导数求切线的四种形式
用导数求切线方程(课堂PPT)

类型二:已知斜率,求曲线的切线方程
例2 与直线 2xy40平行的抛物线 y x 2
的切线方程是( )
4
类型三:已知过曲线上一点,求切线方程
例3 求过曲线 y x3 2x 上的点 (1, 1) 的切线方程
过曲线上一点的切线,该点未必是切点,故应
先设切点,再求切点,即用待定切点法.
5
设 P(x0,y0)为切点,则切线的斜率为 y|xx0 3x02 2
即 xy20 或 5x4y10
7
类型四:已知过曲线外一点,求切线方程
例4 求过点 ( 2 ,0 ) 且与曲线 y 1
x
相切的直线方程
8
设 P(x0,y0 )为切点,则切线的斜率为
y |x x0
1 x02
切线方程为
1 y y0 x02 (xx0)
y 1 x0
x102(xx0)源自又知切线过点 ( 2 ,0 ) ,把它代入上述方程,得
1 x0
1 x02
(2 x0)
9
解得
x0
1,y0
1 x0
1
故所求切线方程为 xy20
10
Thank You
11
用导数求切线方程
主讲人:甄玉星
1
四种常见的类型
类型一:已知切点,求曲线的切线方程 类型二:已知斜率,求曲线的切线方程 类型三:已知过曲线上一点,求切线方程 类型四:已知过曲线外一点,求切线方程
2
类型一:已知切点,求曲线的切线方程 例1 曲线 yx3 3x2 1 在点 (1, 1) 处的 切线方程为
切线方程为 yy0(3x022)(xx0)
y (x 0 3 2 x 0 ) (3 x 0 2 2 )(x x 0 )
导数的应用切线与极值问题

导数的应用切线与极值问题导数的应用:切线与极值问题导数是微积分中的重要概念,它在各个科学领域中都有着广泛的应用。
其中,切线与极值问题是导数应用的两个常见问题。
本文将探讨如何使用导数解决切线和极值问题,并通过实例解释其应用。
一、切线问题切线是曲线上某一点处与该点相切的直线。
通过导数,我们可以确定曲线上某点的切线方程。
设曲线方程为y=f(x),点P(x,y)处的切线斜率k即为函数f(x)在该点的导数,即k=f'(x)。
例子1:求曲线y=x^2+2x+1在点P(1,4)处的切线方程。
解:首先求导数:f'(x)=(x^2+2x+1)'=2x+2。
然后求点P(1,4)处的斜率:k=f'(1)=2(1)+2=4。
由切线斜率和点可确定切线方程,即y-4=4(x-1)。
将其化简,得到切线方程为y=4x。
二、极值问题在求解极值问题时,我们可以利用导数为0的点来确定函数的最大值或最小值。
设函数f(x)在[a,b]区间上连续且在区间内可导,若f'(c)=0且c∈(a,b),则c称为f(x)在[a,b]上的临界点。
临界点和区间端点都有可能是函数的极值点。
例子2:求函数f(x)=x^3-3x^2的极小值。
解:首先求导数:f'(x)=(x^3-3x^2)'=3x^2-6x。
然后求导函数的临界点:3x^2-6x=0。
化简得到x(x-2)=0,解得x=0或x=2。
接下来,我们通过判断临界点和区间端点的函数值来确定极小值。
计算f(0)=-0、f(2)=-4,因此f(x)=x^3-3x^2的极小值为-4,在x=2处取得。
综上,我们通过求解导数和判断临界点来确定函数的极值。
三、切线和极值问题的应用切线问题和极值问题在实际应用中有着广泛的运用。
例子3:一辆汽车在某段时间内行驶的路程和时间的关系如图所示。
求该段时间内汽车的平均速度,以及汽车行驶的最快和最慢速度。
图表:时间(小时) 0 2 4 6 8 10路程(公里)***********解:我们可以通过导数来求解这个问题。
利用导数求三角函数切线方程的三种问题类型

利用导数求三角函数切线方程的三种问题类型导数是微积分中的重要概念,可以用来求解三角函数的切线方程。
在这份文档中,我们将介绍三种利用导数求三角函数切线方程的问题类型。
问题类型一:给定函数和点,求切线方程在这种类型的问题中,我们已知一个三角函数及其定义域上一点的坐标,需要求解该函数在该点处的切线方程。
解决这类问题的关键是求解该点处的导数。
对于三角函数而言,我们可以利用基本导数公式来求解。
例如,对于sin(x)函数,其导数是cos(x);对于cos(x)函数,其导数是-sin(x)。
一旦我们求得了函数在给定点处的导数,我们可以使用切线方程的一般形式y = f'(x0)(x - x0) + f(x0)来求解。
其中,f'(x0)表示函数在x0处的导数值,f(x0)表示函数在x0处的函数值。
问题类型二:给定函数和切线斜率,求切点坐标在这种类型的问题中,我们已知一个三角函数及其切线的斜率,需要求解切线与该函数的交点坐标。
解决这类问题的关键是找到切点的x坐标。
我们可以使用导数和斜率的关系来求解。
具体而言,由于导数就是切线的斜率,我们可以将斜率与导数相等来列方程。
然后,通过求解方程,我们可以得到切点的x坐标。
一旦我们获得了切点的x坐标,我们可以将该坐标代入三角函数的方程中,得到切点的y坐标。
问题类型三:给定函数和切点,求切线斜率在这种类型的问题中,我们已知一个三角函数及其切线的切点坐标,需要求解切线的斜率。
解决这类问题的关键是求解切点的导数。
我们可以使用导数的定义来求解。
具体而言,我们可以将切点的坐标代入三角函数的导数公式中,然后求导得到切点的导数。
一旦我们求得了切点的导数,即可得到切线的斜率。
通过掌握这三种问题类型的解决方法,我们可以有效地利用导数来求解三角函数的切线方程。
这有助于我们更好地理解三角函数的性质和导数的应用。
用导数求切线方程的四种类型

用导数求切线方程的四种类型用导数求切线方程是导数的重要应用之一。
求曲线的切线方程的关键在于求出切点P(x,y)及斜率。
设P(x,y)是曲线y=f(x)上的一点,则以P的切点的切线方程为:y-y=f'(x)(x-x)。
若曲线y=f(x)在点P(x,f(x))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x。
下面例析四种常见的类型及解法。
类型一:已知切点,求曲线的切线方程这类题较为简单,只需求出曲线的导数f'(x),并代入点斜式方程即可。
例如,曲线y=x^3-3x^2+1在点(1,-1)处的切线方程为y-(-1)=-3(x-1),即y=-3x+2.类型二:已知斜率,求曲线的切线方程这类题可利用斜率求出切点,再用点斜式方程加以解决。
例如,与直线2x-y+4=0平行的抛物线y=x^2的切线方程为2x-y-1=0.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法。
例如,求过曲线y=x^3-2x上的点(1,-1)的切线方程。
设想P(x,y)为切点,则切线的斜率为y'|(x=x)=3x^2-2.故所求切线方程为y-(1-2)=(3-2)(x-1),或5x+4y-1=0.类型四:已知两曲线的交点,求切线方程这类题一般需先求出两曲线在交点处的导数,再代入点斜式方程加以解决。
例如,已知曲线y=x^3-x和y=2x-x^2的交点为(1,0),求它们在该点的切线方程。
两曲线在交点处的导数分别为1和-1.故所求切线方程为y-(0)=1(x-1),或y-(0)=-1(x-1),即y=x-1或y=-x+1.类型四:已知过曲线外一点,求切线方程对于这类问题,我们可以先设定切点,再求解切点,使用待定切点法来解决。
例4:求过点(2,0)且与曲线$y=x/(1+x^2)$相切的直线方程。
解:设P(x,y)为切点,则切线的斜率为$y'=\frac{1-x^2}{(1+x^2)^2}$。
导数求切线方程的步骤

导数求切线方程的步骤求切线方程的步骤如下:第一步:求导数首先,我们需要求出给定函数的导数。
导数表示了函数在给定点上的斜率,也就是该点函数曲线的切线斜率。
求导数的过程根据函数的不同而有所差异,下面将以几种不同类型的函数为例进行解释。
1.1.常数函数:常数函数的导数为零,因为它的斜率在任何点都是零。
例如,函数f(x)=3的导数为f'(x)=0。
1.2.幂函数:幂函数的导数可以使用幂函数规则求导得到。
幂函数的一般形式是f(x)=x^n,其中n是一个实数。
根据幂函数的规则,导数f'(x)=n*x^(n-1)。
例如,对于函数f(x)=x^2,它的导数为f'(x)=2*x^(2-1)=2x。
1.3.指数函数:指数函数的导数可以使用指数函数规则求导得到。
指数函数的一般形式是f(x) = a^x,其中a是一个正实数且a≠1、根据指数函数的规则,导数f'(x) = ln(a)*a^x。
例如,对于函数f(x) = e^x,它的导数为f'(x) = ln(e)*e^x = e^x。
1.4.对数函数:对数函数的导数可以使用对数函数规则求导得到。
对数函数的一般形式是f(x) = loga(x),其中a是一个正实数且a≠1、根据对数函数的规则,导数f'(x) = 1/(x*ln(a))。
例如,对于函数f(x) = log3(x),它的导数为f'(x) = 1/(x*ln(3))。
第二步:确定切点切线是曲线上其中一点上的切线,因此我们需要确定曲线上的切点。
根据题目给出的条件,我们可以确定切点的横纵坐标。
第三步:计算斜率在给定点上,切线的斜率等于该点的导数值。
所以我们将给定点的横坐标代入到导数函数中,得到该点的导数值。
第四步:确定切线方程切线方程的一般形式是y = mx + b,其中m为切线的斜率,b为切线在横轴上的截距。
在给定点上,我们已经确定了斜率m,并且通过给定点的坐标,可以将x和y代入切线方程。
用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。
用导数求切线方程的步骤

导数的切线方程怎么求
先求出函数在(x0,y0)点的导数值导数值就是函数在X0点的切线的斜率值。
之后代入该点坐标(x0,y0),用点斜式就可以求得切线方程。
当导数值为0,改点的切线就是y=y0;当导数不存在,切线就是x=x0;当在该点不可导,则不存在切线。
切线方程:切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。
是关于几何图形的切线坐标向量关系的研究。
导数:导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
用导数求切线方程的四种类型

添加标题
添加标题
添加标题
导数大于0表示函数在对应区间内 单调递增
导数小于0表示函数在对应区间内 单调递减
导数在几何上表导数等于0时,函数可能存在拐点或极值点 导数小于0时,函数在对应区间内单调递减
导数等于切线斜率 导数可以求出切线的斜率
导数在求切线方程中起到关 键作用
添加标题
添加标题
切线与该点处的切线垂直
添加标题
添加标题
切线方程的求解需要用到切点处的 坐标和斜率
确定函数表达式 确定导数表达式 计算导数值 代入切点坐标
代入切点坐标求斜率要细心 切线斜率与函数值大小无关 切线方程的形式要正确 切线方程与函数解析式不同
切线方程的书写格式要正确 切线斜率的计算要准确 切点坐标的选取要合理 切线方程的求解方法要规范
切线斜率:通 过将切点坐标 代入导函数中,
求得斜率为 f'(x0)
切线方程:利 用点斜式方程 y-y0=f'(x0)(xx0),得到切线
方程
确定函数在某点的导数 利用导数求出该点的切线斜率 根据切线斜率和已知点写出切线方程 验证切线方程是否符合题意
切点是曲线上某一点,在该点处函 数的导数存在
切点处函数值必须为零
汇报人:XX
导数与切线斜率的关系是密 切相关的
切点是曲线上某 一点,在该点处 曲线的切线存在
切点处的导数值 即为切线的斜率
切点坐标由曲线 方程和切线斜率 共同确定
切点是唯一确定 的,但切线方程 可能有多种形式
确定函数表达 式
求导函数
代入切点坐标
计算切线斜率
切点坐标:已 知曲线上的一 个点,记为(x0,
y0)
定义:切线方 程是表示切点 与曲线在某一 点的切线关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数应用(一)
——导数求切线的四种类型授课教师:王岩宇
考考你:
1.已知f(x)=x2,求曲线在x=2处的切线的斜率
2.函数3
f x x x
=-,[0,1]
()34
x∈的最大值是…………………………………………【】
C.0
D.-1
A.1
B.1
2
3.曲线y=x3在点P处切线斜率为k,当k=3时,P点的坐标为_________
4. 已知函数2)(23-=+++=x c bx ax x x f 在处取得极值,并且它的图象与直线33+-=x y 在点(1,0)处相切,则函数)(x f 的表达式为 __ __
新课
(一)用导数求切线方程的四种类型
求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=- .若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.
下面例析四种常见的类型及解法.
类型一:已知切点,求曲线的切线方程
此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可.(常见于选择、填空)
例1 曲线3231y x x =-+在点(11)-,处的切线方程为( )
A.34y x =-
B.32y x =-+ C.43y x =-+
D.45y x =-
变式训练:曲线y =x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为
__________.
类型二:已知斜率,求曲线的切线方程
此类题可利用斜率求出切点,再用点斜式方程加以解决.(以选择填空为主要出题类型)
例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( )
A.230x y -+=
B.230x y --= C.210x y -+=
D.210x y --=
变式训练:过曲线13-+=x x y 上一点P 的切线与直线74-=x y 平行,则P 点的坐标为 .
类型三:已知过曲线上一点,求切线方程。
过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法.(此类题型在文科高考数学中不多见,但各地“二模”中常以填空题出现)
例3 求过曲线32
=-上的点(11)-,的切线方程.
y x x
类型四:已知过曲线外一点,求切线方程
此类题可先设切点,再求切点,即用待定切点法来求解.(文科选择填空或大题第一问出现较多)
例4求过点(20),且与曲线1
y
相切的直线方程.
x
总结:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.
变式训练 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.
总结:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型
一或类型三;若点A不在曲线上,应先设出切点并求出切点.
本节课的收获:
作业:已知曲线x
=,求⑴曲线上与4
y5
y平行的切线的方程;⑵过点P(0,5)
2-
=x
且与曲线相切的切线方程.。