精馏塔的计算
塔精馏塔的计算1

一、塔精1.全的物料衡算由于水的沸点为100℃,正丁醇的沸点为117.7℃故水作为轻组分,正丁醇作为重组分,产品正丁醇从塔底出来。
%74.9874/05.018/95.018/95.0F =+=xM F =74⨯(1-0.9874)+0.9874⨯18=18.71kmol kg / F =20⨯1000/18.71=1069.03/kmol h总物料衡算 F=D+W=252 (1) 采用填料塔连续精馏由正丁醇-水平衡数据作图,画出正丁醇—水溶液y-x 图,求得mi n R 取min 5.1R R =过点(0.9994,0.9994)作平衡线的切线,则求出此线与y 轴的交点截距为0.5192,故求得最小回流比为0.9248,所以操作状态的回流比为1.387 数直角梯级即为理论塔板数:T N (包括再沸器)=9块其中精馏段1N =4块,提留段(包括再沸器)=5块,第五块为进料板。
实际塔板数求取:由平衡线得塔顶:9994.01==x y D ,在图中求得x 1=0.9946%892.574/985.018/015.018/015.0=+=W x由平衡线方程1(1)xy xαα=+-得顶α=8.99塔底:x x w m ==0.05892,y m =0.2234 同理得底α=4.56ααα==6.4塔顶温度100℃,塔底温度117.7℃ 定性温度为85.10827.117100=+℃查附录得s Pa ⋅=m 390.0μ1μ正丁醇=2.948求得()smPa m ⋅=⨯-+⨯=422.0948.29874.019874.0390.0μ⋅αmμ=6.4×0.422=2.70查得0E =55.1% 校正后为55.1%×1.1=60.61% 实际塔板:%1000⨯=PT N N E8110=-=+E N N T P ,取8块(包括再沸器)精馏段取4块 提馏段取4块 第5块进料板 3.塔高的计算有效高度:Z=øP ×Nt=0.67×(8-1)=4.67mZ=4×60.61%=2.42m(精馏段) Z=4.67-2.42=2.25m(提留段)实际填料高度:2.42×(1+0.2)=2.9m(精馏段) 2.25×(1+0.2)=2.7m(提留段) 设裙座为1m总塔高;H=2.9+2.7+1=6.6m4.泛点气速的计算影响泛点气速的因素很多,其中包括填料的特性、流体的物理性质以及液气比等。
精馏塔的设计计算

第2章精馏塔的设计计算2.1 进料状况设计中采用泡点进料,塔顶上升蒸汽采用全冷凝器冷凝,冷凝液在泡点下回流至塔内该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.7倍。
塔釜采用间接蒸汽加热具体如下:塔型的选择本设计中采用浮阀塔。
2.2 加料方式和加料热状况加料方式和加料热状况的选择:加料方式采用泵加料。
虽然进料方式有多种,但是饱和液体进料时进料温度不受季节、气温变化和前段工序波动的影响,塔的操作比较容易控制;此外,饱和液体进料时精馏段和提馏段的塔径相同,无论是设计计算还是实际加工制造这样的精馏塔都比较容易,为此,本次设计中采取泡点进料。
2.3 塔顶冷凝方式塔顶冷凝采用全冷凝器用水冷却。
甲醇和水不反应而且容易冷却,故使用全冷凝器,塔顶出来的气体温度不高冷凝回流液和产品温度不高无需进一步冷却,此分离也是为了得到甲醇故选用全冷凝器。
2.4 回流方式回流方式可分为重力回流和强制回流,对于小型塔冷凝器一般安装在塔顶。
其优点是回流冷凝器无需支撑结构,其缺点是回流控制较难。
需要较高的塔处理或因为不易检修和清理,这种情况下采用强制回流.故本设计采用强制回流。
2.5加热方式加热方式为直接加热和间接加热。
直接加热由塔底进入塔内。
由于重组分是水故省略加热装置。
但在一定的回流比条件下,塔底蒸汽对回流有稀释作用,使理论板数增加,费用增加,间接蒸汽加热器是塔釜液部分汽化维持原来浓度,以减少理论板数。
本设计采用间接蒸汽加热。
2.6工艺流程简介连续精馏装置主要包括精馏塔,蒸馏釜(或再沸器),冷凝器,冷却器,原料预热器及贮槽等.原料液经原料预热器加热至规定温度后,由塔中部加入塔内.蒸馏釜(或再沸器)的溶液受热后部分汽化,产生的蒸汽自塔底经过各层塔上升,与板上回流液接触进行传质,从而使上升蒸汽中易挥发组分的含量逐渐提高,至塔顶引出后进入冷凝器中冷凝成液体,冷凝的液体一部分作为塔顶产品,另一部分由塔顶引入塔内作为回流液,蒸馏釜中排出的液体为塔底的产品。
精馏塔的计算

3.解吸:从吸收剂中分离出已被吸收气体的操作。
4.吸收操作传质过程:单向传质过程,吸收质从气相转移到液相的传质过程。
其中包括吸收质由气相主体向气液相界面的传递,及由相界面向液相主体的传递。
5.吸收过程:通常在吸收塔中进行。为了使气液两相充分接触,可采用板式塔或填料塔,少数情况下也选用喷洒塔。
对于易溶气体,H很大,此时,传质阻力集中于气膜中,液膜阻力可以忽略,1/ KG≈1/kG气膜阻力控制着整个吸收过程的速率,吸收总推动力的绝大部分用于克服气膜阻力,这种情况称为“气膜控制”。
对于气膜控制的吸收过程,如要提高其速率,在选择设备型式及确定操作条件时,应特别注意减小气膜阻力。
(2)以C*-C表示总推动力的吸收速率方程式(液相总吸收速率方程式)
解:将液组成换算成摩尔分率。
xF=(40/78)/(40/78+60/92)= 0.44
xD=(97/78)/(97/78+3/92)=0.974
xW=(2/78)/(2/78+98/92)=0.0235
原料平均摩尔质量MF=78×0.44+92×0.56=85.8kg/kmol
由物料衡算:F= D+W =15000/85.8= 175kmol/h
则F = D + W
FxF= DxD+ WxW
175 = D + WD=76.6kmol/h
175×0.44=0.974D+0.0235WW=98.4kmol/ h
例:将含24%(摩尔分率,以下同)易挥发组分的某混合液送入连续操作的精馏塔。要求馏出液中含95%的易挥发组分,残液中含3%易挥发组分。塔顶每小时送入全凝器850kmol蒸汽,而每小时从冷凝器流入精馏塔的回流量为670kmol。试求每小时能抽出多少kmol残液量。回流比为多少?
化工单元操作:精馏塔计算

(四)单股进料,无侧线出料 塔体上只有一个进料口,除塔顶馏出液和塔底残液,没有其他出料口。
二、全塔物料衡算(质量守恒)
1、物料衡算公式:
F = D + W FzF = DxD + WxW 2、采出率、易挥发组分回收率、难挥发组分回收率的概念和计算
2、提馏段操作线方程
L′ =V ′ + W
L′xm = V ′ym+1 + WxW
y m +1
=
L′ L′ −W
xm
−
WxW L′ −W
或者
y m +1
=
L′ V′
xm
− Wxw V′
它表达了在一定的操作条件下,提馏段内相邻两层塔板的下一层塔板上升蒸汽浓度 ym+1 与上 一层塔板下降液体浓度 xm 的关系。
3)进料线方程 y = q x − xF 进料线的意义:精馏段与提馏段两段操作线的交点轨迹。 q −1 q −1
二、操作线的绘制 步骤:
1、精馏段操作线 2、进料线,并与精馏段操作线有一交点 3、提馏段操作线
精馏塔计算
一、精馏塔塔板层数的确定
1、理论塔板的概念 汽液两相在塔板上充分接触,使离开塔板的两相温度相同,且两相组成互为平衡,则称
D = z F − xW F xD − xW
W = xD − zF =1− D
F xD − xW
F
ηD
=
Dx D Fz F
× 100%
ηW
= W (1 − xW ) ×100% F (1 − z F )
三、精馏操作线方程
1、精馏段操作线方程
精馏塔的计算

本次设计的一部分是设计苯酐轻组分塔,塔型选用F1浮阀塔,进料为两组分进料连续型精馏。
苯酐为重组分,顺酐为轻组分,从塔顶蒸除去,所以该塔又称为顺酐塔。
5.1 确定操作条件顺酐为挥发组分,所以根据第3章物料衡算得摩尔份率:进料: 794.0074.43239072.5x F ==塔顶: D x =0.8502塔底: w x =0.002该设计根据工厂实际经验及相关文献给出实际回流比R=2(R=1.3R min ),及以下操作条件: 塔顶压力:10.0kPa ;塔底压力:30.0kPa ; 塔顶温度:117.02℃; 塔底温度:237.02℃; 进料温度:225℃; 塔板效率:E T =0.5 5.2 基础数据整理 (1)精馏段:图5-1 精馏段物流图平均温度:()01.17122502.11721=+℃平均压力:()=⎥⎦⎤⎢⎣⎡⨯+⨯⨯-⨯333100.107519.75100.10100.30213103.015⨯pa 根据第3章物料衡算,列出精馏段物料流率表如下:标准状况下的体积: V 0=2512.779.42234.7880=⨯Nm 3/h操作状况下的体积: V 1=63610101.01003.1510101.027301.1712732512.779⨯+⨯⨯⨯+⨯=1103.2112 Nm 3/h气体负荷: V n =3064.036001103.2112= m 3/s气体密度: =n ρ0903.32112.11033409.2240= kg/m 3液体负荷: L n =9470.036003409.2240= m 3/s171.01℃时 苯酐的密度为1455kg/m 3(2图5-2 提馏段物料图平均温度:()01.23122502.23721=+℃ 入料压力:()Pa k 9.147519751030=-⨯-平均压力:()=+0.309.142122.5kPa 根据第3章物料衡算列出提馏段内回流如下图:表5-2 提馏段内回流标准状况下的体积:='0V 4054.4974.222056.22=⨯Nm 3/h 操作状态下的体积:='1V 63610101.0105.2210101.027301.2312734054.497⨯+⨯⨯⨯+⨯ =751.0162 Nm 3/h气体负荷:V m =2086.03600751.0162=m 3/s气体密度 m ρ=7022.110162.7518788.5420=kg/m 3查得进料状态顺酐与苯酐混合物在温度225℃下,含顺酐5.41(wt)%,密度1546kg/m 3。
精馏塔计算方法

目录1 设计任务书 (1)1.1 设计题目………………………………………………………………………………………………………………………………………………………………………1.2 已知条件………………………………………………………………………………………………………………………………………………………………………1.3设计要求…………………………………………………………………………………………………………………………………………………………………………2 精馏设计方案选定 (1)2.1 精馏方式选择…………………………………………………………………………………………………………………………………………………………………2.2 操作压力的选择…………………………………………………………………………………………………………………………………………………………………2.4 加料方式和加热状态的选择……………………………………………………………………………………………………………………………………………………2.3 塔板形式的选择…………………………………………………………………………………………………………………………………………………………………2.5 再沸器、冷凝器等附属设备的安排……………………………………………………………………………………………………………………………………………2.6 精馏流程示意图…………………………………………………………………………………………………………………………………………………………………3 精馏塔工艺计算 (2)3.1 物料衡算…………………………………………………………………………………………………………………………………………………………………………3.2 精馏工艺条件计算………………………………………………………………………………………………………………………………………………………………3.3热量衡算…………………………………………………………………………………………………………………………………………………………………………4 塔板工艺尺寸设计 (4)4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………4.2 塔径………………………………………………………………………………………………………………………………………………………………………………4.3溢流装置…………………………………………………………………………………………………………………………………………………………………………4.4 塔板布置及浮阀数目与排列……………………………………………………………………………………………………………………………………………………5 流体力学验算 (6)5.1 气相通过塔板的压降……………………………………………………………………………………………………………………………………………………………5.2 淹塔………………………………………………………………………………………………………………………………………………………………………………5.3 雾沫夹带…………………………………………………………………………………………………………………………………………………………………………6 塔板负荷性能图 (7)6.1 雾沫夹带线………………………………………………………………………………………………………………………………………………………………………6.2 液泛线…………………………………………………………………………………………………………………………………………………………………………6.3 液相负荷上限线…………………………………………………………………………………………………………………………………………………………………6.4 漏液线…………………………………………………………………………………………………………………………………………………………………………6.5 液相负荷下限线…………………………………………………………………………………………………………………………………………………………………6.6 负荷性能图………………………………………………………………………………………………………………………………………………………………………7 塔的工艺尺寸设计 (8)8釜温校核 (9)9热量衡算 (9)10接管尺寸设计 (10)符号说明 (10)参考文献 (13)结束语 (13)1.设计任务1.1设计题目:年产8000吨乙醇板式精馏塔工艺设计1.2已知条件:1原料组成:含35%(w/w)乙醇的30度液体,其余为水。
精馏塔计算

xW
xD
0.02 / 32 0.01 0.02 / 32 1 0.02) 18 ( /
0.94 / 32 0.898 0.94 / 32 1 0.94) 18 ( /
以年工作日为300天,每天开车24小时计,进 料量为: 进料液的平均摩尔数 M F 32 0.23 18 (1 0..23) 21.22kg / kmol
塔板结构尺寸确定 因塔径大于800mm,所以采取单溢流型分块式塔板 堰长 假设 则 据图可得, lw lw=(0.6-0.8)*D lw m lw/D Wd/D Af/AT AT ㎡ Wd m Af ㎡ τ >5s τ >5s (1.08-1.44) 1.4 0.777777778 0.19 0.13 2.5434 0.342 0.330642 47.5494361 47.03750803 11.10990396 10.06774099 4度为t(℃)
则相对挥发度 3、塔底 假设t(℃) α x3
99.54709655 则,
136.1200349 54.22336977 0.575134899 0.772636393 140.0940388 55.99923608 0.538984128 0.745210593 99.54709655 177.8501968 73.15164165 2.431253665 222.4577745
L V
kmol/h kmol/h
240.0242979 304.8846583
Ln 10.01325
塔顶物料平均千摩尔质量 MD kg/kmol 30.572 塔顶气相密度 ρ g kg/m³ 1.040315717 塔顶液相密度 ρ l kg/m³ 732.8311451 查的B32温度下甲醇的表面张力 σ N/m 0.028 精馏段上升与下降气体积流量 Vg m³/h 8959.716379 2.488810105 精馏段上升与下降液体积流量 Vl m³/h 10.01325187 假设板间距 HT mm 400 板上清液层高度 hl 50-100mm 60 则分离空间 HT-hl 0.34 气液动能参数 VL/Vg√ (ρ l/ρ g) 0.029661988 查得气体的负荷因子 C20 0.075 则气体的负荷因子校正 C m/s 0.080220778 则最大允许速率 umax m/s 2.127638165 取空塔速率为最大允许速率的 (0.6-0.8) 0.7 则空塔速率为 u m/s 1.489346715 则精馏段塔径 D m 1.586265138 则D可取 m 1.6 由表可知,当塔径取1.6m时,板间距可取400mm,因此假设的板间距可用。
精馏塔严格计算模块 radfrac 公式

精馏塔严格计算模块 radfrac 公式(最新版)目录一、精馏塔的严格计算模块 RadFrac 概述二、精馏塔的计算方法和公式三、精馏塔的适用范围和示例四、结论正文一、精馏塔的严格计算模块 RadFrac 概述精馏塔是一种常用的分离技术,广泛应用于化工、石油、医药等领域。
在精馏过程中,需要对塔内流体进行严格的计算,以确保分离效果达到预期。
RadFrac 是精馏塔严格计算模块的一种,可以对两相体系、三相体系、窄沸点和宽沸点物系以及液相表现为强非理想性的物系进行精确计算。
二、精馏塔的计算方法和公式精馏塔的计算方法主要包括物性数据库和计算模块两部分。
物性数据库包含了流体的热力学性质、相图和状态方程等数据,用于提供流体的基本特性。
计算模块则根据这些数据,运用精馏原理和数学模型进行计算。
精馏塔的计算公式主要包括以下几个方面:1.物料平衡:计算塔内各组分的摩尔流量和摩尔浓度。
2.热量平衡:计算塔内各组分的热量流入和流出,以及塔内热量分布。
3.动力学平衡:计算塔内各组分的速度和压力分布,以及液相和气相的流速。
4.相平衡:计算塔内各组分的相态变化,以及相图和状态方程。
三、精馏塔的适用范围和示例RadFrac 模块适用于各种精馏过程,包括普通精馏、吸收、汽提、萃取精馏、共沸精馏、反应精馏(包括平衡反应精馏、速率控制反应精馏、固定转化率反应精馏和电解质反应精馏)、三相(汽液液)精馏等。
下面以乙苯苯乙烯精馏塔为例,介绍 RadFrac 模块的应用。
进料条件:乙苯和苯乙烯的混合物,进料组成为乙苯 80%,苯乙烯 20%。
冷凝器形式:壳管式冷凝器。
冷凝器压力:0.1MPa。
再沸器压力:0.2MPa。
产品纯度要求:产品中乙苯纯度大于 99.5%。
根据以上条件,使用 RadFrac 模块进行严格计算,得到塔顶压力为0.05MPa,塔底压力为 0.01MPa。
通过调整塔内操作参数,可以实现乙苯和苯乙烯的分离。
四、结论精馏塔严格计算模块 RadFrac 是一种强大的工具,可以对各种精馏过程进行精确计算,为工程实践提供重要依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
平均温度:—117.02
2
本次设计的一部分是设计苯酐轻组分塔,塔型选用
F1浮阀塔,进料为两组分进
料连续型精馏。
苯酐为重组分,顺酐为轻组分,从塔顶蒸除去,所以该塔又称为 顺酐塔。
确定操作条件
顺酐为挥发组分, 进料: 所以根据第3章物料衡算得摩尔份率:
5.9072
XF --------- 0.0794
74.4323
X D =
X w =
塔顶:
塔底: 该设计根据工厂实际经验及相关文献给出实际回流比 R=2 (R=),及以下操
作条件:
塔顶压力:; 塔底压力:; 塔顶温度: 塔底温度: 进料温度: 塔板效率: C ; C ; 225 r ;
E T =
基础数据整理
(1 )精馏段:
图5-1精馏段物流图
225
171.01 r
1
3
3
75 19 3
3
平均压力:2
30.0
10
10.
10
右
10.0
10
15.
03
10 pa
E 时 苯酐的密度为1455kg/m 3 (2)提馏段:
平均温度:1
237.02 225
231.01 E
2
入料压力:30 10 互」9
14.9k Pa
75
物料
质量流量 kg/h 分子量kg/kmol
摩尔流量kmol/h
内回流
98
V o =34.788O 22.4 779.2512Nm 3
/h
标准状况下的体积:
根据第3章物料衡算,列出精馏段物料流率表如下: 表5-1
精馏段物料流率
操作状况下的体积:
V 1=779.2512 273 171.01
273
0.101 106
15.03 103
0.101 106
气体负荷: 气体密度:
液体负荷: =Nm 3/h
1103.2112 Cd 3 Vn = 0.3064
m 3
/s
3600
3409.2240 c cccc . , 3 n
3.0903 kg/m 3
1103.2112
3409.2240 3
Ln= ----------- 0.9470 m 3
/s
1
由于进料中顺酐的摩尔分率很小, 里采用
假设全回流计算理论最少塔板数
无法用常规的作图法求解塔板数。
所以这
N min ,下面应用芬斯克方程式有:
ig N min 1 — X P 1-x w
1-X D X w
Iga m
平均压力:-14.9 30.0
2
根据第3章物料衡算列出提馏段内回流如下图: 表5-2 提
标准状况下的体积:V 0
22.2056 22.4 497.4054Nm 3
/h
操作状态下的体积:V
1 497.
4054 27
冷严
0.101 106
22.5 103
0.101 106
=Nm 3
/h
气体负荷:V m =
751.
0162
0.2086 m 3
/s
3600 8788.5420 , , 3 m = ---------- 11.7022 kg/m 3
751.0162 气体密度
查得进料状态顺酐与苯酐混合物在温度
1546kg/m 3。
塔底含顺酐很少,可近似为纯苯酐, 酐的密度为1530kg/m 3。
液体的平均密度:
225r 下,含顺酐(wt )%,密度 在塔顶的温度及压力状态下苯
1530 1546 “ , 3 、如
*
----------- 1538kg/m ,液体 2
负荷 L m 8788.5420 0.80 10 3m 3
/s 1538 3600 塔板数的确定
查得全塔平均相对挥发度a m =, 所以全塔的最少理论板层数:
及精馏段平均响度挥发度
I
g
N
min
0.8502 1 0.002
1 0.850
2 0.002 , ------------------- 1
Ig3.7
精馏段最少理论板层数:
N 1
X D 1 X F
Ig ---- -----
1 X D X F
lga
. 0.8502 1 0.0794 Ig ------- ---------- 9 1 0.8502 0.0794 ,
1 lg4.5
塔径的计算及板间距离的确定
由于浮阀塔塔板效率高,生产能力大, 且结构简单,塔的造价低,所以本次 设计采用的是F1型浮阀塔,设全塔选用标准结构,板间距 H T =,且因为该顺酐 塔为减压塔,所以设计溢流堰高 h c = 5.4.1精馏段 (1)精馏段功能参数:5(」)% =
V
n v
塔板间的有效高度H o =Heh c = 由史密斯图[13
查得:C 20
0.041,
(2)塔顶温度CT 顺=m ,苯酐=m ,
进料层温度225 C 下 顺=m ,苯酐=m
由: R R min 2 1.5
2 1 对应吉利兰图查得: N min
N "~F =
N 5
」0.48
2
N min
N 2 N
解得全塔理论板数:N= N 2 1 7
对精馏段: 匚丄丄
N 2 2 解得精馏段理论塔板数: 所以提馏段理论塔板数: 所以得到实际板层数: 所以对全塔: 0.48
N 2= N 3= 全塔实际板层数: 实际进料板:
精馏段: 提馏段:
N 总=25 N T =12
N 精== N 提==
所以
1
= x +x =m
所以2 = x +x =m
所以精馏段液相平均表面张力
20.15 19.21
(3)计算出操作物系的负荷因子C=C20孟0.2
=
0.041
0.2
空0.040
20
所以最大空塔气速U max C |1 一V
\ V
0Q40代肿0.86m/s 设计气速:取安全系数为,则U= U max
V n I__0.3064 [
----------
D=V0.785U V0.785 0.607 0.830 m
5.4.2提馏段
(1)精馏段功能参数为:5
V
m
塔板间有效高度:H o=
由史密斯图得负荷系数: C
20
⑵塔底温度C下顺=m, 苯酐=m
所以3 = x +X
=m
所以提馏段液相平均表面张力16.27 19.21 ---------- =m
(3)计算出操作物系的负荷因子C C20 20 2
0.2
0.051
0.2
17.74
20
所以最大空塔气速:U max l V
max 0.0
1538
仇
7022
0.54m/s
V 11.7022
设计气速取安全系数为,则U= U max
V
V 0.785U J O.
2086
0.888m V 0.785 0.378
对全塔,取圆整
塔截面积
D=900mm
塔高的计算
溢流堰长计算
上面计算得出的塔径为900mm ,远小于2m ,所以溢流方式采用单溢流。
堰 长l w 一般根据
经验确定,对于此次塔设备的弓形降液管,堰长:
l w 0.7D 0.7 900 630mm
塔体厚度的计算
本次设计中精馏操作为减压操作,塔体材料选用Q235-A ,该材料的许用应力: t
86M
Pa ,厚度附加量
-
O.
11 900
1.414mm
p c 2 86 0.85 0.11
塔体有效厚度:
塔设备计算结果列表
5-3塔设备计算结果列表
A T
4D
2 o.785 o.90。
2 0
.
639m 2
塔体内液柱高度[16]
: h 0.04 N 总 0.04 25
0.10m
心
液柱静压力: P H
10 6
gh 10 6
1538 9.8 0.1
0.00147MPa 0.05 p (可
忽略)
计算压力:P c P H
P 0.11M Pa
塔体设计厚度: 3.1mm
塔体名义厚度: 4mm
精馏段有效高度:乙 (N 1 -1)H T 11 1 0.35 3.5m 提馏段有效高度:J N 2 -1 H T 14 1 0.35 4.55m
在进料板上方开一人孔,
其高度为
所以精馏塔的有效高度为Z 乙 J 0.8
8.05m 2mm
塔体计算厚度:
P c D i
2mm
项目。