe,where s(e)is a deterministic function of the production input level and e is an independent ran-dom variable withfinite support,denoting the yield randomness. These are called the additive and multiplicative forms,respec-tively,both of which are widely used in the literature.Let f e(Á), F e(Á)and FÀ1eðÁÞbe the density,distribution and inverse distribution functions of e,respectively.Also suppose that s0(e)>0and s00(e)60, which implies that the marginal expected production quantity is non-increasing as the production input level is raised.Without any loss of generality,we assume linear function s(e)=a+b e, b>0,and normalize the yield randomness into E e=0or E e=1 for the additive or multiplicative form,respectively.In fact,for 1Although in practice the decisions concerning product development,capacity reservation,and manufacturing quantity plan can be made at different time points, and thus have different degrees of forecast accuracy,our model can be applied as long as these decisions are appropriately abstracted and meet the required theoretical assumptions.Please see Section4.3for relevant examples.X.Li et al./European Journal of Operational Research226(2013)228–236229any arbitrary function s (e ),let s =s (e )be the new variable repre-senting the production input level and C (s )the new cost function.We then have C 0(s )>0,C 00(s )P 0,and S (s )=s +e or S (s )=s Áe ,and thus the expected production quantity is a linear function.The de-tails can be found in the Supplementary material of this paper.Other parameters include exogenous selling price p and the hold-ing cost of leftover unit,h ,which can be negative if the leftover unit incurs salvage value.We assume that p >Àh .The interaction between the supply chain members is as fol-lows.As the Stackelberg leader,the buyer first proposes to the sup-plier an incentive contract with payment T ,which is related to the realization of production quantity S (e ).As the follower,the sup-plier accordingly chooses production input level e .After S (e )is realized,the supplier delivers a partial or full quantity of units to the buyer,according to the prescription in the contract.Finally,demand is realized (if it is random),and the buyer meets that de-mand.Note that we assume voluntary compliance in the supplier’s decision,which means the supplier freely chooses the production input level without any contracting obligation.In many industries,it would be very difficult or costly for the buyer to monitor the sup-plier’s production input level,thus the supply chain system should indeed be operated under a voluntary compliance regime.Further-more,we assume that both the supplier and the buyer are risk-neutral and seek to maximize their own expected profits,respectively,with information on the system parameters as com-mon knowledge.3.Deterministic demandIn the case of deterministic demand d ,we first investigate the optimization problem for the centralized supply chain,which serves as a benchmark for the decentralized case.The expected profit of the centralized supply chain isp c ðe Þ¼E f p min ½d ;S ðe Þ Àh ½S ðe ÞÀd þÀC ðe Þg :ð1ÞLemma 1.(1)There is a unique e Ãc that maximizes the expected profitof the centralized supply chain,and (2)e Ãc is increasing with p and decreasing with h .Lemma 1shows the uniqueness of the optimal production input level e Ãc that maximizes the expected profit of the entire supply chain,and it is increasing with the selling price and decreasing with the holding cost.In the following,this maximized supplychain profit is assumed to be positive,i.e.,p c e Ãc ÀÁ>0.We now ex-plore the decentralized supply chain.The simplest scheme,which is also widely adopted in practice,is a wholesale price contract with the buyer prescribing an order quantity q and paying whole-sale price w 2(Àh ,p )for each delivered unit in the order.Hence,the payment to the supplier is T (w ,q )=w min[S (e ),q ],and the sup-plier’s expected profit isp s ðe Þ¼E f w min ½q ;S ðe Þ Àh ½S ðe ÞÀq þÀC ðe Þg :ð2ÞLemma 2.For any order quantity q from the buyer,there is a unique optimal production input level e d (q )for the supplier characterized byðw þh Þ@E min ½q ;S ðe Þ¼b h þC 0ðe Þ:ð3ÞGiven the above optimal response from the supplier,the buyer can strategically choose an order quantity q which is no less than the deterministic demand d .In other words,the buyer anticipates the supplier’s response e d (q )characterized by (3)and determines order quantity q to maximizep b ðq Þ¼pE min ½d ;S ðe d ðq ÞÞ ÀhE ½min ½q ;S ðe d ðq ÞÞ Àd þÀwE min ½q ;S ðe d ðq ÞÞ ¼ðp þh ÞE min ½d ;S ðe d ðq ÞÞ Àðw þh ÞE min ½q ;S ðe d ðq ÞÞ ;ð4Þwhere the second equality is because the order quantity q should be no less than the deterministic demand d .We reformulate the above buyer’s expected profit into the func-tion of the induced production input level e as follows:p b ðe Þ¼ðp þh ÞE min ½d ;S ðe Þ Àðw þh ÞE min ½q d ðe Þ;S ðe Þ ;ð5Þwhere q d (e )is characterized by (3).Let e Ãd be the optimally induced production input level under the wholesale price contract,which maximizes the objective function (5).The following result shows the properties of the optimal production input levels in the decen-tralized case.Proposition 1.We have:(1)e Ãd <e Ãc ;(2)e Ãd is increasing with p .Proposition 1indicates that the optimal production input level in the decentralized supply chain is increasing with the selling price,which is an intuitive result.More importantly,it shows that this input level is lower than that in the centralized case,tending towards a smaller supply quantity.It has been well-known that double marginalization generally refers to the channel barrier that causes a lower transfer/delivery amount of products through the channel.This usually exhibits as a result of a higher selling price set by the retailer or a less order quantity submitted from the retailer (see e.g.,Cachon,2003;Dellarocas,2012).However,in a supply chain with uncertain supply,such a lower transfer/delivery amount may not necessarily occur.For example,under deterministic demand d the retailer may submit an order higher than d (see Li et al.,2012),and thus the ac-tual transfer/delivery amount within the channel can be even lar-ger than that in the centralized system.As we can see,the double marginalization in our model is the lower production input level as shown by Proposition 1and the resulting insufficient supply,as compared to that in the centralized optimum.This effect is differ-ent from the traditional one,although the root for such phenome-non is also the double price distortion that occurs when two successive vertical layers in a supply chain independently stack their price–cost margins under a price-only contract,as the term ‘‘double marginalization’’implies.With an appropriate coordination scheme,the systematically optimal decision can be induced and the maximal profit achieved,even if the supply chain members act in a decentralized way.Specifically,we derive a shortage penalty contract T (w ,b )=w min[S (e ),d ]Àb [d ÀS (e )]+,in which the supplier is not only paid wholesale price w for each delivered unit within the demand d ,but is also charged penalty b for each order shortage for the demand.The following result shows that this contract is an imple-mentable coordination scheme that achieves both optimal system performance and flexible profit allocation.Proposition 2.For any k 2(0,1),letw üp Àk p c e Ãc ÀÁ=db ük pc e ÃcÀÁ=d :8<:ð6ÞThen,we have:(1)w ⁄>0,b ⁄>0;and(2)the shortage penalty contract T (w ⁄,b ⁄)coordinates the sup-ply chain with deterministic demand d ,and the resulting expected profit shares of the buyer and supplier are k and 1Àk ,respectively.230X.Li et al./European Journal of Operational Research 226(2013)228–236We have two remarks on the contracts in Proposition1.First, one should note that our contracts can coordinate the supply chain under voluntary compliance since the monetary transfer is based on the realized delivery from the supplier.That is,the supplier is allowed to freely choose the production input,although in the equilibrium resulted from the contract he will rationally choose the production input level that is systematically optimal.In prac-tice,such contracts are more advantageous than those under forced compliance since in many cases the production inputs are not verifiable,and thus the coordination contracts under forced compliance are not applicable(see,for example,Cachon and Lariviere,2001,the case of unverifiable supplier’s capacity input). More importantly,as Cachon(2003)points out,any contract that coordinates a supply chain with voluntary compliance surely coor-dinates the supply chain with forced compliance,but the reverse is not true.We refer to Cachon(2003)and Bolandifar et al.(2010)for more detailed discussion on the concept of compliance regime.In addition,the contracts in Proposition1not only coordinate the supply chain but also leavesflexibility for profit allocation.In general,the particular profit split depends on thefirms’relative bargaining power.As the buyer’s bargaining position becomes stronger,one would anticipate k to increase.In the extreme case, if the buyer is a completely dominating party in the channel she might leave to the supplier only the profit he earns in the uncoor-dinated case to ensure the supplier’s participation in the coordina-tion contract.In the less extreme cases,cooperative game theories such as Nash-bargainning solutions may be adopted to determine what kind of allocation k is a fair one.We refer to Muthoo(1999) for a more detailed discussion on the issue of profit allocation un-der cooperation.4.Random demand4.1.Double marginalizationWe now turn our attention to the case in which the buyer faces random demand D,which is independent of supply randomness e. Let f D(Á),F D(Á)and FÀ1DðÁÞbe the density,distribution and inverse dis-tribution functions of D,respectively.In this subsection we will show how double marginalization is manifested under the whole-sale price contract.The expected profit of the centralized supply chain ispcðeÞ¼E f p min½D;SðeÞ ÀhÁ½SðeÞÀD þÀCðeÞg:ð7ÞLemma3.(1)There is a unique eÃcthat maximizes the expected profitof the centralized supply chain(7);(2)eÃcis increasing with p and decreasing with h.Lemma3shows that the uniqueness of the optimal productioninput level eÃcfor the centralized supply chain under random de-mand,and it is increasing with the selling price and decreasing with the holding cost.The results are similar to the case of deter-ministic demand.In the decentralized case,the wholesale price contract T(w,q)=w min[S(e),q]is adopted.The supplier’s expected profit p s(e)and his optimal production input level e d(q)are expressed by(2)and(3),respectively,for given order quantity q.The buyer’s problem is to choose order quantity q to maximize her expected profitpbðqÞ¼E f p min½D;Sðe dðqÞÞ;q Àh½min½Sðe dðqÞÞ;q;q ÀD þÀw min½q;Sðe dðqÞÞ;q g¼ðpþhÞE min½D;Sðe dðqÞÞ;q ÀðwþhÞE min½q;Sðe dðqÞÞ ;ð8Þwhich can be reformulated into the function of the induced produc-tion input level e as follows:pbðeÞ¼ðpþhÞE min½D;SðeÞ;q dðeÞ ÀðwþhÞE min½q dðeÞ;SðeÞ ;ð9Þwhere q d(e)is characterized by(3).Let qÃdand eÃdbe the optimal or-der quantity and its induced production input level,which maxi-mize(8)and(9),respectively.We have the following result.Proposition3.(1)If p b(q)in(8)is a quasi-concave function,theneÃd<eÃc,and eÃdis increasing with p.(2)When C00(e)=0,p b(q)in(8)is a strictly concave function.Proposition3shows that double marginalization also occurs and manifests at a lower production input level,which is similar to the case of deterministic demand.The condition of quasi-concavity for the buyer’s objective function is to ensure the optimal order quan-tity(and the induced production input level)to be unique.This con-dition holds in the case of linear production cost,as indicated in Proposition3.For other cost functions,we point out that although it is very difficult to theoretically prove that the quasi-concavity holds in general,extensive numerical experiments have shown that it is true for many convex polynomial functions of C(e).Proposition 3also shows that the optimal production input level in decentral-ized case is increasing with the selling price.The above results are valid when an order quantity q<+1is ap-pointed as a decision variable in wholesale price contract T(w,q), while the wholesale price w2(Àh,p)can be any given plausible value.In fact,contract T(w,1)can be adopted when the buyer des-ignates a specific supplier for the product supply,which implies that the buyer will accept as many units as the supplier pro-duces/provides and pays for them at a unified wholesale price w. We call this type of payment scheme with q=1as an accept-all type of wholesale price contract for the buyer,and it can be a prac-tical policy mechanism in some cases.For example,in the reman-ufacturing industry if a remanufacturer outsources the acquisition activity of used product to a specialized collector,then this collec-tor may be required to deliver all acquired units to the remanufac-turer,and the accept-all contract T(w,1)can be used.Similar situation also occurs in agriculture in China,where the government encourages the downstreamfirm to provide the farmers(or the production base)a contract with no order limit on the quantity of agricultural products given a certain price mechanism.Under the accept-all type of wholesale price contract T(w,1), the supplier determines the production input level e to maximize p sðeÞ¼E½wSðeÞÀCðeÞ :ð10ÞThe buyer anticipates the supplier’s optimal response e d(w)and determines the wholesale price w to maximizepbðwÞ¼E f p min½D;Sðe dðwÞÞ Àh½Sðe dðwÞÞÀD þÀwSðe dðwÞÞg;ð11Þwhich can be reformulated into the function of the induced produc-tion input level e as follows:pbðwÞ¼E f p min½D;SðeÞ Àh½SðeÞÀD þÀw dðeÞSðeÞgð12Þwhere w d(e)is the inverse function of e d(w)that maximizes(10).LetwÃdand eÃdbe the optimal wholesale price and its induced induced production input level,which maximize(11)and(12),respectively. We have the following result.Corollary1.Under the accept-all wholesale price contract T(w,1),we have eÃd<eÃcwhen C00(e)>0.Corollary1shows that the double marginalization effect is also manifested as a lower production input level with accept-all wholesale price contract T(w,1),in which case the wholesale price w becomes a decision variable.The required condition C00(e)>0X.Li et al./European Journal of Operational Research226(2013)228–236231。
给朋友的一封信英语作文戴翻译

给朋友的一封信英语作文戴翻译英语作文自我介绍带翻译to introduce myself(介绍我自己)hello,every one!(大家好)my name is **** . (我叫****)im a 15 years old boy. (我是一个15岁的男孩)(具体情况自己改)i live in the beautiful city of rizhao.(我住在美丽的rizhao城)(你可以把rizhao改成自己家乡的城市的名称的拼音)im an active ,lovely and clever boy.(我是一个活跃的可爱的聪明的男孩)in the school , my favourite subject is maths . (在学校,我最喜欢数学)perhaps someone thinks its difficult to study well .(也许有些人认为这很难学)but i like it.(但我喜欢他)i belive that if you try your best, everything can be done well.(我相信每件事付出努力就会有害结果)i also like sports very much.(我也很喜欢运动)such as,running,volleyball and so on. (像跑步、排球等等)im kind-hearted.(我很热心)i hope we can be good friends!(我希望我们能成为好朋友)ok.this is me .a sunny boy.(好了,这就是我,一个阳光男孩)首先要看你写信的性质。
是官方而正式的书信?还是朋友间的通信?无论是哪一种,基本的英文书信格式应包括四大部分:日期,称呼,正文,和落款(包括敬语)1、朋友间的october,16,2011(右起顶格)dear jimmy(左起顶格)im glad to receive your letter...(正文,开头空四格)yours sincerely,jack(右下,包括敬语和落款)2、官方、正式的书信信内应包含收信人地址(西方古时防止信封损坏地址无着而沿用至今的传统)、日期、称呼、正文、落款等。
无机固态电解质及其电极-电解质界面优化对全固态锂离子电池性能提高的研究进展

第37卷第1期 (2021 年1月)福建师范大学学报(自然科学版)Journal of Fujian Normal University (Natural Science Edition)V ol.37,No. 1Jan. 2021DOI :10. 12046/j. issn. 1000-5277. 2021. 01. 003 文章编号:1000-5277(2021)01-0018-13无机固态电解质及其电极-电解质界面优化对全固态锂离子电池性能提高的研究进展李志宣,陈越,林洪斌,林春,潘汉殿,黄志高(福建师范大学物理与能源学院,福建省f l子调控与新能源材料重点实验室,福建福州350117)摘要:固态电池研究的重点在于开发高离子电导率的固态电解质,并优化固态电解质和电极的界面问题.首先以近年来受到广泛研究的无机固态电解质为中心,主要介绍通过固相烧结、液相烧结、溶胶凝胶法等方法制备的包括L iPO N型、钙钛矿型、石榴石型和NAS丨C O N型在内的4种无机固态电解质及其在全固态锂离子电池中的应用;其次,通过对固态电解质表面修饰及界面优化,并结合不同的修饰方法讨论了界面优化的本征机制;最后对固态电池的研究开发、应用及发展前景进行了展望.关键词:全固态锂离子电池;固态电解质;无机;界面中图分类号:0641 文献标志码:AResearch Progress on Inorganic Solid Electrolyte and Its Improvement of Interface Issue for All-solid-state Lithium BatteriesLI Zhixuan, CHEN Yue, LIN Hongbin, LIN Chun, PAN Handian, HUANG Zhigao (College o f Physics and Energy, Fujian Normal University,Fujian Provincial Key Laboratory ofQuantum Manipulation and New Energy Materials, Fuzhou350117, China)Abstract :The key issue for research of all-solid-state lithium-ion batteries is development of solid electrolytes with high ionic conductivities and improvement of interface issue between electrolyte and electrode. In this review, four types of solid electrolytes applied in all-solid-state lithium- ion batteries including LiPON-type, perovskite-type, garnet-type, NASICON-type were discussed, and various preparation methods including solid phase sintering, liquid phase sintering and sol-gel method were also reviewed. Additionally, the modification of electrolyte interface for solving interface issue was investigated, and the intrinsic mechanism of interface issue was discussed. At last, the future development and application on solid-state lithium batteries were proposed.Key words:all-solid-state lithium batteries;solid electrolyte;inorganic;interface.20世纪90年代初索尼公司发布的首个商业化锂离子电池推动了移动电子产品开始向轻量化、便 携式的方向发展.如今锂离子电池应用领域不断扩大,性能逐年提升.成熟的商业化锂电池采用的是 有机液态电解质,它虽然具有很高的离子电导率,但是在电池充放电过程中,特别是高温下容易与电 极发生界面副反应导致钝化膜的持续增长;而在低温或大电流充电下,金属锂容易在负极表面析出产 生锂枝晶会对电池寿命产生影响;同时由于液态电解质热稳定性低、燃点低等方面的缺陷可能引起电 池的燃烧爆炸等不容忽视的安全问题1:.为解决上述难题,科研人员将目光转向了使用固态电解质的 全固态锂电池,其相比于使用液态电解质的锂电池具有更高的安全性和能量密度,在电子产品、混合 动力汽车等领域拥有广阔的市场前景.固态电解质分为聚合物电解质和无机电解质,聚合物固态电解质的优势在于生产成本低廉,并且 在可穿戴柔性设备上具有应用前景,但也面临在室温下离子电导率低、机械强度和热力学稳定性较差收稿日期:2020-06-01基金项目:国家自然科学基金资助项目(61574037 , 21203025)通信作者:黄志高(1%4-),男,教授,博士,研究方向为先进材料设计和新能源材料.Z ghuang@.,.n第1期李志宣,等:无机固态电解质及其电极-电解质界面优化对全固态锂离子电池性能提高的研究进展 19以及电化学窗口窄等问题2].无机固态电解质所具有的高离子电导率、电化学和热力学性能的稳定、优秀的机械性能和不易燃等特点使它在作为电解质时能够平衡电池的使用性能同时保障安全性.早期对固态电解质的开发在于寻找高离子电导率、低电子电导率及合适电化学窗口的离子导体材料3].这些关键性能参数在近几年的研究开发中得到了大幅提升,但同时固态电解质的实际应用发展又面临新—高的界面阻抗14].与传统有机液态电解质与电极良好的接触性不同的是,固态电解质虽然 的挑战—已经具有很高的离子电导率,但由于固态电解质和电极的固/固界面接触性较差使得界面阻抗大大增加,阻碍离子传输和电池的容M释放5i.因此,近年来全固态电池的研究方向一方面在于探索制备更 高离子电导率电解质,另一方面在于通过各种方法修饰固态电解质和电极的接触界面以优化界面,降 低阻抗,提高电池性能.本文将介绍近年来全固态锂离子电池所选用的电解质及其合成方法,并综述 了优化固态电解质界面问题的最新进展.1无机固态电解质近年来,无机化合物由于其高的离子电导率成为热门锂电池电解质研究材料.目前开发的无机固态电解质材料可分为氧化物型和硫化物型.硫化物固态电解质由于和金属锂的化学亲和力较弱f6],锂离子在硫化物内的流动性更强使它具有超高的离子电导率.硫化物固态电解质主要为LISICON型,其 化学式为 Li.I V^M'S,(M 为 Si、Ge,M'为P、A l、Zii、Ga、Sb),它们为7-Li3P04 结构;还有 Li2S-P2S5.且认为硫化物电解质Li2S-P2S5和L1SIC0N型固态电解质Li4_,Ge h P tS4(0 < x < 1)具有好的发 展前景7:.Yoshikatsu等[8]制备出一种Li2S-P2S5玻璃陶瓷,在室温下离子电导率达到了 1.7x l(T2S . cm'2011年,Norilu等[9:使用真空烧结的方法制备出了新型的固态电解质I」丨〇GeP2S12,在室温下离 子电导率达到了 1.2x l(T2S •cm'虽然硫化物固态电解质超高的离子电导率甚至超过了许多液态电 解质,但硫化物电解质在接触到空气后会和空气中的水发生反应产生有毒气体H2S,在影响电池稳定 性的同时也会造成安全隐患和环境污染问题.与之相比,无机氧化物电解质在化学稳定性和热稳定性 上的优势可以很好地解决人们对锂离子电池高能量密度的需求和电池使用安全问题之间的矛盾.随着 研究不断深人,新开发的无机氧化物电解质种类繁多,以下将主要综述广泛使用的石榴石型、LiPON 型、钙钛矿型和NASIC0N型4种类型的无机氧化物固态电解质.1.1石榴石墦石榴石型的固态电解质在1969年被首次报道11(1,化学通式为:Li3+,A,B2012,石榴石固态电解质 的结构分为四方相和立方相,锂原子可分别占据八面体Zr06和十二面体LaOs配位,其中立方相为离 子电导率更高的高温稳定相.Tliangadurai等11在2003年首次发现『新型石溜石结构的锂离子导体Li5La3M2012(M = Nb,Ta),并且之后在高温下采用传统的固态反应法成功制备出离子电导率达到0. 1~ 1.0 mS •的石榴 石型固态电解质Li7La,Zr2012(LLZ0).相比于上文提到的硫化物固态电解质,石榴石型固态电解质 具备更好的安全性和热稳定性[121.为了提高石榴石型电解质的电导率,在制备过程中掺人元素是一 种有效的办法.Xiang等'13制备了 LiwA^La^Zi^O^ (A= Be、B、Al、Fe、Z n和Ga),其中掺人兀素 的比例0.2~0. 3.根据电化学阻抗谱的测量结果,发现A1、F e和G a掺杂的LLZ0样品具有更高的离 子电导率,其中G a掺杂的样品在室温下的电导率达到了 1.31x l〇-3S .cm'同时结合XRD物相分析 发现,通过Al、F e和G a元素的掺杂实现了对L i元素的替代,使得掺杂后的LLZ0样品中具有更高离 子电导率的立方相更加稳定,从而提高了样品的离子电导率.243»等[|4]使用固相反应法制备了 A1掺 杂的LLZ0样品.样品化学式为:Li7_,Al,La3Zr2012,A1的掺杂量控制在0~0.25之间.如图l(a)(b)所示的乂1^测量结果表明,在丨」7_,丨>1^為20|:样品中的四方相和立方相的含量随着人1掺杂量的变 化而变化,当掺人0.1 mol的A1时,样品中四方相的信号几乎消失而表现出纯的立方相.结合对一系 列不同含量的样品的阻抗谱分析(如图I(c)所示),并通过计算得出掺量为0.1 mol的样品具有最大的 离子电导率,在30 t下达到了 L41x l〇_4S •o ir1,这与之前XRD的测试中立方相含量最高的结果相吻合.20福建师范大学学报(自然科学版)2021 年-20.-0 mol A1 0.05 mol A1 0.10 mol A1 0.20 mol A i3026/(°)40图1(a) (b) Al-LLZO样品的X射线衍射图谱,(c)在30尤下0〜0.25 mo丨含量范围内A1元素掺杂LLZO样品的电化学阻抗谱[|4]Fig. 1( a) ( b) X-ray diffraction patterns of Al-LLZO samples,( c) Nyquist plots for the totalionic conductivity of LLZO samples with 0 〜0. 25 mol Al doping at 30 Ti 14■等[15]则使用Li2C03、Rb2C03、La203、21〇2和〇320,粉末,通过固相反应的方法制得了 Ga、汕元素掺杂的1^62。
基于夜间灯光数据的全国栅格尺度碳排放模拟

Science and Technology & Innovation|科技与创新2024年第04期DOI:10.15913/ki.kjycx.2024.04.031基于夜间灯光数据的全国栅格尺度碳排放模拟郑秋红(江西理工大学土木与测绘工程学院,江西赣州341000)摘要:以DMSP-OLS和NPP-VIIRS夜间灯光数据为基础数据,对其进行融合校正形成DMSP-OLS长时序夜间灯光数据集,结合省域碳排放统计数据,利用空间面板数据模型对全国栅格尺度碳排放进行模拟,构建2000—2019年1 km×1 km分辨率的全国栅格尺度碳排放模拟数据,分析全国碳排放时空格局变化特征。
结果表明,DMSP-OLS和NPP-VIIRS数据重叠年份之间存在较高的关联性,回归拟合优度为0.907 7,拟合效果良好;碳排放空间面板数据模型模拟结果良好,R2=0.874;2000—2019年,全国碳排放总量持续增长,且高碳排放地区呈现出显著连片扩张趋势。
关键词:夜间灯光数据;面板数据模型;碳排放模拟;栅格尺度中图分类号:X321 文献标志码:A 文章编号:2095-6835(2024)04-0111-03由碳排放引起的全球环境问题引发了国际社会的密切关注。
中国作为最大的发展中国家,碳排放问题已成为制约中国经济绿色协调发展的主要原因。
准确地获取碳排放强度的时空动态信息和分析碳排放强度影响因素,是探索适合中国国情节能减排策略的前提。
根据国际能源署IEA的数据,1971—2018年间,全球人均二氧化碳排放水平整体较为稳定,增长幅度约20%。
2018年,全球人均碳排放达4.4 t,中国人均碳排放达6.8 t。
中国的人均碳排放自2003年开始呈现明显上升趋势,并于2006年超过了全球平均水平,成为全球最大的碳排放国[1]。
中国作为负责任的大国,积极承担减排任务,将发展绿色低碳经济作为中国制定相关政策的重要原则。
中国政府于2014年发布了《能源发展战略行动计划》,计划强调清洁能源将作为消费能源的主要发展方向,中国政府承诺到2030年前实现碳达峰目标,2030年单位GDP碳排放比2005年下降60%~65%。
211145454_Al3+掺杂石榴石LLZO_固体电解质的制备及电化学性能研究

第52卷第4期 辽 宁 化 工 Vol.52,No. 4 2023年4月 Liaoning Chemical Industry April,2023Al3+掺杂石榴石LLZO固体电解质的制备及电化学性能研究金浩,耿文博(内蒙古科技大学 材料与冶金学院,内蒙古 包头 014010)摘 要: 固体电解质拥有较高的离子电导率、良好的化学稳定性、长的循环寿命以及安全可靠等优点,被广泛应用到各个领域,成为当前研究的热点。
以LLZO固体电解质为研究对象,制备了不同含量Al掺杂的LLZO电解质材料,采用X射线衍射、扫描电镜和交流阻抗谱等方法对不同掺杂量和不同烧结温度下LLZO固体电解质的XRD、微观形貌及电导率进行了研究。
结果表明:少量Al的掺杂可以明显地提升LLZO固体电解质的电导率,但随着掺杂量的增加,Al3+增多,阻塞了Li+的传输通道,导致电导率下降。
同时,烧结温度对材料的性能也有一定影响,随着烧结温度的提升,同一含量Al掺杂LLZO的致密度和电导率也有明显提升。
关 键 词:LLZO固体电解质;掺杂改性;电导率中图分类号:TQ174.75+8.11 文献标识码: A 文章编号: 1004-0935(2023)04-0488-05电池作为重要的储能装置,已经经过了上百年的发展,在锌锰干电池、燃料电池、锂离子电池、太阳能电池、超级电容器等诸多储能装置中,锂离子电池因具有高比能量、高循环寿命、宽工作温度范围、质量轻、体积小、无记忆效应[1-3]等优势而被广泛地应用在航空航天、电子通信、电动汽车等领域。
锂离子电池的应用给我们的日常生活带来了极大的便利,手机电脑更加轻薄,可随身携带;电动汽车减少了燃油的使用,避免了尾气的排放。
但与此同时,由于锂离子电池采用聚合物或有机溶剂作为电解质,化学性质不稳定,易引起爆炸[4-6]。
近年来,“特斯拉”汽车、“三星”手机的爆炸均与这一安全隐患有关[7]。
因此选用电化学性质稳定、能量密度大、兼容性好的固体电解质是锂离子电池未来的发展趋势[8]。
时间序列分类问题的算法比较

8期杨一鸣等t时问序列分类问题的算{击比较1265在今后的工作中,我们将会把具体的分类算法[II]考虑进去来做进一步的预处理,考虑怎样的属性组合可以更好地提高我们算法分类的性能.我们也计划把算法运用到其他的多维序列数据集中.参考文献口]Itaku珀EM川mumpre山ctlonr姻ldualpnnclpleappIled8peech舢gnIlIon.IEEET埘mctIonsAcoustlcsSp∞chSlgn且1ProcesB(ASSP).1975t23(1)I52—72[2]Kruska¨JB,LIberIlI皿M.TheBymmetnctImewarm“gal—gonthm,Fromcontl删oustod15crete//T吼eWarps,St“ngEdit8andMacromolecul凹.Addl∞n,1983[3]M”rBc.Rabln盯L,Rosenebe79A.Pcdotradeoffs.ndynaIⅡicn㈣rPmgalgorithmsfor1solatedwordrecog—m“0tI.IEEETfan5actIonsonA洲t瑚SpeechSIgnalProce3s(ASSP)。
1980.28(6):623—635[4]&rⅡdtD,alffordJ.usl“gdynamlctl眦wafplIlgt。
hndpattⅢmt雌鲫es//ProceedlElgso“hAAAI·94work—shopKnowledgenscoveryDataba8e8.s曲ttle,wAtUSA.1994:229—248[5]AachJ,chufchG.A119n1“ggenecxp心5slontImc8盯le8Wltht帅e珊rpillgdgonthm8.Blmnf蝴tl∞,2001.17:495—508[6]白laIIiEG,P。
naAtB聃eIhG,T咖lM,Muzzupappas.Plcruz西F。
优质高产籼粳杂交稻嘉丰优3_号的选育及制种技术

780㊀㊀2024年第65卷第4期收稿日期:2024-01-05作者简介:金浩晶,浙江东阳人,主要从事优质㊁高产㊁多抗水稻新品种选育,E-mail:1942152531@㊂通信作者:董国军,浙江龙游人,农艺师,主要从事水稻分子遗传育种研究,E-mail:dongguojun@㊂文献著录格式:金浩晶,曹郁青,郑利欣,等.优质高产籼粳杂交稻嘉丰优3号的选育及制种技术[J].浙江农业科学,2024,65(4):780-784.DOI:10.16178/j.issn.0528-9017.20240021优质高产籼粳杂交稻嘉丰优3号的选育及制种技术金浩晶1,曹郁青1,郑利欣1,厉伟杉1,马强1,董国军2∗(1.浙江可得丰种业有限公司,浙江磐安㊀322300;2.中国水稻研究所水稻生物育种全国重点实验室,浙江杭州㊀310006)㊀㊀摘㊀要:嘉丰优3号是嘉兴市农业科学研究院联合中国水稻研究所㊁浙江可得丰种业有限公司,以嘉禾112A (长粒型粳稻三系不育系)为母本与G1143(中籼迟熟型恢复系)为父本选育的三系杂交水稻新组合㊂该组合具有高产㊁优质㊁中抗稻瘟病等优势,于2021年4月通过浙江审定(浙审稻2021019),2021 2023年先后通过了江西省[(赣)引种 2021 第001号]㊁安徽省(皖引稻2021066)㊁福建省[(闽)引种 2022 第1号]㊁湖北省(鄂引种2022055)的引种备案,适宜在长江中下游地区作中稻种植㊂文章介绍了嘉丰优3号的选育过程㊁特征特性㊁高产栽培及制种技术等㊂关键词:优质高产籼粳杂交稻;嘉丰优3号;选育;制种技术中图分类号:S511㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:0528-9017(2024)04-0780-05Breeding and seed production technology of a indica-japonica hybrid ricevariety Jiafengyou 3with high-yield and high-qualityJIN Haojing 1,CAO Yuqing 1,ZHENG Lixin 1,LI Weishan 1,MA Qiang 1,DONG Guojun 2∗(1.Zhejiang Kedefeng Seed Industry Co.,Ltd.,Panᶄan 322300,Zhejiang;2.China National Rice ResearchInstitute,State Key Laboratory of Rice Biology and Breeding,Hangzhou 310006,Zhejiang)㊀㊀Abstract :Jiafengyou 3is a new hybrid rice combination developed by Jiaxing Academy of Agricultural Sciences,China National Rice Research Institute,and Zhejiang Kedefeng Seed Industry Co.,Ltd.,which using Jiahe 112A (longgrain type japonica rice three line male sterile line)as the female parent and G1143(medium indica late maturing restoringline)as the male parent.This combination has advantages such as high yield,high quality,and moderate resistance to riceblast.It was approved by Zhejiang in April 2021(Zhe Authorized Rice 2021019),and from 2021to 2023,it has successively passed the introduction registration of Jiangxi Province [(Gan )Introduction 2021 No.001],Anhui Province (Wan Introduction Rice 2021066),Fujian Province [(Min)Introduction 2022 No.1],and Hubei Province(E Introduction Rice 2022055),making it suitable for planting medium rice in the middle and lower reaches of the YangtzeRiver.This article introduces the breeding process,characteristic characteristics,high-yield cultivation,and seedproduction techniques of Jiafengyou 3.Keywords :indica-japonica hybrid rice variety with high-yield and high-quality;Jiafengyou 3;breeding;seedproduction technology㊀㊀籼粳杂交稻作为一类新型水稻品种,通常被认为产量相对较高,但米质较差㊂选育单位围绕粳不籼恢这一籼粳亚种间杂种优势进行积极探索,创制粳不籼恢不育系和恢复系新材料,组配了优质高产的新型籼粳杂交稻组合嘉丰优3号,于2021年4月通过浙江审定(浙审稻2021019),2021 2023年先后通过了江西省[(赣)引种 2021 第001号]㊁安徽省(皖引稻2021066)㊁福建省[(闽)引种 2022 第1号]㊁湖北省(鄂引种2022055)的引种备案,适宜在长江中下游地区作中稻种植㊂1㊀亲本来源及选育过程1.1㊀母本嘉禾112A㊀㊀嘉禾112A 是嘉兴市农业科学研究院与中国水稻研究所合作选育的BT 型粳稻三系不育系,2020年5月通过浙江审定[浙审稻(不育系)2020013]㊂2011年嘉兴正季,利用粳型细胞质雄性不育系嘉禾212A 为母本,自育半矮生型长粒粳稻新品系嘉禾112作父本测交配组㊂2012年海南成对种植F 1代,与测交父本嘉禾112成对回交;后经海南 嘉兴多次回交和逐代逐株育性鉴定,2015年海南初定B 6F 1并少量制繁种,定名为嘉禾112A;2015年嘉兴正季继续回交并制繁种㊂转育各个世代进行套袋观察不育系自交结实率,同时对稻瘟病等多种农艺特性进行表现型鉴定㊂该不育系繁茂性佳,开花习性好,配合力较强,异交结实率中等,米质优,中抗稻瘟病㊂1.2㊀父本G1143的选育㊀㊀恢复系G1143是中国水稻研究所选育的偏籼型恢复系㊂2007年在杭州富阳试验基地用IR64与R25(献党/测64-7)进行杂交,通过分子标记辅助选育技术进行单株系统选育,通过富阳㊁海南10代选育而成的偏籼型恢复系㊂1.3㊀嘉丰优3号的选育㊀㊀2013年春,在海南用恢复系G1143分别与嘉禾112A㊁嘉禾212A 等测交配组,次年开展小区品比试验和小面积制种,2015年起由浙江可得丰种业有限公司在浙江嘉兴㊁磐安等地布点试种,观察其抗逆性㊁适应性㊁丰产性,最终表现长势繁茂㊁生育期适中㊁抗性强㊁米质优㊁产量高㊁后期熟色好的嘉禾112A /G1143组合入选,新组合暂定名嘉丰优3号㊂2021年4月通过浙江审定(浙审稻2021019),2021 2023年先后通过了江西省[(赣)引种 2021 第001号]㊁安徽省(皖引稻2021066)㊁福建省[(闽)引种 2022 第1号]㊁湖北省(鄂引种2022055)的引种备案,适宜在长江中下游地区作中稻种植㊂2㊀主要特征特性2.1㊀农艺性状㊀㊀该品种株型适中,植株较高,分蘖力中等偏弱,剑叶内卷㊁长挺㊂叶下禾,着粒中等,穗大粒多,谷壳黄亮,颖尖秆黄色,短顶芒,谷粒椭圆形,结实率较高㊂2.1.1㊀浙江省㊀㊀两年省区试平均全生育期138.2d,比甬优1540(CK)短5.9d㊂表1表明,该品种两年区试每667m 2有效穗数11.9万,株高125.2cm,每穗总粒数306.9粒,实粒数258.8粒,结实率84.5%,千粒重25.65g㊂与甬优1540比较结实率低6.45百分点,千粒重高2.60g㊂表1㊀嘉丰优3号与甬优1540生育期及主要农艺经济性状汇总分析结果(中稻)Table 1㊀Summary analysis results of growth period and main agronomic and economic traits of Jiafengyou3and Yongyou 1540(medium rice )品种名称全生育期/d 每667m 2有效穗/万株高/cm每穗总粒数每穗实粒数结实率/%千粒重/g 嘉丰优3号138.211.9125.2306.9258.884.5025.65甬优1540144.110.5118.6331.9302.190.9523.052.1.2㊀国家统一区试(长江中下游晚籼早熟组)㊀㊀两年嘉丰优3号国家统一区试(长江中下游晚籼早熟组)平均生育期114.3d,生育期比CK 早熟2.7d,表2表明,嘉丰优3号每667m 2有效穗16.5万,株高112.0cm,穗长23.0cm,每穗㊀㊀总粒数212.4粒,结实率79.5%,千粒重27.2g㊂与五优308比每穗实粒数多35.6粒,结实率低2.8百分点,千粒重高3.9g㊂2.1.3㊀国家统一区试(黄淮海粳稻组)㊀㊀2022年生育期154.8d,比CK 晚熟0.3d,每㊀㊀表2㊀嘉丰优3号与五优308生育期及主要农艺经济性状汇总分析结果(连作晚稻)Table 2㊀Summary analysis results of growth period and main agroeconomic traits of Jiafengyou 3and Wuyou 308(continuous late rice )品种名称全生育期/d 每667m 2有效穗/万株高/cm穗长/cm 每穗总粒数每穗实粒数结实率/%千粒重/g 嘉丰优3号114.316.5112.023.0212.4167.979.527.2五优308117.022.6106.221.8160.8132.382.323.3782㊀㊀2024年第65卷第4期667m 2有效穗16.5万,株高118.1cm,穗长24.3cm,每穗总粒数233.8粒,结实率80.3%,千粒重26.3g㊂2.2㊀稻米品质㊀㊀中稻:表3表明,嘉丰优3号平均整精米率50.6%,长宽比2.7,垩白度1.90%,透明度2.0级,胶稠度77.5mm,碱消值5.8级,直链淀粉含量13.6%,与甬优1540比较米质均为二等㊂表3㊀嘉丰优3号与甬优1540米质和抗病分析结果(中稻)Table 3㊀Analysis results of rice quality and disease resistance between Jiafengyou 3andYongyou 1540(medium rice )品种名称精米率/%整精米率/%长宽比垩白度/%透明度/级碱消值/级胶稠度/mm直链淀粉含量/%部标等级稻瘟病综合指数穗瘟损失率级别白叶枯病级嘉丰优3号70.7050.60 2.7 1.90 2.0 5.877.513.60二等 3.457甬优154071.9563.152.31.451.57.077.016.15二等3.957㊀㊀晚稻:表4表明,该品种糙米率81.2%,精米率72.3%,整精米率62.4%,粒长6.7mm,粒型长宽比2.9,垩白度1.5%,透明度2级,碱消值5.3级,胶稠度81mm,直链淀粉含量15.3%,综合评级为部标等级优3,米质优于五优308(普通)㊂表4㊀嘉丰优3号与五优308米质和抗病分析结果(连作晚稻)Table 4㊀Analysis results of rice quality and disease resistance between Jiafengyou 3andWuyou 308(continuous late rice )品种名称精米率/%整精米率/%长宽比垩白度/%透明度/级碱消值/级胶稠度/mm 直链淀粉含量/%部标等级稻瘟病综合指数穗瘟损失率级别白叶枯病级嘉丰优3号72.362.4 2.9 1.52 5.38115.3优3 2.857五优30872.260.72.81.825.86622.6普通5.7992.3㊀抗病性㊀㊀中稻:中抗稻瘟病,稻瘟病综合指数3.4,穗瘟损失率最高5级;感白叶枯病,白叶枯病最高7级;高感褐飞虱,褐飞虱最高9级,抗性和甬优1540不差上下㊂晚稻:稻瘟病综合指数2.8,穗瘟损失率级别5级,白叶枯病级7级,褐飞虱病级9级,抗性优于五优308㊂2.4㊀产量表现(区域试验与生产试验)2.4.1㊀浙江㊀㊀表5表示,2019年浙江省单季籼粳交偏籼稻区试,每667m 2平均产量712.2kg,比甬优1540(CK)增产3.6%;2020年区试每667m 2平均产量639.1kg,比甬优1540(CK)增产0.8%;两年省区试平均产量675.7kg,比甬优1540(CK)增产2.2%㊂2020年生产试验每667m 2平均产量628.9kg,比甬优1540(CK )减产0.9%,产量略高于甬优1540㊂2.4.2㊀国家统一区试(长江中下游晚籼早熟)㊀㊀表6表示,嘉丰优3号2021年初试每667m 2平均产量628.48kg,比五优308(CK)增产4.97%;2022年续试每667m 2平均产量616.43kg,比五优㊀㊀表5㊀嘉丰优3号每667m 2产量(浙江省区域试验和生产试验)Table 5㊀667m 2yield of Jiafengyou 3(regionaland production trials in Zhejiang Province )试验名称嘉丰优3号/kg甬优1540(CK)/kg 比CK 增减产/%2019年区域试验712.2687.5 3.62020年区域试验639.1634.30.82020年生产试验628.9634.3-0.9表6㊀嘉丰优3号每667m 2产量(国家统一区域试验和生产试验)Table 6㊀667m 2yield of Jiafengyou 3(nationalunified regional and production trials )试验名称嘉丰优3号/kg 五优308(CK)/kg 比CK 增减产/%2021年区域试验628.48598.74 4.972022年区域试验616.43579.93 6.292022年生产试验547.07539.171.47308(CK)增产6.29%,两年区试667m 2平均产量622.46kg,比五优308(CK)增产5.62%;生产试验667m 2嘉丰优3号平均产量547.07kg,比五优308(CK)增产1.47%,嘉丰优3号具有明显的产量优势㊂2.4.3㊀国家统一区试(黄淮海粳稻C组)㊀㊀2022年初试每667m2平均产量719.71kg,比CK增产15.86%,增产点比例91.7%㊂3㊀栽培技术要点3.1㊀适时播种,培育壮秧㊀㊀作中稻栽培于4月下旬至6月上旬播种,667m2秧田用种量10~12kg,大盘机插秧每盘50g, 667m2大田用种量0.75~1.5kg㊂3.2㊀适龄移栽,合理密植㊀㊀手插秧龄25d之内,机插20d以内,秧苗二叶一心期和移栽前5~7d,每667m2施尿素5kg,以培育多蘖壮秧,有效穗数13万~15万穗利于高产㊂单季手插密度27cmˑ27cm,双本插,机插密度30cmˑ21cm㊂3.3㊀肥水管理㊀㊀应根据当地的土地肥力水平,合理运筹肥水,实施健身栽培㊂每667m2施复合肥40kg,移栽返青晒田后结合除草,每667m2施尿素7.5kg,隔4~5d后每667m2再施尿素7.5kg加氯化钾10kg;每丛分蘖数15个左右时,排水烤田7d左右,促进根系下扎和稻株基部粗壮,此后灌水2d,搁田5~7d,间歇灌排,直至孕穗;主茎叶枕距为零时灌5~10cm水层,根据苗情667m2施尿素7.5kg加氯化钾7.5kg或复合肥20kg,以提高颖花成花率和结实率㊂如叶片宽长㊁叶色偏深则不可施穗肥,以防贪青和倒伏㊂抽穗扬花结束后间歇灌水,干湿交替,直至收割前7~10d断水,严禁断水过早,直到90%以上谷粒黄熟后收割㊂3.4㊀种子处理和病虫害防治㊀㊀播种前选对药剂,做好浸种,防治恶苗病;稻曲病要在破口前10d和破口期选对口药剂连防两次;水稻抽穗前后慎用咪唑类杀菌剂;严格按规范施用除草剂,严禁在水稻拔节或幼穗分化后施用化学除草剂;结合大田生产和病虫害预报,及时做好稻瘟病㊁纹枯病㊁稻飞虱㊁螟虫㊁白叶枯病等病虫害防治[1-2]㊂3.5㊀风险提示㊀㊀特别注意防治稻瘟病㊁稻曲病㊁白叶枯病㊂4㊀高产制种技术4.1㊀播种期的确定㊀㊀播种期需根据嘉禾112A和G1143的生育期来制定播种差期,父本G1143为中籼材料,花期相遇是杂交稻制种获得高产的前提㊂4.2㊀培育期壮秧㊀㊀父母本种子用浸种灵等抗菌剂浸种24~36h㊂秧田父母本播种量每667m2不超过10~20kg,父本要求稀播,以培育分蘖壮秧,播后及时塌谷可以预防麻雀和鼠害㊂早施断奶肥(二叶一心)和起身肥(移栽前),秧板上水前要求秧沟有水㊁秧板湿润,上水后保持一定水位;秧龄20~25d左右带分蘖移栽㊂4.3㊀合理种植,做好花期预测㊀㊀父母本种植比为2ʒ12较为理想,父本按株行距33.3cm,株距23.3cm,单本或双本插栽㊂母本株行距为16.7cmˑ16.7cm,父母本间距以20cm为宜㊂加强田间栽培管理,促进父母本平衡生长并及时搁田,及时观察父母本幼穗分化进程,使父母本花期处于最佳相遇状态㊂薄水分蘖㊁浅水扬花㊁活水养稻到老㊂4.4㊀肥水管理㊀㊀每667m2施氮㊁磷㊁钾肥比例为1.6ʒ2.0ʒ1.0,底肥主要以氮㊁磷肥为主,适施保花肥,施纯氮2.5~3.0kg,促进大穗,从而提高制种产量㊂4.5㊀授粉㊀㊀授粉以人工辅助授粉方式进行,从而提高不育系异交结实率㊂中午开花后每天赶2~3次粉,旺花期时要求赶3~4次,如遇阴雨天需抢晴赶粉㊂4.6㊀防治病虫害㊀㊀在病虫防治上宜采取化学与生物综合防治的方法,减少化学药剂的施用㊂重点做好纹枯病㊁稻飞虱㊁稻瘟病的预防㊂除采用高效低毒的化学药剂防治病虫害外,还可以采用频振式杀虫灯等方式捕杀二化螟㊁稻纵卷叶螟㊁飞蛾,具体病虫害的预测及防治时间以当地植保部门发布的病虫情报和防治意见为准㊂4.7㊀严把质量关㊀㊀为保证制种纯度,需严把亲本质量关和亲本繁殖田隔离关,繁种田四周要保持150~200m间隔,最好选择天然隔离田块进行繁种,防止不同品种互相串花㊂做好亲本种田间去杂关,父母本移栽后应经常进行田间去杂工作,特别是喷施九二〇前要加大去杂力度,彻底去除异型株及同型可育株㊂收割时严防机械和人为混杂,父本授粉结束后784㊀㊀2024年第65卷第4期及时割去父本,以防父本混进杂交种,同时机器要清理干净㊂种子收割后应及时进行田间纯度鉴定,有杂质的应及时进行加工精选,种子保存期间应经常测定含水量㊁发芽率,以保证大田用种质量㊂5㊀示范推广效果㊀㊀嘉丰优3号适于机械化和大规模生产,米质稳定性好,出米率高,晶莹剔透,米饭有劲道,冷饭不回生㊂2022年因长时间持续罕见高温导致许多水稻品种脱肥早衰,产量严重降低,但嘉丰优3号产量和品质都很稳定,以优异的表现和品质获得了市场的认可㊂参考文献:[1]㊀赵力勤,杨华军,朱东平,等.嘉禾优7245品种特性及机械化高产栽培技术[J].现代农机,2020(1):42-43. [2]㊀张怀杰,宋扬.籼粳杂交稻嘉丰优2号特征特性及栽培技术[J].浙江农业科学,2020,61(10):1977-1978.(责任编辑:董宇飞)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 j (φl − π ) + jβ z ' j ( β z ' −Φ ) − j ( β z '− Φ ) 2 e = U l (1− | Γl |)e + | Γl | e −e 1 j (φl −π ) 1 + jβ z ' + 2 = U l (1− | Γl |)e + j 2U l | Γl | e sin β z '− (φl − π ) 2β
− j (2 β z ' −φl )
j β z ' − φl 2 − j β z ' − φl 2
一、行驻波状态场分布
西安电子科技大学
微波技术研究所 MICROWAVE RESEARCH INSTITUE
由上面推导, 可引入第三个工作参数——电压 由上面推导 , 可引入第三个工作参数 电压 驻波比 ρ ,用VSWR(Voltage Standing Wave Ratio) ( ) 表示。 表示。 1+ | Γl | 1
和无耗传输线的两种重要工作状态
1.行波 行波
U ( z ) = U 0+ e − jβz I ( z ) = I 0+ e − jβz
Z ( z' ) = Z 0 Γ( z ' ) = 0
u(z) 1 2
3
0
z
西安电子科技大学 2.全驻波 全驻波
Z L =jX L
微波技术研究所 MICROWAVE RESEARCH INSTITUE
一切均与短路传输线上类似, 一切均与短路传输线上类似,也就是我们只需分析短路 传输线
λg −1 −1 X l (ϕ l − π ) = tan ∆z = Z 2β 2π 0
西安电子科技大学
微波技术研究所 MICROWAVE RESEARCH INSTITUE
微波技术研究所 MICROWAVE RESEARCH INSTITUE
一、行驻波状态场分布
U ( z ') = U l+ (e j β z ' + Γ l e − j β z ' )
1 Φ = (φl − π ) jφ − j β z ' + jβ z ' jβ z ' = U l [(1− | Γ l |)e + | Γ l | e + | Γ l | e e ] 2 j (φ − π ) − j β z ' + jβ z ' jβ z ' 提出e jΦ = U l [(1− | Γ l |)e + | Γ l | e − | Γ l | e e ]
只要注意场分布在任意情况下, 只要注意场分布在任意情况下,与短路状态相比 多了一相位因子 较,多了一相位因子 1 短路状态 ϕ l = π ,开路状态 ϕ l = 0 本讲分析工作状态时, 本讲分析工作状态时,将进一步推广等效长度的 概念。 概念。
e
j
2
(ϕ l −π )
西安电子科技大学
微波技术研究所 MICROWAVE RESEARCH INSTITUE
1+ | Γl | e e + | Γl | e Z ( z ') = Z 0 − j (2 β z ' −φl ) = Z 0 1 1 1− | Γ l | e − j β z ' − φl j β z ' − φl e 2 − | Γl | e 2 1 1 (1+ | Γ l |)cos β z '− φl + j (1− | Γ l |)sin β z '− φl 2 2 = Z0 1 1 (1− | Γl |)cos β z '− φl + j (1+ | Γ l |)sin β z '− φl 2 2 1+ | Γl | 1 + j tan β z '− φl 2 1− | Γl | Z ( z ') = Z 0 1+ | Γl | 1 1+ j tan β z '− φl 2 1− | Γl |
1≤ρ≤∞ 1≤ρ≤∞
也就是说,对于无耗传输线, 不会小于1 等于1 也就是说,对于无耗传输线, ρ 不会小于1。(等于1 对应行波情况) 对应行波情况)。再次写出电压U (z' ) 表示式
U ( z ' ) = U l+ (1 + Γl e − j 2 βz ' )e jβz '
西安电子科技大学
1 Z ( z ' ) = jZ0 tan β z '− (ϕ l − π ) 2β
西安电子科技大学
微波技术研究所 MICROWAVE RESEARCH INSTITUE
全驻波状态是用z 坐标分析的 坐标分析的, 坐标。 全驻波状态是用z’坐标分析的,行波则用z坐标。 对于一般情况, 坐标——只是需注意: 只是需注意: 对于一般情况,我们以后均采用z’坐标 只是需注意 方向的入射波。 这时e jβ z ' 表示向z方向的入射波。 等效长度概念特别重要 有了等效长度的概念, 概念特别重要, 等效长度 概念特别重要 , 有了等效长度的概念 , 1 我们只要令 Z ( z ' ) = jZ0 tan β z '− (ϕ l − π ) z ′′ = z ′ + ∆z 2β
西安电子科技大学
微波技术研究所 MICROWAVE RESEARCH INSTITUE
一、行驻波状态场分布
1 j (ϕ l −π ) 1 jβz ' + + 2 sin β z '− (ϕ l − π ) U ( z ' ) == U l (1− | Γl |)e + j 2U l | Γl | e 2β 1 j (ϕ l −π ) 1 jβ z ' + + 2 cos β z '− (ϕ l − π ) I ( z ' ) = I l (1− | Γl |)e + 2 I l | Γl | e 2β
) = j 2U e
+
1 j (φl −π ) 2
1 sin β z '− (φl − π ) 2β
1 j (ϕ −π ) 1 + 2 l sin β z '− (ϕ l − π ) U ( z ' ) = j 2U l e 2β 1 j (ϕ l −π ) 1 + 2 cos β z '− (ϕ l − π ) I ( z' ) = 2 I l e 2β
U ( z ') = U (e
+ l jβ z '
= U l+ (e j β z ' − e j (φl −π ) e − j β z ' )
− jβ z '
1 Φ = (φl − π ) 2 提出e jΦ e j ( β z '−Φ ) − e − j ( β z '−Φ )
−e
e
j (φl −π )
z
1+ | Γl | | U ( z ' ) |max ρ= = 1− | Γl | | U ( z ' ) |min
Γ L =e jΦ L
XL 其中,Φ L = π − 2 tan Z0
−1
1 j (φl −π ) 1 + jβ z ' − jβ z ' + 2 ) = j 2U l e sin β z '− (φl − π ) U ( z ') = U l (e + Γl e 2β 1 j (φl −π ) 1 + 2 cos β z '− (φl − π ) I ( z ') = 2 I l e 2β 1 Z ( z ') = j 2 Z l tan β z '− (φl − π ) 2β
西安电子科技大学 2.全驻波 全驻波
微波技术研究所 MICROWAVE RESEARCH INSTITUE
U ( z ') = U l+ e j β z ' + U l-e − j β z ' = U l+ (e j β z ' + Γ l e − j β z ' )
Γ l=e jφl = −e j (φl −π )
由形式似乎看出: 前一部分是行波 , 而后一部 由形式似乎看出 : 前一部分是行波, 分是全驻波。 分是全驻波。
Zl=Rl+Xl z
驻 波 部 分
0 U I 0 U , I
行 波 部 分
U
max
U
min
西安电子科技大学
微波技术研究所 MICROWAVE RESEARCH INSTITUE
1 研究任意 z' 处的阻抗 Z (z' ) ,根据定义 Φ = (φl − π ) 2 1 1
微波技术研究所 MICROWAVE RESEARCH INSTITUE
U ( z ' ) = U l+ (1 + Γl e − j 2 βz ' )e jβz '