(完整版)一次函数与不等式应用题(含答案)-

合集下载

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(含答案解析)(1)

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(含答案解析)(1)

一、选择题1.已知a >0,b >0,a +b =1,则下列等式可能成立的是( ) A .221a b += B .1ab = C .212a b +=D .2212a b -=2.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9B .8C .7D .63.设1a b +=,0b >,则2244||ab b a a b++的最小值为( )A .14B .34C .54D .744.已知函数()24x x af x x++=,若对于任意[)1,x ∈+∞,()0f x >恒成立,则实数a的取值范围为( )A .[)5,+∞B .()5,-+∞C .()5,5-D .[]5,5-5.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测: 甲预测说:获奖者在乙、丙、丁三人中; 乙预测说:我不会获奖,丙获奖 丙预测说:甲和丁中有一人获奖; 丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙6.若不等式210x ax -+≥对一切[2,)x ∈+∞恒成立,则实数a 的最大值为( ) A .0B .2C .52D .37.下列命题中是真命题的是( )A .y =的最小值为2;B .当a >0,b >0时,114a b++; C .若a 2+b 2=2,则a +b 的最大值为2;D .若正数a ,b 满足2,a b +=则11+4+22a b +的最小值为12.8.已知A 、B 、C 为ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为( ) A .13B .12C .23D .19.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .2110.如图,平行四边形ABCD 的对角线相交于点O ,过点O 的直线与AB ,AD 所在直线分别交于点M ,N ,若AB =m AM ,AN =n AD (m >0,n >0),则mn的最大值为( )A .22B .1C .2D .211.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .612.若直线20(,1)ax by a b +-=>始终把圆222220x y x y +---=的周长分为1:2.则11a b+的最大值为( ) A .423-B .22-C 21D 2二、填空题13.设0b >,21a b -=,则242a a b+的最小值为_________.14.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.15.设A .B 分别为双曲线22221x y a b-=(a >0,b >0)的左.右顶点,P 是双曲线上不同于A .B的一点,直线AP .BP 的斜率分别为m .n ,则当3b a 取最小值时,双曲线的离心率为__________.16.已知0x >,0y >,满足2126x y x y+++=,存在实数m ,对于任意x ,y ,使得2m x y ≤+恒成立,则m 的最大值为____________.17.ABC 中,点M ,N 在线段AB 上,且满足AM BM =,2BN AN =,若6C π=,||4CA CB ⋅=∣∣,则CM NC ⋅的最大值为________.18.已知关于x 的不等式()()22454130m m x m x +---+>对一切实数x 恒成立,则实数m 的取值范围为_____________. 19.已知0a >,0b >,若不等式212ma b a b+≥+恒成立,则m 的最大值为______. 20.若正数a ,b 满足2ab =,则11112M a b=+++的最小值为________. 三、解答题21.已知函数2()21f x kx kx =+-.(1)若不等式()0f x <的解集为3,12⎛⎫- ⎪⎝⎭,求实数k 的值;(2)若方程()0f x =在[]12,有解,求实数k 的取值范围. 22.2020年11月23日,贵州宣布最后9个深度贫困县退出贫困县序列,这不仅标志着贵州省66个贫困县实现整体脱贫,这也标志着国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,全国脱贫攻坚目标任务已经完成.在脱贫攻坚过程中,某地县乡村三级干部在帮扶走访中得知某贫困户的实际情况后,为他家量身定制了脱贫计划,政府无息贷款10万元给该农户种养羊,每万元可创造利润0.15万元.若进行技术指导,养羊的投资减少了x ()0x >万元,且每万元创造的利润变为原来的()10.25x +倍.现将养羊少投资的x 万元全部投资网店,进行农产品销售,则每万元创造的利润为()0.150.875a x -万元,其中0a >. (1)若进行技术指导后养羊的利润不低于原来养羊的利润,求x 的取值范围; (2)若网店销售的利润始终不高于技术指导后养羊的利润,求a 的最大值. 23.已知2,()23a f x ax x ∈=+-R .(Ⅰ)关于x 的方程()0f x =有且只有正根,求实数a 的取值范围; (Ⅱ)若()30f x a -≥对[1,0]a ∈-恒成立,求实数x 的取值范围.24.已知关于x 的不等式()22600kx x k k -+<≠.(1)若不等式的解集是{3x x <-或}2x >-,求k 的值;(2)若不等式的解集是R ,求k 的取值范围; (3)若不等式的解集为∅,求k 的取值范围.25.已知函数()|21||2|f x x x =---,M 为不等式()1f x <-的解集. (1)求M ;(2)当,a b M ∈且1a b +=时,4a b tab +≥恒成立,求t 的最大值.26.设2()(1)1f x m x mx m =+-+-.(1)当1m =时,解关于x 的不等式()0f x >;(2)若关于x 的不等式()0f x m ->的解集为()1,2,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据已知条件由2()2a b ab +≤可求出2212a b +≥,又由完全平方公式可得221a b +<,即可判断A 、B ;由已知条件可知01b <<,则2b b >,因此22212a b a b +>+≥,可判断C ;由平方差公式可得12a b -=,与1a b +=联立可求出满足条件的a 、b ,故D 可能成立. 【详解】001a b a b >>+=,,2222211()21212()12()222a b a b a b ab ab +∴+=+-=-≥-⋅=-⨯=, 当且仅当12a b ==时等号成立, 又0ab >,222()2121b a b a ab a b +=+-=-<∴,22112a b ≤+<∴,则221a b +=不可能成立; 2211()()224a b ab ≤==+,当且仅当12a b ==时等号成立,故1ab =不可能成立;001a b a b >>+=,,,01b ∴<<,2b b ∴>,22212b a b a +>+≥∴(由A 可知),则212a b +=不可能成立; ()()2212a b a b a b a b -=+-=-=,联立112a b a b +=⎧⎪⎨-=⎪⎩,解得31,44a b ==,满足条件,D 成立. 故选:D2.A解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b > ()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=, 当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】利用1a b +=,0b >,10b a =->,1a ∴>且0a ≠; 对a 进行分类讨论,分为10a >>和0a >,进行讨论,然后,求解即可得到2244||ab b a a b++的最小值【详解】1a b +=,0b >,10b a =->,1a ∴>且0a ≠;当10a >>,22224414||444ab b a ab b a b a a b ab a b ++++==++1544≥+=;当且仅当4b aa b =,又1b a =-,解得1a =-或13a =,又由10a >>,得13a =时,此时,23b =,2244||ab b a a b ++的最小值54;当0a >,222244134||4444ab b a ab b a b a a b ab a b ++++⎛⎫⎛⎫==-+-+-≥ ⎪ ⎪-⎝⎭⎝⎭,当且仅当4b aa b -=-时,解得1a =-或13a =,又由0a >,得1a =-,此时,2b =,2244||ab b a a b ++的最小值34;综上,2244||ab b a a b ++的最小值34;故选:B 【点睛】关键点睛:解题的关键在于利用1a b +=,0b >,10b a =->,可得1a >且0a ≠,对a 进行分类讨论,难点在于利用基本不等式进行求最值,本题属于中档题4.B解析:B 【分析】根据条件将问题转化为“24a x x >--在[)1,+∞上恒成立”,再根据()2max4a x x>--求解出a 的范围. 【详解】因为对于任意[)1,x ∈+∞,()0f x >恒成立,所以240x x a ++>对[)1,x ∈+∞恒成立, 所以()2max4a x x>--,[)1,x ∈+∞,又因为24y x x =--的对称轴为2x =-,所以24y x x =--在[)1,+∞上单调递减, 所以()()2max4145x x --=--=-,所以5a >-,故选:B. 【点睛】方法点睛:一元二次不等式在指定区间上恒成立求解参数范围问题的处理方法: (1)分类讨论法:根据参数的临界值作分类讨论;(2)分离参数法:将自变量和参数分离开来,自变量部分构造新函数,分析新函数的最值与参数的大小关系.5.B解析:B 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证6.C解析:C 【分析】采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值. 【详解】因为不等式210x ax -+≥对一切[)2,x ∈+∞恒成立,所以对一切[)2,x ∈+∞,21ax x ≤+,即21x a x+≤恒成立.令()[)()2112,x g x x x x x+==+∈+∞.易知()1g x x x=+在[)2,+∞内为增函数. 所以当2x =时,()min 52g x =,所以a 的最大值是52.故选C . 【点睛】常见的求解参数范围的方法:(1)分类讨论法(从临界值、特殊值出发); (2)参变分离法(考虑新函数与参数的关系).7.B解析:BCD 【分析】利用基本不等式分别判断A 、B 、D 选项,C 选项可设,a b αα==,利用三角函数的值域求范围. 【详解】A 选项,222x +≥0>,∴2y=≥==,即221x+=±时成立,又222x≥+,故A错;B选项,当a>0,b>0时,1124a b+++≥⨯=,当且仅当1a b=⎧=,即1a b==时等号成立,B正确;C选项,设,a bαα==,则2sin24a bπααα⎛⎫+==+≤⎪⎝⎭,C正确;D选项,2a b+=,()212192a b⎡⎤⎛⎫∴+++=⎪⎢⎥⎝⎭⎣⎦,则()121252229291111++4+22442+2242a b a baba ba b⎛⎫+⎪⎡⎤+⎛⎫⎛⎫+++=⨯++⎪⎪ ⎪⎢⎥++⎝⎭⎝=+⎣+⎭⎦ ⎪⎝⎭251942⎛≥⨯+=⎝⎭,当且仅当122422aba b++=++且2a b+=时等号成立,解得1a b==,故D正确.故选:BCD【点睛】本题考查基本不等式的应用、利用三角函数的值域求范围,注意取等号的条件,属于中档题.8.C解析:C【分析】将11tan tanB C+化为关于tan A的式子,然后利用基本不等式可以求出最小值.【详解】在ABC中,()tan tanC A B=-+,111111tan tantan tan tan tan tan tan tanA BB C B A B B A B,tan 2tan B A =, 211tan tan 112tan 12tan tan tan tan 2tan 3tan 6tan 3A B AAB A B A AA ,角A 为锐角,tan 0A ∴>,12tan 12tan 226tan 36tan 33A AA A , 当且仅当12tan 6tan 3A A ,即1tan 2A =时,等号成立,∴11tan tan B C +的最小值为23. 故选:C. 【点睛】本题考查三角形中角的互化,和的正切公式的应用,以及利用基本不等式求最值,属于中档题.9.A解析:A 【详解】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P(,4),所以114)PB t=--(,,14)PC t =--(,,因此PB PC ⋅11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.10.B解析:B 【分析】根据向量共线的推论,结合向量的线性运算求得12m n+=,再用基本不等式即可求得结果. 【详解】 因为1122AO AB AD =+,又AB =m AM ,AN =n AD , 故可得 122m AO AM AN n=+,又,,O M N 三点共线, 故可得1122m n +=,即12m n+=. 故211114m m m n n n ⎛⎫=⨯≤+= ⎪⎝⎭,当且仅当1m n ==时取得最大值. 故选:B . 【点睛】本题考查平面向量共线定理的推论以及基本不等式的应用,属综合中档题.11.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.12.B解析:B 【分析】由圆的方程得圆心和半径,根据圆的周长被分为1:2,可推出圆心到直线的距离为1,即1=,化简整理后,再结合基本不等式的性质可得ab 的最小值,再求出11a b+的最大值. 【详解】把圆222220x y x y +---=化成标准形式为22(1)(1)4x y -+-=,其中圆心为(1,1),半径为2.设直线与圆交于A 、B 两点,圆心为C , 因为直线把圆的周长分为1:2,所以13601203ACB ∠=⨯︒=︒, 所以圆心(1,1)C 到直线20ax by +-=的距离为12221a b a b+-=+,因为a ,1b >,所以202()a ab b -++=,由基本不等式的性质可知,22()4ab a b ab +=+, 当且仅当a b =时,等号成立,此时有2(22)ab +,所以21(2)1111122222(22)ab a b a b ab ab ab+++===++=+. 所以11a b +的最大值为22- 故选:B . 【点评】本题主要考查直线与圆的综合问题,除圆的标准方程、点到直线的距离公式等基础知识外,还涉及利用基本不等式的性质求最值,考查学生的逻辑推理能力和运算能力,属于中档题.二、填空题13.4【分析】两次应用基本不等式验证等号能同时成立即得【详解】由题意当且仅当即时上述不等式中等号同时成立故答案为:4【点睛】本题考查了基本不等式求最值考查了运算求解能力逻辑推理能力在连续运用基本不等式求解析:4 【分析】两次应用基本不等式,242a a b +≥12b b +≥,验证等号能同时成立即得. 【详解】由题意211a b =+≥,2442a a b +≥===≥, 当且仅当2142b baa b⎧=⎪⎪⎨⎪=⎪⎩,即21a b =⎧⎨=⎩时上述不等式中等号同时成立. 故答案为:4. 【点睛】本题考查了基本不等式求最值,考查了运算求解能力,逻辑推理能力,在连续运用基本不等式求最值时,要注意等号能否同时成立.14.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于解析:8 【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值. 【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy ∴,当且仅当3232x y ==时,取等号. 则32233838y xx y xy++==, 故答案为:8. 【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.15.【分析】先根据点的关系确定mn 再根据基本不等式确定最小值最后根据最小值取法确定双曲线的离心率【详解】设则因此当且仅当时取等号所以离心率是故答案为:【点睛】本题考查双曲线离心率和基本不等式求最值的简单 【分析】先根据点的关系确定mn ,再根据基本不等式确定最小值,最后根据最小值取法确定双曲线的离心率. 【详解】设11(,)P x y ,则 22111222111y y y b mn x a x a x a a =⋅==+--,因此3b a+3b a a b =+≥= 当且仅当3a b 时取等号,所以离心率是c e a ===.【点睛】本题考查双曲线离心率和基本不等式求最值的简单综合问题,属于基础题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式ce a=求解;2.公式法:c e a ===3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.16.2【分析】首先根据题意得到从而得到即再根据恒成立即可得到的最大值【详解】因为所以所以即解得因为恒成立所以即所以的最大值为故答案为:【点睛】本题主要考查基本不等式同时考查了不等式的恒成立问题属于中档题解析:2 【分析】首先根据题意得到()228x y xy +≤,从而得到()8622x y y x≤+++,即224x y ≤+≤,再根据2m x y ≤+恒成立,即可得到m 的最大值.【详解】因为0x >,0y >,所以()()22221122248x y x y xy x y ++=⋅≤⨯=, 所以()()()22122862222228y x y x x y x y x y x y x y xy y x x y ++=+++=++≥++=++++. 即()8622x y y x≥+++, ()()226280x y x y +-++≤,解得224x y ≤+≤.因为2m x y ≤+恒成立,所以()min 2m x y ≤+,即2m ≤. 所以m 的最大值为2. 故答案为:2 【点睛】本题主要考查基本不等式,同时考查了不等式的恒成立问题,属于中档题.17.;【分析】由平面向量数量积的运算可知再根据平面向量的线性运算可分别得到故由基本不等式的性质可知将所得结论均代入的表达式即可得解【详解】解:根据题意作出如下图形由基本不等式的性质可知的最大值为故答案为解析:4233--; 【分析】由平面向量数量积的运算可知23CA CB =,再根据平面向量的线性运算可分别得到1()2CM CA CB =+,1(2)3NC CA CB =-+,故221(23)6CM NC CA CB CA CB =-++,由基本不等式的性质可知,22222||||CA CB CA CB +,将所得结论均代入CM NC 的表达式即可得解. 【详解】解:根据题意,作出如下图形,6C π=,||||4CA CB =,∴4cos236CA CB π=⨯=AM BM =,∴1()2CM CA CB =+,2BN AN =,∴111()(2)333NC AC AN AC AB CA CB CA CA CB =-=-=---=-+,∴22111()[(2)](23)236CM NC CA CB CA CB CA CB CA CB =+-+=-++,由基本不等式的性质可知,222222||||22||||82CA CB CA CB CA CB +=+=,∴142(82323)36CM NC -⨯⨯=∴CM NC 的最大值为423-故答案为:423- 【点睛】本题考查平面向量的线性运算和数量积运算、基本不等式的性质,熟练掌握平面向量的加法、减法、数乘和数量积的运算法则是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.18.【分析】分和两种情况讨论结合题可得出关于实数的不等式组由此可解得实数的取值范围【详解】当时可得或①当时可得合乎题意;②当时可得解得不合乎题意;当时由题意可得解得综上所述实数的取值范围是故答案为:【点 解析:1,19【分析】分2450m m +-=和2450m m +-≠两种情况讨论,结合题可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】当2450m m +-=时,可得1m =或5m =-. ①当1m =时,可得30>,合乎题意;②当5m =-时,可得2430x +>,解得18x >-,不合乎题意;当2450m m +-≠时,由题意可得()()22245016112450m m m m m ⎧+->⎪⎨∆=--+-<⎪⎩,解得119m <<.综上所述,实数m 的取值范围是1,19. 故答案为:1,19. 【点睛】本题考查利用一元二次不等式在实数集上恒成立求参数,考查计算能力,属于中等题.19.9【分析】将题目所给不等式分离常数利用基本不等式求得的最大值【详解】由得恒成立而故所以的最大值为【点睛】本小题主要考查不等式恒成立问题求解策略考查利用基本不等式求最值考查化归与转化的数学思想方法属于解析:9. 【分析】将题目所给不等式分离常数m ,利用基本不等式求得m 的最大值. 【详解】 由212m a b a b +≥+得()212m a b a b ⎛⎫≤++ ⎪⎝⎭恒成立,而()212225a b a b a b b a ⎛⎫++=++ ⎪⎝⎭5549≥+=+=,故9m ≤,所以m 的最大值为9. 【点睛】本小题主要考查不等式恒成立问题求解策略,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.20.【分析】求出设(当且仅当时成立)求出的最小值即可【详解】解:设(当且仅当时成立)的最小值为故答案为:【点睛】本题考查了基本不等式的性质考查转化思想属于中档题解析:23【分析】求出23154a M a a =-++,设254445259a a N a a a a a++==+++=(当且仅当2a =时“=”成立),求出M 的最小值即可. 【详解】 解:2ab =,0a >,0b >,2b a∴=, 21111114311411211414541a a M a b a a a a a a a a∴=+=+=+=+-=-++++++++++,设254445259a a N a a a a a++==+++=(当且仅当2a =时“=”成立), 1109N ∴<,1303N--<,23113N -<, 11112M a b ∴=+++的最小值为23, 故答案为:23. 【点睛】本题考查了基本不等式的性质,考查转化思想,属于中档题.三、解答题21.(1)13;(2)11,103⎡⎤⎢⎥⎣⎦. 【分析】 (1)由题意可得32-、1是方程2210kx kx +-=的两个根,利用两根之积列方程即可求解;(2)方程()0f x =在[]12,有解,可得212k x x=+在[]12,有解,利用二次函数的性质求出22y x x =+的范围,即可求解. 【详解】(1)因为2210kx kx +-<的解集是3,12⎛⎫- ⎪⎝⎭, 所以32-、1是方程2210kx kx +-=的两个根, 由根与系数的关系可得:31122k -⨯=-,解得:13k =, (2)因为方程()0f x =在[]12,有解, 所以2210kx kx +-=在[]12,有解, 212k x x=+在[]12,有解, 因为22y x x =+对称轴为14x =-,在[]12,上单调递增, 所以[]223,10y x x =+∈,可得2111,2103k x x ⎡⎤=∈⎢⎥+⎣⎦,所以实数k 的取值范围11,103⎡⎤⎢⎥⎣⎦. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解22.(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5. 【分析】(1)由题意得()()0.1510.25100.1510x x +-≥⨯,解不等式可得结果;(2)由题意得()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,分离出参数a 得510 1.58x a x ≤++恒成立,只要利用基本不等式求出5108x x +的最小值即可 【详解】 解:(1)由题意,得()()0.1510.25100.1510x x +-≥⨯, 整理得260x x -≤,解得06x ≤≤,又0x >,故06x <≤. (2)由题意知网店销售的利润为()0.150.875a x x -万元, 技术指导后,养羊的利润为()()0.1510.2510x x +-万元, 则()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,又010x <<,∴5101.58x a x≤++恒成立, 又51058x x+≥,当且仅当4x =时等号成立, ∴0 6.5a <≤,即a 的最大值为6.5.答:(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5.【点睛】关键点点睛:此题考查利用数学知识解决实际问题,考查不等式的解法,第2问解题的关键是由()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,转化为5101.58x a x≤++恒成立,然后利用基本不等式求5108x x+的最小值即可,属于中档题 23.无 24.无 25.无 26.无。

(完整版)一元一次不等式与一次函数习题(含答案)

(完整版)一元一次不等式与一次函数习题(含答案)

一元一次不等式与一次函数1.如图,函数y=2x和y=ax+4的图象相交于点A〔m,3〕,那么不等式2x<ax+4的解集为〔〕(5)A.x<B.x<3C.x>D.x>32.一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点〔2,0〕,那么关于x的不等式a〔x﹣1〕﹣b>0的解集为〔〕A.x<﹣1B.x>﹣1C.x>1D.x<13.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为〔1,2〕,那么使y1<y2的x的取值范围为〔〕A.x>1B.x>2C.x<1D.x<24.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如下图,那么关于x的不等式k1x+b<k2x+c的解集为〔〕A.x>1B.x<1C.x>﹣2D.x<﹣25.如图,一次函数y=kx+b的图象经过A、B两点,那么kx+b>0解集是〔〕A.x>0B.x>﹣3C.x>2D.﹣3<x<26.如图,函数y=kx和y=﹣x+3的图象相交于〔a,2〕,那么不等式kx<﹣x+3的解集为〔〕A.B.x>C.x>2D.x<2 x<7.〔如图,直线l是函数y= x+3的图象.假设点P〔x,y〕满足x<5,且y>,那么P点的坐标可能是〔〕(6)(8)1A.〔4,7〕B.〔3,﹣5〕C.〔3,4〕D.〔﹣2,1〕8.如图,一次函数y=kx+b的图象经过点A〔5,0〕与B〔0,﹣4〕,那么关于x的不等式kx+b<0的解集是〔〕A.x<5B.x>5C.x<﹣4D.x>﹣49.如图,一次函数y=kx+b的图象经过点〔2,0〕与〔0,3〕,那么关于x的不等式k x+b>0的解集是〔〕(10)(11)A.x<2B.x>2C.x<3D.x>310.如图,直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有以下3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是〔〕A.0B.1C.2D.3二.填空题〔共8小题〕11.如图,经过点B〔﹣2,0〕的直线y=kx+b与直线y=4x+2相交于点A〔﹣1,﹣2〕,那么不等式4x+2<kx+b<0的解集为_________.12.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售本钱与销量的关系,当该公司赢利〔收入>本钱〕时,销售量必须_________.(13)(14)(15)13.如图,函数y=2x和y=ax+5的图象相交于A〔m,3〕,那么不等式2x<ax+5的解集为_________.14.如图,直线y1=x+m与y2=kx﹣1相交于点P〔﹣1,1〕,那么关于x的不等式x+m>kx﹣1的解集为_________.15.如图,直线y1=kx+b与直线y2=mx交于点P〔1,m〕,那么不等式mx>kx+b的解集是_________.216.如图,函数y=x+b和y=ax+3的图象相交于点P,那么关于x的不等式x+b<ax+3的解集为_________.(17)(18)17.如图,直线y=kx+b经过点A〔﹣1,1〕和点B〔﹣4,0〕,那么不等式0<kx+b<﹣x的解集为_________.18.如图,直线y=kx+b交坐标轴于A〔﹣3,0〕、B〔0,5〕两点,那么不等式﹣kx﹣b<0的解集是_________.三.解答题19.在平面直角坐标系中,直线y=kx﹣15经过点〔4,﹣3〕,求不等式kx﹣15≥0的解.20.如图,直线l1与l2相交于点 P,点P横坐标为﹣1,l1的解析表达式为y= x+3,且l1与y轴交于点A,l2与y轴交于点B,点A与点B恰好关于x轴对称.1〕求点B的坐标;2〕求直线l2的解析表达式;3〕假设点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的的点M的坐标;〔4〕当x为何值时,l1,l2表示的两个函数的函数值都大于0?3(21.:直线l1的解析式为y1=x+1,直线l2的解析式为y2=ax+b〔a≠0〕;两条直线如下图,这两个图象的交点(在y轴上,直线l2与x轴的交点B的坐标为〔2,0〕〔1〕求a,b的值;(〔2〕求使得y1、y2的值都大于0的取值范围;(〔3〕求这两条直线与x轴所围成的△ABC的面积是多少?(〔4〕在直线AC上是否存在异于点C的另一点P,使得△ABC与△ABP的面积相等?请直接写出点P的坐标.((((((((((((((((((((((22.如图,直线y=kx+b经过点A〔0,5〕,B〔1,4〕.(1〕求直线AB的解析式;(2〕假设直线y=2x﹣4与直线AB相交于点C,求点C的坐标;3〕根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.4AACBBAAAAD﹣2<x<﹣1.大于4.x<.x>﹣1.x>1.x<1.﹣4<x<﹣1.x>﹣19 x≥5.20.解:〔1〕当x=0时,x+3=0+3=3,∴点A的坐标是〔0,3〕,∵点A与点B恰好关于x轴对称,∴B点坐标为〔0,﹣3〕;2〕∵点P横坐标为﹣1,∴〔﹣1〕+3=,∴点P的坐标是〔﹣1,〕,设直线l2的解析式为y=kx+b,那么,解得,∴直线l2的解析式为y=﹣x﹣3;〔3〕∵点P横坐标是﹣1,△MAB的面积是△PAB的面积的,∴点M的横坐标的长度是,①当横坐标是﹣时,y=〔﹣〕×〔﹣〕﹣3=﹣3=﹣,②当横坐标是时,y=〔﹣〕×﹣3=﹣﹣3=﹣,∴M点的坐标是〔﹣,﹣〕或〔,﹣〕;〔4〕l1:y=x+3,当y=0时,x+3=0,解得x=﹣6,l:y=﹣x﹣3,当y=0时,﹣x﹣3=0,2解得x=﹣,∴当﹣6<x<﹣时,l12、l表示的两个函数的函数值都大于0.解:〔1〕由直线l1的解析式为y1=x+1,可求得C〔0,1〕;那么依题意可得:,5解得:.〔2〕由〔1〕知,直线l2:y=﹣x+1;y1=x+1>0,∴x>﹣1;∵;∴﹣1<x<2.〔3〕由题意知A〔﹣1,0〕,那么AB=3,且OC=1;∴S△ABC= AB?OC=.〔4〕由于△ABC、△ABP同底,假设面积相等,那么P点纵坐标为﹣1,代入直线l1可求得:P的坐标为〔﹣2,﹣1〕.解:〔1〕∵直线y=﹣kx+b经过点A〔5,0〕、B〔1,4〕,∴,解方程组得,∴直线AB的解析式为y=﹣x+5;〔2〕∵直线y=2x﹣4与直线AB相交于点C,∴解方程组,解得,∴点C的坐标为〔3,2〕;〔3〕由图可知,x≥3时,2x﹣4≥kx+b.6。

一元一次不等式与一次函数的应用(含答案)

一元一次不等式与一次函数的应用(含答案)

一元一次不等式与一次函数1、某单位准备和一个体车主或一国营出租车公司中的一家签订月租车合同,设汽车每月行驶x千米,个体车主收费y1元,国营出租车公司收费为y2元,观察下列图象可知,当x取值范围为什么时,选用个体车较合算.2、甲有存款600元,乙有存款2000元,从本月开始,他们进行零存整取储蓄,甲每月存款500元,乙每月存款200元.(1)列出甲、乙的存款额y1、y2(元)与存款月数x(月)之间的函数关系式,画出函数图象.(2)请问到第几个月,甲的存款额超过乙的存款额?3、某商场计划投入一笔资金采购一批紧俏商品,经市场调研发现,如果本月初出售,可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售可获利25%,但要支付仓储费8000元.请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.4、某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8 m3,则每m3按1元收费;若每户每月用水超过8m3,则超过部分每m3按2元收费.某用户7月份用水比8m3多xm3,交纳水费y 元.(1)求y关于x的函数解析式,并写出x的取值范围.(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3?5、某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(1) 该商场购进A、B两种商品各多少件?(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?6、为了加快教学手段的现代化,某校计划购置一批电脑,已知甲公司的报价是每台5800元,优惠条件是购买10台以上,则从第11台开始按报价的70%计算;乙公司的报价也是每台5800元,优惠条件是每台均按报价的85%计算.假如你是学校有关方面负责人,在电脑品牌、质量、售后服务等完全相同的前提下,你如何选择?请说明理由?7、苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:①每亩水面的年租金为500元,水面需按整数亩出租;②每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;③每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;④每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;(1)若租用水面n亩,则年租金共需__________元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖的年利润(利润=收益-成本);(3)李大爷现在资金25000元,他准备再向银行贷不超过25000元的款,用于蟹虾混合养殖.已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元?8、某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元;(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上那种购买方案?9、哈尔滨市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付0.4元;“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个内通话时间为x分钟,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x的关系式;(2)一个月通话为多少分钟时,两种通讯方式的费用相同?参考答案1、>15002、(1)y 1=600+500x y 2=2000+200x(2)x >432,到第5个月甲的存款额超过乙的存款额. 3、设商场投入资金x 元,如果本月初出售,到下月初可获利y 1元,则y 1=10%x +(1+10%)x ·10%=0.1x +0.11x =0.21x ;如果下月初出售,可获利y 2元,则y 2=25%x -8000=0.25x -8000当y 1=y 2即0.21x =0.25x -8000时,x =200000当y 1>y 2即0.21x >0.25x -8000时,x <200000当y 1<y 2即0.21x <0.25x -8000时,x >200000∴ 若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多,若投入资金多于20万元,下月初出售获利较多.4、(1)y=2x+8(x ≥0) (2)145、(1)该商场分别购进A 、B 两种商品200件、120件.(2)B 种商品最低售价为每件1080元.6、解:如果购买电脑不超过11台,很明显乙公司有优惠,而甲公司没优惠,因此选择乙公司.如果购买电脑多于10台.则:设学校需购置电脑x 台,则到甲公司购买需付[10×5800+5800(x -10)×70%]元,到乙公司购买需付5800×85% x 元.根据题意得:1)若甲公司优惠:则10×5800+5800(x -10)×70%<5800×85% x解得: x >302)若乙公司优惠:则10×5800+5800(x -10)×70%>5800×85% x解得: x <303)若两公司一样优惠:则10×5800+5800(x -10)×70%=5800×85% x解得: x =30答:购置电脑少于30台时选乙公司较优惠,购置电脑正好30台时两公司随便选哪家,购置电脑多于30台时选甲公司较优惠,7、(1)他继续在A 窗口排队所花的时间为42844a a -⨯-=(分) (2)由题意,得42625246a a -⨯-⨯+⨯>,解得 a >20. 8、解:(1)500n(2)每亩年利润=(1400×4+160×20)-(500+75×4+525×4+15×20+85×20)=3900(元)(3)n 亩水田总收益=3900n需要贷款数=(500+75×4+525×4+15×20+85×20)n -25000=4900n -25000贷款利息=8%×(4900n -25000)=392n -2000根据题意得:35000)2000392(3900≥--n n 解得:n ≥9.41∴ n =10需要贷款数:4900n -25000=24000(元)答:李大爷应该租10亩水面,并向银行贷款24000元,可使年利润超过35000元9、解:(1)设轿车要购买x 辆,那么面包车要购买(10-x )辆,由题意得:7x +4(10-x )≤55解得:x ≤5又∵x ≥3,则 x =3,4,5∴购机方案有三种:方案一:轿车3辆,面包车7辆;方案二:轿车4辆,面包车6辆;方案三:轿车5辆,面包车5辆;(2)方案一的日租金为:3×200+7×110=1370(元)方案二的日租金为:4×200+6×110=1460(元)方案三的日租金为:5×200+5×110=1550(元)为保证日租金不低于1500元,应选择方案三.10、(1)y 1=50+0.4x ,y 2=0.6x ;(2)当y 1=y 2,即50+0.4x =0.6x 时,x =250(分钟),即当通话时间为250分钟时,两种通讯方式的费用相同;(3)由y 1<y 2即50+0.4x <0.6x ,知x >250,即通话时间超过250分钟时用“全球通”的通讯方式便宜.。

一元一次不等式与一次函数习题精选(含答案)

一元一次不等式与一次函数习题精选(含答案)

一元一次不等式与一次函数1.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()(5)2.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b3.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()4.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c 的解集为()5.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是()6.如图,函数y=kx和y=﹣x+3的图象相交于(a,2),则不等式kx<﹣x+3的解集为()>7.(如图,直线l是函数y=x+3的图象.若点P(x,y)满足x<5,且y>,则P点的坐标可能是()8.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()9.如图,一次函数y=kx+b的图象经过点(2,0)与(0,3),则关于x的不等式kx+b>0的解集是()10.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()二.填空题(共8小题)11.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为_________.12.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须_________.(13) (14) (15)13.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为_________.14.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集为_________.15.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是_________.16.如图,已知函数y=x+b和y=ax+3的图象相交于点P,则关于x的不等式x+b<ax+3的解集为_________.(17) (18)17.如图,直线y=kx+b经过点A(﹣1,1)和点B(﹣4,0),则不等式0<kx+b<﹣x的解集为_________.18.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集是_________.三.解答题19.在平面直角坐标系中,直线y=kx﹣15经过点(4,﹣3),求不等式kx﹣15≥0的解.20.如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析表达式为y=x+3,且l1与y轴交于点A,l2与y轴交于点B,点A与点B恰好关于x轴对称.(1)求点B的坐标;(2)求直线l2的解析表达式;(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的的点M的坐标;(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?21.已知:直线l1的解析式为y1=x+1,直线l2的解析式为y2=ax+b(a≠0);两条直线如图所示,这两个图象的交点在y轴上,直线l2与x轴的交点B的坐标为(2,0)(1)求a,b的值;(2)求使得y1、y2的值都大于0的取值范围;(3)求这两条直线与x轴所围成的△ABC的面积是多少?(4)在直线AC上是否存在异于点C的另一点P,使得△ABC与△ABP的面积相等?请直接写出点P的坐标.22.如图,直线y=kx+b经过点A(0,5),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.AACBBAAAAD﹣2<x<﹣1.大于4.x<.x>﹣1.x>1.x<1.﹣4<x<﹣1.x>﹣时,+3=)的面积的,的横坐标的长度是,时,)(﹣﹣,时,(﹣×﹣﹣点的坐标是(﹣,﹣)或(,﹣)x+3时,x时,﹣﹣时,﹣;=OC=解方程组得∴解方程组,。

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(含答案解析)(3)

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(含答案解析)(3)

一、选择题1.若对(0,)t ∀∈+∞,都有22(1)3x t x t+<+成立,则x 的取值范围是( ) A .()2,6-B .(,3)(2,6)-∞--C .(,3)(2,)-∞-⋃-+∞D .(,3)(2,)-∞-⋃-+∞ 2.已知关于x 的不等式210mx mx ++>恒成立,则m 的取值范围为( ).A .()0,4B .[)0,4C .[]0,4D .(](),04,-∞⋃+∞3.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9B .8C .7D .64.已知0,0,23x y x y >>+=,则1421x y++的最小值是( ) A .3B .94 C .4615D .95.对于任意实数x ,不等式210ax ax -+>恒成立,则实数a 的取值范围是( )A .(]0,4B .[)0,4C .(][),04,-∞+∞ D .()(),04,-∞+∞6.若集合{}2|10A x ax ax =-+<=∅,则实数a 的取值范围是 ( ) A .{}|04a a << B .{|04}a a ≤< C .{|04}a a <≤D .{|04}a a ≤≤7.如图,在ABC 中,23BD BC =,E 为线段AD 上的动点,且CE xCA yCB =+,则13x y+的最小值为( )A .16B .15C .12D .108.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .219.若,b R,,a a b ∈≠且则下列式子:(1)22a 32b ab +>,(2)553223a b b a a b +>+,(3)2252(2)a b a b ++≥-,(4)2b aa b+>.其中恒成立的个数是 A .1个 B .2个C .3个D .4个10.若过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PA PB ⋅的最大值是( )A .4B .5C .6D .811.若两个正实数,x y 满足112x y+=,且不等式2x y m m +<-有解,则实数m 的取值范围是( ) A .()1,2- B .()4,1- C .()(),12,-∞-+∞D .()(),14,-∞-+∞12.若,,a b c 为实数,则下列命题错误的是( ) A .若22ac bc >,则a b > B .若0a b <<,则22a b < C .若0a b >>,则11a b< D .若0a b <<,0c d >>,则ac bd <二、填空题13.已知a 、b 都是正数,且0a b ab +-=,则1911b a b +--的最小值是__________.14.≤对任意0,0x y >>恒成立,则a 的最小值是_______.15.已知0x >,0y >,22x y +=,则223524x y x yxy+++的最小值为______.16.已知正实数m ,n 满足119222m n m n +++=,则2m n +的最小值是_______. 17.某企业开发一种产品,生产这种产品的年固定成本为3600万元,每生产x 千件,需投入成本c (x )万元,c (x )=x 2+10x .若该产品每千件定价a 万元,为保证生产该产品不亏损,则a 的最小值为_____.18.已知函数121()22x x f x +-+=+,如果对任意t ∈R ,f (3t 2+2t )+f (k 2﹣2t 2)<0恒成立,则满足条件的k 的取值范围是_____.19.已知方程210(0)x kx k ++=>有实根,则1k k+的最小值是______. 20.已知正实数x ,y 满足x +y =1,则1412x y +++的最小值为________ .三、解答题21.已知函数()()223f x x bx b R =-+∈.(1)若()f x 在区间[22]-,上单调递减,求实数b 的取值范围; (2)若()f x 在区间[22]-,上的最大值为9,求实数b 的值.22.已知命题:p 实数x 满足28200x x --≤,命题:q 实数x 满足222(1)0(0)x x m m -+-≤>,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围.23.已知集合{}2430A x x x =-+≤,B =______.若“x A ∈”是“x B ∈”的必要不充分条件,给出如下三个条件:①{}1x a x a -≤≤,②{}2x a x a ≤≤+,③{}3x ≤≤.请从中任选一个补充到横线上.若问题中的a 存在,求出a 的取值范围.24.已知函数2(),(,)f x x ax b a b R =-+∈. (Ⅰ)不等式()0f x ≤的解集为[1,2]-,求a ,b 的值; (Ⅱ)令函数()()2xg x f =,对于任意的实数12,[1,2]x x∈,不等式()()125g x g x -≤恒成立,求a 的取值范围.25.已知正数,,a b c 满足3a b c ++=. (Ⅰ)若221a b +=,求c 的取值范围; (Ⅱ)求证:3bc ac aba b c++≥.26.已知0a b c d >>>>,ad bc =. (Ⅰ)证明:a d b c +>+; (Ⅱ)证明:a b c b c a a b c a b c >.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】首先利用基本不等式得到2(1)4t t +≥,再根据题意得到243x x <+,解不等式即可.【详解】令()2(1)t t t f +=,()0,t ∈+∞,()2)2(11t t f t t t==+++,因为()0,t ∈+∞,所以()1224f t t t=++≥=, 当1t t=即1t =时取等号,又因为(0,)t ∀∈+∞,都有22(1)3x t x t +<+,所以243x x <+即可.由243x x <+得()243033x x x x +-<++,即241203x x x --<+, ()()241230xx x --+<,所以()()()6230x x x -++<,解得3x <-或26x -<<. 故选:B. 【点睛】易错点点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】分0m =和0m ≠两种情况讨论,结合已知条件可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】因为关于x 的不等式210mx mx ++>恒成立,分以下两种情况讨论: (1)当0m =时,可得10>,合乎题意; (2)当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<.综上所述,实数m 的取值范围是[)0,4. 故选:B. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.3.A解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b >()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=, 当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.B解析:B 【分析】由已知条件代入后凑出积为定值,再由基本不等式得最小值. 【详解】∵0,0,23x y x y >>+=,所以(2x+1)+y=4则()()421141141549=2152142142144x yx y x y x y x y ++++++=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭++=+++ 当且仅当()42121x y x y +=+且214x y ++=即18,63x y ==时取等号, 则1421x y ++的最小值是94. 故选:B . 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方5.B解析:B 【分析】讨论0a =和0a ≠情况,再根据一元二次不等式与二次函数的关系,解不等式得解. 【详解】 关于x 的不等式210ax ax -+>恒成立,当0a =时,10>恒成立,满足题意当0a ≠时,即函数()21f x ax ax =-+恒在x 轴上方即可,所以00a >⎧⎨∆<⎩,即2040a a a >⎧⎨-<⎩,解得04a <<,所以实数a 的取值范围是[0,4).故选:B 【点睛】本题考查了一元二次不等式恒成立求参数的取值范围,考查了一元二次不等式的解法,属于基础题.6.D解析:D 【分析】本题需要考虑两种情况,00a a =≠,,通过二次函数性质以及即集合性质来确定实数a 的取值范围.【详解】设()21f x ax ax =-+当0a =时,()10f x =>,满足题意 当0a ≠时,()f x 时二次函数 因为{}2|10A x ax ax =-+<=∅ 所以()21f x ax ax =-+恒大于0,即0≤所以240a a -≤,解得04a ≤≤. 【点睛】本题考察的是集合和带有未知数的函数的综合题,需要对未知数进行分类讨论.7.A解析:A 【分析】由已知可得A ,D ,E 三点共线,结合平面向量基本定理可得31x y +=,0x >,0y >,再利用基本不等式即可求解. 【详解】 解:∵23BD BC =, ∴3CB CD =,3CE xCA yCB xCA yCD =+=+,因为A ,D ,E 共线,所以31x y +=,则()3313333101016x y x y y x x y x y x y +++=+=++≥+. 当且仅当33y x x y =且31x y +=即14x y ==时取等号, 故选:A. 【点睛】本题主要考查三点共线的向量表示,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.8.A解析:A 【详解】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P(,4),所以114)PB t=--(,,14)PC t =--(,,因此PB PC ⋅11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.9.A解析:A 【解析】分析:将不等式两侧的式子做差和0比即可,或者将不等式两侧的式子移到一侧,再配方即可. 详解:(1) 22a 32b ab +-=22322b a b ⎛⎫+- ⎪⎝⎭,当a=1,b=-2.时不等式不成立;(2)553223 a b b a a b +>+=()()()222a b a b a ab b -+++当a=1,b=-1时,不等式不成立;(3)()22522a b a b ++--()()22=a 210b -++≥恒成立.选项正确. (4) b aab +,2][2,)∈-∞-⋃+∞(,故不正确. 故答案为A.点睛:这个题目考查了基本不等式的应用条件,两式比较大小的方法;两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.10.B解析:B 【分析】先计算出两条动直线经过的定点,即A 和B ,注意到两条动直线相互垂直的特点,则有PA PB ⊥;再利用基本不等式放缩即可得出||||PA PB 的最大值.【详解】解:由题意可知,动直线0x my +=经过定点(0,0)A ,动直线30mx y m --+=即(1)30m x y --+=,经过点定点()1,3B ,注意到动直线0x my +=和动直线30mx y m --+=始终垂直,P 又是两条直线的交点,则有PA PB ⊥,222||||||10PA PB AB ∴+==.故22||||||||52PA PB PA PB +=(当且仅当||||PA PB ==时取“=” ) 故选:B . 【点睛】本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有22||||PA PB +是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.11.C解析:C 【解析】 正实数x ,y 满足112x y+=, 则()111112222224y x x y x y x y x y ⎛⎫+=++=+++=⎪⎝⎭, 当且仅当1,y x x y ==+取得最小值2. 由2x y m m +<-有解,可得22m m ->, 解得m >2或m <−1. 本题选择C 选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.12.B解析:B 【分析】由题意利用不等式的性质逐一考查所给的四个选项中的结论是否正确即可.其中正确的命题可以用不等式的性质进行证明,错误的命题给出反例即可. 【详解】对于A ,若22ac bc >,则0c ≠,2222ac bc c c>,即a b >,故正确;对于B ,根据不等式的性质,若0a b <<,不妨取2,1a b =-=-,则22a b >,故题中结论错误;对于C ,若0a b >>,则a b ab ab>,即11a b <,故正确;对于D ,若0a b <<,0c d >>,则0a b ->->,故ac bd ->-,ac bd <,故正确. 故选B. 【点睛】本题主要考查不等式的性质及其应用,属于中等题.二、填空题13.【分析】由可得出根据已知条件得出将代入所求代数式可得出利用基本不等式可求得的最小值【详解】所以由解得则所以当且仅当时等号成立因此的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必 解析:15【分析】由0a b ab +-=可得出1b a b =-,根据已知条件得出1b >,将1b a b =-代入所求代数式可得出()19919111b b a b b +=-++---,利用基本不等式可求得1911ba b +--的最小值. 【详解】0a b ab +-=,所以,()1a b b -=-,1b a b ∴=-, 由010b a b b ⎧=>⎪-⎨⎪>⎩,解得1b >,则10b ->, 所以,()()919191919915111111b b b b a b b b b -++=+=-++≥=------, 当且仅当4b =时,等号成立, 因此,1911ba b +--的最小值为15. 故答案为:15. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.【分析】不等式变形为然后利用基本不等式求得的最大值可得的最小值【详解】原不等式可化为因为所以即时等号成立又所以时等号成立所以的最大值是即的最小值是故答案为:【点睛】易错点睛:利用基本不等式求最值时要【分析】不等式变形为a ≥的最大值,可得a 的最小值.【详解】原不等式可化为a ≥,因为222m n mn +≥,所以222222()2()m n m mn n m n +≥++=+,即m n +≤,m n =时等号成立.又0,0x y >>≤=x y =时等号成立.a ≥a【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15.16【分析】由条件可知则原式变形为展开后利用基本不等式求最小值【详解】原式;当且仅当即时取等所以的最小值为16故答案为:16【点睛】关键点点睛:本题的关键是结合1的妙用利用基本不等式求最值解析:16【分析】 由条件可知()1212x y +=,则原式变形为()1243522x y x y y x y x ⎛⎫=++++ ⎪⎝⎭,展开后,利用基本不等式求最小值.【详解】原式()124493524162x y x y x y y x y x y x⎛⎫=++++=++≥ ⎪⎝⎭; 当且仅当23x y =即67x =,47y =时取等. 所以223524x y x y xy+++的最小值为16. 故答案为:16【点睛】关键点点睛:本题的关键是结合 “1”的妙用,利用基本不等式求最值.16.【分析】利用基本不等式可求得再结合可得从而可求出的取值范围即可得到的最小值【详解】由题意当且仅当时等号成立又所以令则解得所以即的最小值是故答案为:【点睛】关键点点睛:本题考查求代数式的最值解题关键是 解析:32【分析】()1112222n m m n m n m n ⎛⎫++=+++ ⎪⎝⎭,利用基本不等式,可求得()119222m n m n ⎛⎫++≥ ⎪⎝⎭,再结合()119222m n m n +=-+,可得()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的取值范围,即可得到2m n +的最小值.【详解】由题意,()11155922222222n m m n m n m n ⎛⎫++=+++≥+=+= ⎪⎝⎭,当且仅当n m m n=时,等号成立, 又()119222m n m n +=-+,所以()()()1199222222m n m n m n m n ⎛⎫⎡⎤++=+-+≥ ⎪⎢⎥⎝⎭⎣⎦, 令2m n t +=,则9922t t ⎛⎫-≥⎪⎝⎭,解得332t ≤≤, 所以32,32m n ⎡⎤+∈⎢⎥⎣⎦,即2m n +的最小值是32. 故答案为:32. 【点睛】关键点点睛:本题考查求代数式的最值,解题关键是利用基本不等式求出()119222m n m n ⎛⎫++≥ ⎪⎝⎭,再根据()119222m n m n ⎛⎫+++= ⎪⎝⎭,可得到只包含2m n +的关系式()()992222m n m n ⎡⎤+-+≥⎢⎥⎣⎦,从而可求出2m n +的范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.17.130【分析】本题先根据题意建立函数与不等式关系再运用参变分离化简最后运用基本不等式求最值即可【详解】解:有题意建立利润函数关系:()整理得:为保证生产该产品不亏损则()即当且仅当即取最小值130此 解析:130【分析】本题先根据题意建立函数与不等式关系,再运用参变分离化简,最后运用基本不等式求最值即可.【详解】解:有题意建立利润函数关系:2()(103600)f x ax x x =-++,(0x >) 整理得:2()(10)3600f x x a x =-+--,为保证生产该产品不亏损,则2()(10)36000f x x a x =-+--≥,(0x >)即36001010130a x x ≥++≥=, 当且仅当3600x x=即60x =,a 取最小值130,此时产品不亏损 故答案为:130.【点睛】 本题考查函数与不等式关系、参变分离法,基本不等式解决实际问题中的最值问题,是基础题.18.k<-1或k>1【分析】利用定义先求出函数为单调减函数与奇函数然后化简得到然后利用不等式得恒成立条件求出答案【详解】对于函数定义域为且所以为奇函数且对求导可得则在时为减函数可得利用为奇函数化简得利用 解析:k <-1或k >1.【分析】利用定义,先求出函数()f x 为单调减函数与奇函数,然后化简()()2223220f t t f k t ++-<得到222t t k --<,然后利用不等式得恒成立条件求出答案【详解】对于函数()f x ,定义域为R ,且()12122x x f x ---+-=+1122222xx x x+-+=+()12122x x f x +-==-+,所以,()f x 为奇函数,且对()f x 求导可得()'0f x <,则()f x 在x ∈R 时为减函数, ()()2223220f t t f k t ++-<,可得()()222322f t t f k t +<--,利用()f x 为奇函数 化简得()()222322f t t f t k +-<,利用()f x 在x ∈R 时为减函数,得222322t t t k +->,化简得222t t k --<恒成立,令()22g t t t =--,则有()2max g t k <,而()()max 11g t g =-=,所以21k <,得到1k >或1k <-答案:1k >或1k <-【点睛】本题考查函数的单调性、奇偶性以及不等式的恒成立问题,属于中档题19.【分析】先根据一元二次方程有解得再根据函数的单调性求解即可【详解】解:方程有实根解得又在上单调递增 的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值的问题根据条件求出k 的范围利用对勾函 解析:52【分析】先根据一元二次方程有解得2k ≥,再根据函数1y k k=+的单调性求解即可. 【详解】 解:方程210(0)x kx k ++=>有实根, 240k ∴-≥,解得2k ≥, 又1y k k=+在[)2+∞,上单调递增, ∴ 1k k +的最小值是15222+=, 故答案为:52. 【点睛】 本题主要考查了利用基本不等式求最值的问题,根据条件求出k 的范围,利用对勾函数在区间内的最值即可求出结果.20.【分析】由可得且则利用基本不等式可求出的最小值【详解】由可得且则(当且仅当即时取=)故的最小值为故答案为:【点睛】利本题考查基本不等式求最值注意用基本不等式求最值必须具备三个条件:①各项都是正数;② 解析:94【分析】由1x y +=,可得(1)(2)4x y +++=且10,20x y +>+>,则()()()112411411412412214142y x x y x y x y x y ⎛⎫⎛⎫+=+=+++⎡⎤ ⎪+ +⎪⎣⎦++++++⎝+⎭⎝+⎭+,利用基本不等式可求出1412x y +++的最小值. 【详解】由1x y +=,可得()()124x y +++=且10,20x y +>+>, 则()()114114124122x y x y y x ⎛⎫+=+⎡⎤ ⎪⎣⎦++++⎝+⎭++ ()11914541244412x y y x =+⎛⎛⎫ +++≥+= ⎪ ++⎝⎭⎝+,(当且仅当()24121x y x y =++++即12,33x y ==时取“=”). 故1412x y +++的最小值为94. 故答案为:94. 【点睛】利本题考查基本不等式求最值,注意用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件,属于中档题. 三、解答题21.无22.无23.无24.无25.无26.无。

八年级下册数学 一次函数与不等式练习题

八年级下册数学 一次函数与不等式练习题

八年级下册数学一次函数与不等式练习题1.一次函数与一元一次方程、一元一次不等式1.1 一次函数与一元一次方程1) 一次函数与一元一次方程的关系:① (从数值上看) 方程 $ax+b=(a\neq0)$ 的解$\Leftrightarrow$ 函数 $y=kx+b(a\neq0)$ 中,$y$ 等于时,$x$ 的值。

② (从形式上看) 方程 $ax+b=(a\neq0)$ 的解$\Leftrightarrow$ 函数 $y=kx+b(a\neq0)$ 的图像与 $x$ 轴交点的横坐标。

2) 利用一次函数的图像解一元一次方程的步骤:转化→画图像→ 找交点。

1.2 一次函数与一元一次不等式1) 一次函数与一元一次不等式的关系:① (从数值上看) $ax+b>0$ 的解集 $\Leftrightarrow$ 函数$y=kx+b$ 中 $y>0$ 时 $x$ 的取值范围;$ax+b<0$ 的解集$\Leftrightarrow$ 函数$y=kx+b$ 中$y<0$ 时$x$ 的取值范围。

② (从形式上看) $ax+b>0$ 的解集 $\Leftrightarrow$ 直线位于 $x$ 轴上方的部分对应的 $x$ 的取值范围;$ax+b<0$ 的解集 $\Leftrightarrow$ 直线位于 $x$ 轴下方的部分对应的$x$ 的取值范围。

2) 应用:在同一直角坐标系中,比较两直线上函数值大小的方法:当自变量取同一个值时,对应图像上的点在上方的函数值就大。

例1:已知方程 $x+b=-2$ 的解是 $x=-2$,下列可能为直线 $y=x+b$ 的图象是()。

例2:直线 $y=kx+3$ 经过点 $A(2,1)$,则不等式$kx+3\geq0$ 的解集是()。

针对训练1、一次函数 $y=kx+b$ 的图象如图所示,则方程$kx+b=0$ 的解为()。

2、如图,一次函数 $y=kx+b$ 的图象经过 $A$、$B$ 两点,则不等式 $kx+b<0$ 的解集是()。

一次函数与方程不等式专项练习60题(有答案)15页

一次函数与方程不等式专项练习60题(有答案)15页

1.一次函数y=kx+b A x=2<> A x<﹣1x<﹣2 A.=与﹣,11.如图,已知直线y=ax+b,则方程.已知直线与kx+b<0._________ .18.一元一次方程0.5x+1=020.一次函数y1=kx+b22.一次函数y=ax+b24.一次函数y=ax+b的图象如图所示,则一元一次方程30.当自变量x的取值满足什么条件时,函数x=≤>≥﹣><①a>0;②b>0; A037.如图,直线y=kx+b.ax+b<cx+d<2的解集为 42.如图,直线y=kx+b)两点,则不等式x)两点,则不等式x 54.画出函数y=3x+12的图象,并回答下列问题:的解集是 的解集是 的解集是 57.在平面直角坐标系x0y)根据图象可知:方程组的解为 m=,的坐标是(,<;故选=<,.联立两函数的解析式,得:,解得;﹣,﹣.﹣.由直线与=×a=,可化为:x由此可画出的图形为:.函数与x轴的交点A坐标为(∴,解得:﹣,﹣,﹣,解得:>.故选>.故选∴,解得,y=x+2.故答案为:x>﹣3,x<﹣3)两点,可得:,解得;则不等式组x可化为x46. ∵一次函数把(2,0)代入解析式,=<,48.由图象可知x>﹣.∵一次函数y=kx+b52. 列表:描点,过(﹣,(1)由图象看出当﹣时,﹣是方程(2)不等式2x+1≥0≥﹣是不等式)由勾股定理得它们之间的距离为﹣,﹣,54. 当x=0时,y=12;当y=3x+12的图象,从图象得出函数值随﹣6≤y≤6时,相应的)根据题意得:解得:56.由题意知:由图象知不等式组的解集的解集为:由题知:由图象知不等式组的解集为:由题意知:根据函数图象知不等式组的解集是空集;故答案为:空集∴,解得:,不等式kx+b≤0的解集为:在x轴的上方,故.(2)解:由图象可知:方程组的解为,故答案为:.(3)解:根据题意得:(1)由图象知:随着x(3)由图象知:与x轴的交点坐标是((4)由图象知:这个函数中,随着(5)由图象知:当x=1。

(完整版)一元一次不等式与一次函数习题精选(含答案)

(完整版)一元一次不等式与一次函数习题精选(含答案)

一元一次不等式与一次函数1.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()(5)A.x<B.x<3 C.x>D.x>32.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),则关于x的不等式a(x﹣1)﹣b >0的解集为()A.x<﹣1 B.x>﹣1 C.x>1 D.x<13.如图,直线y1=k1x+a与y2=k2x+b的交点坐标为(1,2),则使y1<y2的x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<24.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c 的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣25.如图,一次函数y=kx+b的图象经过A、B两点,则kx+b>0解集是()A.x>0 B.x>﹣3 C.x>2 D.﹣3<x<26.如图,函数y=kx和y=﹣x+3的图象相交于(a,2),则不等式kx<﹣x+3的解集为()A.x<B.x>C.x>2 D.x<27.(如图,直线l是函数y=x+3的图象.若点P(x,y)满足x<5,且y>,则P点的坐标可能是()A.(4,7)B.(3,﹣5)C.(3,4)D.(﹣2,1)8.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣49.如图,一次函数y=kx+b的图象经过点(2,0)与(0,3),则关于x的不等式kx+b>0的解集是()(10) (11)A.x<2 B.x>2 C.x<3 D.x>310.如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x >﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A.0B.1C.2D.3二.填空题(共8小题)11.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为_________.12.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须_________.(13) (14) (15)13.如图,函数y=2x和y=ax+5的图象相交于A(m,3),则不等式2x<ax+5的解集为_________.14.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集为_________.15.如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是_________.16.如图,已知函数y=x+b和y=ax+3的图象相交于点P,则关于x的不等式x+b<ax+3的解集为_________.(17) (18)17.如图,直线y=kx+b经过点A(﹣1,1)和点B(﹣4,0),则不等式0<kx+b<﹣x的解集为_________.18.如图,直线y=kx+b交坐标轴于A(﹣3,0)、B(0,5)两点,则不等式﹣kx﹣b<0的解集是_________.三.解答题19.在平面直角坐标系中,直线y=kx﹣15经过点(4,﹣3),求不等式kx﹣15≥0的解.20.如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析表达式为y=x+3,且l1与y轴交于点A,l2与y轴交于点B,点A与点B恰好关于x轴对称.(1)求点B的坐标;(2)求直线l2的解析表达式;(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的的点M的坐标;(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?21.已知:直线l1的解析式为y1=x+1,直线l2的解析式为y2=ax+b(a≠0);两条直线如图所示,这两个图象的交点在y轴上,直线l2与x轴的交点B的坐标为(2,0)(1)求a,b的值;(2)求使得y1、y2的值都大于0的取值范围;(3)求这两条直线与x轴所围成的△ABC的面积是多少?(4)在直线AC上是否存在异于点C的另一点P,使得△ABC与△ABP的面积相等?请直接写出点P的坐标.22.如图,直线y=kx+b经过点A(0,5),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.AACBBAAAAD﹣2<x<﹣1.大于4.x<.x>﹣1.x>1.x<1.﹣4<x<﹣1.x>﹣19 x≥5.20.解:(1)当x=0时,x+3=0+3=3,∴点A的坐标是(0,3),∵点A与点B恰好关于x轴对称,∴B点坐标为(0,﹣3);(2)∵点P横坐标为﹣1,∴(﹣1)+3=,∴点P的坐标是(﹣1,),设直线l2的解析式为y=kx+b,则,解得,∴直线l2的解析式为y=﹣x﹣3;(3)∵点P横坐标是﹣1,△MAB的面积是△PAB的面积的,∴点M的横坐标的长度是,①当横坐标是﹣时,y=(﹣)×(﹣)﹣3=﹣3=﹣,②当横坐标是时,y=(﹣)×﹣3=﹣﹣3=﹣,∴M点的坐标是(﹣,﹣)或(,﹣);(4)l1:y=x+3,当y=0时,x+3=0,解得x=﹣6,l2:y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣,∴当﹣6<x<﹣时,l1、l2表示的两个函数的函数值都大于0.21 解:(1)由直线l1的解析式为y1=x+1,可求得C(0,1);解得:.(2)由(1)知,直线l2:y=﹣x+1;∵y1=x+1>0,∴x>﹣1;∵;∴﹣1<x<2.(3)由题意知A(﹣1,0),则AB=3,且OC=1;∴S△ABC=AB•OC=.(4)由于△ABC、△ABP同底,若面积相等,则P点纵坐标为﹣1,代入直线l1可求得:P的坐标为(﹣2,﹣1).22. 解:(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),∴,解方程组得,∴直线AB的解析式为y=﹣x+5;(2)∵直线y=2x﹣4与直线AB相交于点C,∴解方程组,解得,∴点C的坐标为(3,2);(3)由图可知,x≥3时,2x﹣4≥kx+b.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与不等式应用题【例题经典】例1 (2006年武汉市)某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1 吨乙产品所需该矿石和煤原料的吨数如下表.甲乙矿石(吨)104煤(吨)48煤的价格为400元/吨,生产1吨甲产品除原料费用外,还需其他费用400元, 甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元, 乙产品每吨售价5500元,现将该矿石原料全部用完,设生产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 之间的关系式;(2)写出y 与x 的函数表达式(不要求写自变量的范围);(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大? 最大利润是多少?【点评】主要考查的是一次函数与不等式的实际应用.例2 (2006年黄冈市)我市英山县某茶厂种植“春蕊牌”绿茶,由历年来市场销售行情知道,从每年的3月25日起的180天内,绿花市场销售单价y (元) 与上市时间t (天)的关系可以近似地用如图(1)中的一条折线表示.绿茶的种植除了与气候、 种植技术有关外,某种植的成本单价z (元)与上市时间t (天)的关系可以近似地用如图(2)的抛物线表示.(1)直接写出图(1)中表示的市场销售单价y (元)与上市时间t (天)(t>0) 的函数关系式;(2)求出图(2)中表示的种植成本单价z (元)与上市时间t (天)(t>0) 的函数关系式;(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500克.)【点评】主要考查同学们从两个图像中获取信息的能力.【考点精练】1.(2006年广安市)某电信公司开设了甲、乙两种市内移动通信业务. 甲种使用者每月需缴15元月租费,然后每通话1分钟,再付话费0.3元;乙种使用者不缴月租费,每通话1分钟,付话费0.6元.若一个月内通话时间为x 分钟,甲、 乙两种的费用分别为y 1和y 2元.(1)试分别写出y 1、y 2与x 之间的函数关系式; (2)在同一坐标系中画出y 1,y 2的图像;(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?2.为了鼓励小强勤做家务,培养他的劳动意识,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的. 若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费为y 元,则y (元)和x (小时)之间的函数图像如图所示.(1)根据图像,请你写出小强每月的基本生活费为多少元; 父母是如何奖励小强家务劳动的?(2)写出当0≤x≤20时,相对应的y 与x 之间的函数关系式;(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?3.(2006年泸州市)“五一黄金周”的某一天,小刚全家上午8时自驾小汽车从家里出发,到距离180千米的某著名旅游景点游玩,该小汽车离家的距离S (千米)与时间t (时)的关系可以用下图的折线表示,根据图像提供的有关信息,解答下列问题: (1)小刚全家在旅游景点游玩了多少小时?(2)求出返程途中S (千米)与时间t (时)的函数关系式,并求出自变量t 的取值范围.4.随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购A 、B 两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店) 销售.预计每种水果的盈利情况如下表:A 种水果/箱B 种水果/箱甲店 11元 17元乙店 9元 13元有两种配货方案(整箱配货):方案一:甲、乙两店各配货10箱,其中A 种水果两店各5箱,B 种水果两店各5箱.方案二: 按照甲、 乙两店盈利相同配货, 其中A 种水果甲店______ 箱, 乙店______箱,B 种水果甲店_______,乙店_______箱.(1)如果按照方案一配货,请你计算出经销商盈利多少元; (2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比哪种方案盈利较多?(3)在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出经销商盈利最大的配货方案,并求出最大盈利为多少?5.(2006年芜湖市)某种内燃动力机车在青藏铁路试验运行前, 测得该种机械效率η和海拔高度h(0≤h≤6.5,单位km)的函数关系式如图所示.(1)请你根据图象写出机车的机械效率η和海拔高度h(km)的函数关系;(2)求在海拔3km的高度运行时,该机车的机械效率为多少?6.(2006年遂宁市)有一种笔记本原售价为每本8元,甲市场用如下办法促销, 每次购买1~8本打九折,9~16本打八五折,17~25本打八折,超过25本打七五折.乙商场用如下办法促销:购买本数(本)1~56~1011~15超过15每本价格(元)7.607.20 6.40 6.00(1)请仿照乙商场的促销列表,列出甲商场促销笔记本的购买本数与每本价格的对照表.(2)某学校有A、B两个班都需要买这种笔记本,A班需要8本,B班需要15本, 问他们到哪家商场购买花钱较少?(3)设某班需要购买这种笔记本本数为x且9≤x≤40,总花费为y元, 从最省钱的角度出发,写出y与x的函数关系式.7.某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.假设前后两人接水间隔时间忽略不计, 且不发生泼洒,锅炉内的余水量y (升)与接水时间x (分)的函数图象如图. 请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论; (2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟.”你说可能吗?请说明理由.8.(2006年泉州市)为实现泉州市森林城市建设的目标, 在今年春季的绿化工作中,绿化办计划为某住宅小区购买并种植400株树苗.某树苗公司提供如下信息:信息一:可供选择的树苗有杨树,丁香树,柳树三种,并且要求购买杨树, 丁香树的数量相等.信息二:如下表:树 苗每株树亩批发价格(元)两年后每株树苗对空气的净化指数杨 树 3 0.4丁香树 2 0.1柳 树 P 0.2设购买杨树,柳树分别为x 株,y 株.(1)写出y 与x 之间的函数关系式(不要求写出自变量的取值范围);(2)当每株柳树的批发价P 等于3元时,要使这400 株树苗两年后对该住宅小区的空气净化指数不低于90,应怎样安排这三种树苗的购买数量,才能使购买树苗的总费用最低?最低的总费用是多少元;(3)当每株柳树批发价格P (元)与购买数量y (株)之间存在关系.P=3-0.005y 时, 求购买树苗的总费用W (元)与购买杨树数量x (株)之间的函数关系式( 不要求写出自变量的取值范围).答案:例题经典例1:解:(1)m=300104x-(2)生产1吨甲产品获利:4600-10 ×200-4×400-400=600;生产1吨乙产品获利:5500-4×200-8×400-500=1000,∴y与x 的函数表示式为:y=600x+1000×300104x-=-1900x+75000;(3)∵4x+8×300104x-≤200,∴30≥x≥25,∴当生产甲产品25吨时,公司获得的总利润最大,y最大=-1900×25+75000=27500(元).例2:解:(1)依题意,可建立的函数关系式为:y=2160(0120), 380(120150),220(150180). 5t ttt t⎧-+<<⎪⎪≤<⎨⎪⎪+≤≤⎩(2)由题目已知条件可设z=a(t-110)2+20,∵图像过点(60,853),∴853=a(60-110)2+20,∴a=1300,∴z=1300(t-110)2+20(t>0).(3)设纯收益单价为W元,则W=销售单价-成本单价.故W=22221160(100)20(0120), 3300180(110)20(120150),3002120(110)20(150180). 5300t t tt tt t t⎧-+---<<⎪⎪⎪---≤<⎨⎪⎪+---≤≤⎪⎩化简得W=2221(10)100(0120),3001(110)60(120150), 3001(170)56(150180).300t tt tt t⎧--+<<⎪⎪⎪--+≤<⎨⎪⎪--+≤≤⎪⎩,①当W=-1300(t-10)2+100(0<t<120)时,有t=10时,W最大,最大值为100;②当W=-1300(t-110)2+60(120≤t<150)时, 由图象知, 有t=120时,W最大,最大值为5923;③当W=-1300(t-170)2+56(150≤t≤180)时,有t=170时,W最大,最大值为56.综上所述,在t=10时,纯收益单价有最大值,最大值为100元.考点精练:1.分析:在解决问题(3)时,因一个月通话时间没有确定, 而两种通信业务的费用都与通话时间有关,因此需要进行讨论,可观察图象得出结论,也可按①y1>y2,②y1=y2,③y1<y2进行求解.解:(1)y1=15+0.3x(x≥0),y2=0.6x(x≥0)(2)如图(3) 由图知:当一个月通话时间为50分钟时,两种业务一样优惠;当一个月通话时间少于50分钟时,乙种业务更优惠;当一个月通话时间大于50分钟时,甲种业务更优惠.2.(1)小强每月生活费为150元,当家务劳动时间每月不超过20小时/月时,每小时有2.5元的报酬,即y=2.5x+150(0≤x≤20),当家务劳动时间超过20小时/月时,超过部分每小时4元报酬,即y=4x+120(x≥20)(2)y=2.5x+150(0≤x≤20)(3)250>200, ∴y=4x+120,250=4x+120,x=32.5,即小强4月份做家务32.5小时.3.(1)游玩了4 个小时(2)S=-60t+1020(14≤t≤17)4.(1)按照方案一配货,经销商盈利:5×11+5×9+ 5×17+5×13=250(元)(2)只要求填写一种情况:第一种情况:2,8,6,4;第二种情况:5,5,4,6;第三种情况:8,2,2,8.按第一种情况盈利:(2×11+17×6)×2=248(元);按第二种情况盈利:(5×11+4×17)×2=246(元);按第三种情况盈利:(8×11+2×17)×2=244(元);方案一比方案二盈利多(3)设甲店配A种水果x箱,则甲店配B 种水果(10-x )箱,乙店配A 种水果(10-x )箱,乙店配B 种水果10-(10-x )=x 箱,∵9×(10- x) +13x≥100,∴x≥212.经销商盈利y=11x+17×(10-x )+9×(10-x )+13x=-2x+260.当x= 3时,y 值最大.方案:甲店配A 种水果3箱,B 种水果7箱.乙店配A 种水果7箱,B 种水果3箱时盈利最大,最大盈利为-2×3+260=254(元)5.解:(1)由图象可知,η与h 的函数关系为一次函数,设η=kh+b(k≠0),∵一次函数图象过(0,40%),(5,20%)两点,∴40%,20%5.b k b =⎧⎨=+⎩解得:k=-0.04,b=0.4,∴η=-0.04h+0.4(0≤h≤6.5)(2)当h=3km 时,代入η=-0.04h+0.4,解得η=0.28.∴当机车运行在海拔高度为3km 的时候,其机车的运行效率为28%. 6.(1) 甲购买本数(本)1-89-1617-25超过25本每本价格(元)7.2 6.8 6.4 6(2)A 两商场一样 B 到乙商场花钱较少(3)甲商场:y= 6.8(916),7.2(916),6.4(1725),: 6.4(1115),6(2540).6(1640).x x x x x x y x x x x x x ≤≤≤≤⎧⎧⎪⎪≤≤=≤≤⎨⎨⎪⎪<≤≤≤⎩⎩乙乙乙7.解:(1) 锅炉内原有水96升,接水2分钟后,锅炉内的余水量为80升,接水4分钟,锅炉内的余水量为72升;2分钟前的水流量为每分钟8升等.(2)当0≤x≤2时, 设函数解析式为y=k 1x+b 1,把x=0,y=96和x=2,y=80代入得:1111196,8,280,96.b k k b b ==-⎧⎧⎨⎨+==⎩⎩乙乙,∴y=-8x+96(0≤x≤2),当x>2时,设函数解析式为y=k 2x+b 2,把x=2,y=80和x=4,y=72代入得:222222802,4,724,88.k b k k b b =+=-⎧⎧⎨⎨=+=⎩⎩乙乙,∴y=-4x+88(x>2).∵前15位同学接完水时余水量为96-15×2=66(升),∴66=-4x+88,x=5.5.答:前15 位同学接完水需5.5分钟.(3)①若小敏他们是一开始接水的,则接水时间为8×2÷8=2(分),即8位同学接完水,只需要2分钟,与接水时间恰好3分钟不符.②若小敏他们是在若干位同学接完水后开始接水的,设8位同学从t分钟开始接水,挡0<t≤2时,则8(2-t)+4[3-(2-t)]=8×2,16-8t+4+4t=16,∴t=1(分),∴(2-t)+[3-(2-t)]=3(分),符合.当t>2时,则8×2÷4=4(W发),即8位同学接完水,需7分钟,与接水时间恰好3分钟不符.所以小敏说法是可能的.即从1分钟开始8位同学连续接完水恰好用了3分钟8.( 1)y=400-2x(2)当购买200株杨树,200株丁香树,不购买柳树苗时,能使购买费用最低,最低总费用为1000元(3)W=3x+2x+p·y,即W=-0.02x2+7x+400.。

相关文档
最新文档