西安交通大学传热学总结教材

合集下载

传热学第七版知识点总结

传热学第七版知识点总结

传热学第七版知识点总结●绪论●热传递的基本方式●导热(热传导)●产生条件●有温差●有接触●导热量计算式●重要的物理量Rt—热阻●热对流●牛顿冷却公式●h—表面传热系数●Rh—既1➗h—单位表面积上的对流传热热阻●热辐射●斯蒂芬—玻尔茨曼定律●黑体辐射力Eb●斯蒂芬—玻尔茨曼常量(5678)●实际物体表面发射率(黑度)●传热过程●k为传热系数p5●第一章:导热理论基础●基本概念●温度场●t=f(x,y,z,t)●稳态导热与非稳态导热●等温面与等温线(类比等高线)●温度梯度●方向为法线●gradt●指向温度增加的方向●热流(密度)矢量●直角坐标系●圆柱坐标系●圆球坐标系●傅里叶定律●适用条件:各向同性物体●公式见p12●热导率●注意多孔材料的导温系数●导热微分方程式●微元体的热平衡●热扩散率●方程简化问题p19●有无穷多个解●导热过程的单值性条件●几何条件●物理条件●导热过程的热物性参数●时间条件●也叫初始条件●边界条件●第一类边界条件●已知温度分布●第二类边界条件●已知热分布●第三类边界条件●已知tf和h●第二章:稳态导热●通过平壁的导热●第一类边界条件●温度只沿厚度发生变化,H和W远大于壁厚●第三类边界条件●已知tf1和2,h1和2●通过复合平壁的导热●具有内热源的平壁导热●通过圆筒壁的导热●公式见p37●掌握计算公式及传热过程●掌握临界热绝缘直径dc●通过肋壁的导热●直肋●牛顿冷却公式●环肋●肋片效率●通过接触面的导热●了解接触热阻Rc●二维稳态导热●了解简化计算方法●形状因子S●第三章:非稳态导热●非稳态导热过程的类型和特点●了解过程●了解变化阶段●无限大平壁的瞬态导热●加热或冷却过程的分析解法●表达式及物理意义●傅立叶数Fo●毕渥准则Bi●集总参数法●应用条件●见课本p69●物理意义●见课本p70●半无限大物体的瞬态导热●其他形状物体的瞬态导热●周期性非稳态导热●第四章:导热数值解法基础●建立离散方程的方法●有限差分法●一阶截差公式p91●控制容积法●根据傅立叶定律表示导热量●稳态导热的数值计算●节点方程的建立●热平衡法●勿忽略边界节点●非稳态导热的数值计算●显式差分●勿忽略稳定性要求●隐式差分●第五章:对流传热分析●对流传热概述●流动的起因和状态●起因●自然对流●受迫对流●流速快强度大h高●状态●层流●紊流●采用较多●流体的热物理性质●热物性●比热容●热导率●液体大于气体●密度●黏度●大了不利于对流传热●液体●温度越高黏度越低●气体●温度越高黏度越大●定性温度●流体温度●主流温度●管道进出口平均温度●容积平均温度●壁表面温度●流体温度与壁面温度的算数平均值●流体的相变●相变传热●传热表面几何因素●壁面形状●长度●定型长度l●粗糙度●流体的相对位置●外部流动●外掠平板●外掠圆管及管束●内部流动●管内流动●槽内流动●对流传热微分方程组●对流传热过程微分方程式●见课本p116公式5-2●第一类边界条件●已知壁温●第二类边界条件●已知热流密度q●连续性方程●质量流量M的概念●p117公式5-3●二维常物性不可压缩流体稳态流动连续性方程●动量守恒微分方程式●动量守恒方程式●p118公式5-4●N- S方程●注意各项的含义●能量守恒微分方程式●四种热量●导热量●热对流传递的能量●表面切向应力对微元体做功的热(耗散热)●内热源产生的热●方程式p119公式5-5●边界层对流传热微分方程组●流动边界层●层流边界层●紊流边界层●层流底层(黏性底层)●会画分布规律●热边界层●也称温度边界层●会画分布规律●数量级分析与边界层微分方程●普朗特数Pr的概念●外掠平板层流传热边界层微分方程式分析解简述●熟记雷诺准则●努谢尔特数Nu含义●动量传递和热量传递的类比●两传类比见p132内容较多●动量传递●掌握雷诺类比率●热量传递●掌握柯尔朋类比率●相似理论基础●三个相似原理●同类物理现象●同名的已定特征数相等●单值性条件相似●初始条件●边界条件●几何条件●物理条件●对流传热过程的数值求解方法简介p145 ●第六章:单相流体对流传热●会用准则关联式计算h●p162例题●确定定性温度,定型尺寸●查物性参数计算Re●附录2●选择准则关联式●p160公式6-4●第七章:凝结与沸腾传热●凝结传热●形成和传热模式的不同●珠状凝结●膜状凝结●了解影响因素●了解关联式的应用●沸腾传热●了解换热机理●掌握大空间沸腾曲线●影响因素●计算方法●热管●了解工作原理●第八章:热辐射的基本定律●基本概念●理解●热辐射的本质●热辐射的特点●掌握概念●黑体●灰体●漫射体●发射率●吸收率●热辐射的基本定律●重点掌握●维恩位移定律●斯蒂芬-玻尔兹曼定律●基尔霍夫定律●漫灰表面发射率等于吸收率●第九章:辐射传热计算●任意两黑表面之间的辐射换热量●角系数●用代数法进行计算●空间热阻●封闭空腔法●三个黑表面之间的辐射换热●掌握热阻网格图●灰表面间●辐射换热●基尔霍夫定律计算●掌握三个灰表面●有效辐射●掌握概念●表面热阻●绝热面重辐射面●遮热板工作原理及应用●气体辐射特点●第十章:传热和换热器●通过肋壁的传热●了解计算方法●复合传热时的传热计算●传热的强化和削弱●了解措施●换热器的形式和基本构造●了解分类●平均温度差●掌握LMTD方法●换热器计算●对数平均温差法●掌握传热单元数法p305 ●换热器性能评价简述。

“传热学”本科生教材40年的变迁及其对我们的启示_西交大陶院士

“传热学”本科生教材40年的变迁及其对我们的启示_西交大陶院士
因为找不到应用场合而没有得到重视,60年代初开始被应用
于航天器的温度控制得到蓬勃的发展。目前热管的内容几乎是
任何一本近代传热学教材都要介绍的,有的教材中则连热管的 声速极限、携带极限和沸腾极限都作了介绍。
图6 热管冷却卫星壳体的效果
图7 航空发动机冷却系统
图8 叶片冷却示意图
2.5 全球日益严重的环境问题对传热学教学内容的影 响
2
笔者所能得到的这一时期内出版的国内外的教材 有34种,大致可分为三个时间段: 前期教材—20世纪60年代左右的教材:
[1] Miheev M A. Fundamentals of heat transfer (In Russian) . 3rd edition.
1956.
[2] 杨世铭,陈大燮编,传热学,北京:中国工业出版社,1961 [3] Grober H, Erk S, Grigull U. Fundamentals of heat transfer. 1961 [4] Kutateladse S S. Basic theory of heat transfer (In Russian). 1962 [5] Hsu S T. Engineering heat transfer. 1963
3
2.1 核能工程的发展促进了多相流传热研究的蓬勃 兴起
气液两相流的研究在20世纪50-60年代核反应堆开始较 大规模地应用于民用动力工程事业时进入蓬勃发展的时期 (为了保证核反应堆的合理设计以及安全运行)。核能工业 以及大型火电站的发展,使传热学中关于管内沸腾的内容得 到更多的重视。在早期的传热学教材中虽然已经引入了管内 沸腾的概念,但没有介绍流型以及传热特性如何随着流型而 变化的情况。在本科生的传热学教材中从热交换的机理出发, 阐述随着流型的不同而引起传热特性的变化已是近期大多数 传热学教材所普遍采用的。象图2这样的图示在早期的传热 学教材中是不可能有的。

数值传热学3

数值传热学3

故得
u

n i 1
2x
n i 1
2 u ( ) i ,n O ( x ) x
假设源项不存在截断误差,则: 1-D模型方程的FTCS格式的截断误差即为:
O(t, x )
2
截断误差的数学含义是: 存在着两个正的常数,K1,K2,当 t 0, x 0
2/61
3.1 离散方程的相容性、收敛性与稳定性 3.1.1 截断误差及相容性 3.1.2 离散误差与收敛性 3.1.3 舍入误差与初值问题的稳定性 3.1.4 数值特性分析举例
3/61
3.1 离散方程的相容性、收敛性与稳定性 3.1.1 截断误差及相容性(consistency)
1. 离散方程的精确解
18/61
at r , 离散方程可化为 记 2 x
n n Ti n1 Ti n (1 2r ) r (Ti T 1 i 1 ), i 1, 2,....( I 1)
对确定的时层n,上式可展开写出为
i 1, i 2, i 3,
T T T
n 1 1 n 1 2 n 1 3
n1 n T AT g 0 0 T F
设包含误差的解为 T , 则有
(b)-(a)
n1 n T AT g (b) 0 T F n1 n1 n n T T A(T T ) 0 0 0 T T
d 2 d 2 0 2 dx dx (0) 0; (4) 1
d 2 d 解:采用有限差分法,用差分式代替 dx 2 , dx 。
采用二阶截差时,可对节点2,3,4建立离散方程; 另外可对节点3采用四阶截差,对节点2,4二阶截 差。

传热学知识点总结

传热学知识点总结

传热学知识点总结传热学,是研究热量传递规律的科学,是研究由温差引起的热能传递规律的科学。

大约在上世纪30年代,传热学形成了独立的学科。

以下是我整理的传热学知识点总结,欢迎阅读!第一章§1-1 “三个W”§1-2 热量传递的三种基本方式§1-3 传热过程和传热系数要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。

作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。

本章重点:1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法2.热量传递的三种基本方式(1).导热:依靠微观粒子的热运动而产生的热量传递。

传热学重点研究的是在宏观温差作用下所发生的热量传递。

傅立叶导热公式:(2).对流换热:当流体流过物体表面时所发生的热量传递过程。

牛顿冷却公式:(3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。

由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。

黑体热辐射公式:实际物体热辐射:3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。

最简单的传热过程由三个环节串联组成。

4.传热学研究的基础傅立叶定律能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律四次方定律本章难点1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。

2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。

思考题:1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。

为什么?2.试分析室内暖气片的散热过程。

3.冬天住在新建的居民楼比住旧楼房感觉更冷。

(完整word)《传热学》教学大纲

(完整word)《传热学》教学大纲

《传热学》教学大纲
一、课程基本信息
二、课程教学目标
1.通过本课程的学习使学生了解传热学的发展历史及应用范围,在热能与动力工程领域的应用现状及前景;
2.获得热量传递规律的基础知识,具备分析工程传热问题的基本能力.
三、理论教学内容与要求
四、实验教学内容与要求
五、考核方式
本课程为考试课。

学生课程总评成绩由平时成绩(20%)、实验成绩(10%)和课程考试成绩(70%)三部分构成。

平时成绩由出勤、作业和课堂表现组成.课程考试采取闭卷笔试。

实验成绩不及格者,不允许参加课程考试.。

[政史地]西安交大热工基础课件

[政史地]西安交大热工基础课件

与传热方程式相对应,可以得到在该传热过程中传热系数 的计算式。
7
第七页,共61页。
热工基础
Fundamentals of Thermodynamics and Heat Transfer
k
1
1
1
h1 h2
h1 h2
tf1
tf2
说明:(1)h1和h2为复合换热表面传热系数 (2)两侧面积相等
8
kAtm
注意
36
第三十六页,共61页。
热工基础
Fundamentals of Thermodynamics and Heat Transfer
1 简化模型
以顺流情况为例
假设:
• 冷热流体的质量流量qm2、qm1以及比热容c2、c1
是常数; • 传热系数是常数; • 换热器无散热损失; • 换热面沿流动方向的导热量可以忽略不计。
Fundamentals of Thermodynamics and Heat Transfer
d qm1c1 dt1 d qm2c2 dt 2
dt dt1 dt2
dt1
1 qm1c1
d
dt 2
1 qm2c2
d
dt
1 qmhch
1 qmccc
d
d
d k dA t
39
第三十九页,共61页。
热工基础
Fundamentals of Thermodynamics and Heat Transfer
dt d k dA t
dt kdA
t
tx dt k Ax dA
t t
0
ln
tx t
k Ax
40
第四十页,共61页。

计算传热学-第1_2讲

计算传热学-第1_2讲

j
1 r
()
kz
z
()
Cylindrica l
ir
r
()
j
1 r
() k
1
r sin
()
Spherical
Coordinate Systems
z
o
x
x-y-z
z
z
yx
roΒιβλιοθήκη y xro
y
r--z
r--
2.1.1热传导
Operators
div (R) x (Rx ) y (Ry ) z (Rz ) Cartesian
格式进行计算,并与分析解比较(计算时节点数目可取为 10 ~ 20); 3) 改变参数,譬如取=10,重复 2)中的计算;
分析 2)和 3)中得到的结果,对各种格式进行比较。
计算传热学习题之四
直角坐标系中的二维稳态导热问题。如图所示,一截面为 LL 的正方形长柱,它的
左边界和下边界维持均匀恒定的温度 T1,上边界和右边界维持均匀恒定的温度 T2,材料 的导热系数为 k(T)。
多种商业软件 网上资源
Black box program skill easy reading
分类
有限差分法( Finite difference method)
用差商与代替导数 经典、成熟 数学理论基础明确 主导方法
有限容积法(Finite volume method)
控制容积法(Control volume method) 基本上属于有限差分法的范畴
分类
有限单元法(Finite element method)
将求解区域分成若干个小的单元(element) 设定待求变量在单元上的分布函数 适应性强,适用于复杂的求解区域 一度有取代有限差分法的趋势 程序技巧要求告 数学基础不如有限差分法明确

传热学教材 DOC 全套

传热学教材 DOC 全套

第一章绪论1-1 传热学概述一、什么是传热学传热学是研究热量传递规律的科学。

(热量传递由什么引起的)基于热力学的定义,热是一种传递中的能量。

传递中的能量不外乎是处于无序状态的热和有序状态的功,他们的传递过程常常发生在能量系统处于不平衡的状态下,而系统的状态是可以用其状态参数来确定的。

热力学的基本状态参数是压力p、温度T以及比容积v。

对于一个不可压缩的热力学系统而言,温度的高低就反映了系统能量状态的高低和单位质量系统内热能(或称热力学能,简称内能)的多少。

热力学第二定律告诉我们,能量总是自发地从高能级状态向低能级状态传递和迁移。

因此,热的传递和迁移就会发生在热系统的高内能区域和低内能区域之间,也就是高温区域和低温区域之间。

对于自然界的物体和系统,将其视为热力学系统时,他们常常是处于不平衡的能量状态之下,各部位存在着压力差和温度差,因而功和热的传递是一种非常普遍的自然现象。

因此,凡是有温度差的地方就有热量传递。

热量传递是自然界和工程领域中极普遍的现象。

我们学习传热学就是要掌握各种热量传递现象的规律,从而为设计满足一定生产工艺要求的换热设备,提高现有换热设备的操作和管理水平,或者对一定的热过程实现温度场的控制打下理论基础。

(课程安排)在本课程中,我们将首先简要的介绍传热学的主要研究内容,给出导热、对流与辐射这三种热量传递基本方式的概念及所传递热量的计算公式。

然后分别讨论导热、对流换热和辐射换热的基本规律,最后,在此基础上,把上述知识综合起来,介绍传热过程及换热设备的计算方法。

二、传热学的重要性几乎在每个工程技术部门中都会遇到传热问题。

(例子)例如建筑物的供热与降温。

自然界(沙尘暴)。

三、传热学与工程热力学在研究方法上的异同工程热力学与传热学都是研究热现象的,都以热能的传递与转换过程中的基本规律作为研究对象。

但是,工程热力学与传热学从不同的角度来研究热现象,因此在研究内容与方法上有很大区别。

1. 工程热力学着重研究的是在能量转换与传递过程中各种形式的能量在数量方面的关系以热能在质量方面的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档