混凝土的强度裂缝及刚度理论
混凝土裂缝成因及分类概述

1 引言混凝土是目前用量最大的一种建筑材料,广泛应用于工业与民用建筑、农林与城市建设、水利与海港工程。
然而,许多混凝土结构在建设与使用过程中出现了不同程度、不同形式的裂缝。
这不仅影响建筑物的外观,更危及建筑物的正常使用和结构的耐久性。
因此,裂缝问题倍受人们关注。
近年来,随着预拌混凝土的大力推广应用以及结构形式日趋大型化、复杂化,使得这一问题变得更为突出。
然而,混凝土结构的裂缝是一个相当普遍的现象,大量工程实践以及近代科学关于混凝土强度的细观研究都表明结构物的裂缝是不可避免的,它是材料的一种特性。
因此,科学地对待裂缝问题是在对裂缝进行分类、研究的基础上,采取有效的措施,将裂缝的有害程度控制在允许的范围内。
本文将就混凝土结构中常见裂缝的成因、控制措施以及修补方法作一些浅要分析。
2 混凝土裂缝的分类2·1 按裂缝的成因划分根据混凝土裂缝产生的原因,可分为结构性裂缝与非结构性裂缝两大类。
(1)结构性裂缝由各种外荷载引起的裂缝,也称荷载裂缝。
它包括由外荷载的直接应力引起的裂缝和在外荷载作用下结构次应力引起的裂缝。
(2)非结构性裂缝由各种变形变化引起的裂缝。
它包括温差,干缩湿胀和不均匀沉降等因素引起的裂缝。
这类裂缝是在结构的变形受到限制时引起的内应力造成的。
从国内外的研究资料以及大量的工程实践看,非结构性裂缝在工程中占了绝大多数,约为80%,其中以收缩裂缝为主导[1~5]。
2·2 按裂缝产生的时间划分(1)施工期间出现的裂缝[2,4] 包括塑性收缩裂缝、沉降收缩裂缝、干燥收缩裂缝、自身收缩裂缝、温度裂缝、施工操作不当出现的裂缝、早期冻胀作用引起的裂缝以及一些不规则裂缝。
(2)使用期间出现的裂缝[4] 包括钢筋锈蚀膨胀产生的裂缝、盐碱类介质及酸性侵蚀气液引起的裂缝、冻融循环造成的裂缝、碱骨料反应引起的裂缝以及循环动荷载作用下损伤累积引起的裂缝等。
2·3 按裂缝的形状划分裂缝按形状可分为[4]:①纵向裂缝,平行于构件底面,顺筋分布,主要由钢筋锈蚀作用引起:②横向裂缝,垂直于构件底面,主要由荷载作用、温差作用引起;③剪切裂缝,由于竖向荷载或震动位移引起;④斜向裂缝、八字形或倒八字形裂缝,常见于墙体混凝土梁,主要因地基的不均匀沉降以及温差作用引起;⑤X形裂缝,常见于框架梁、柱的端头以及墙面上,由于瞬间的撞击作用或者地震荷载作用引起;⑥各种不规则裂缝,如反复冻融或火灾等引起的裂缝。
同济大学土木工程 第九章 混凝土结构的使用性能—开裂和挠度

第九章混凝土结构的使用性能—开裂和挠度一、概述二、裂缝的类型三、构件的开裂内力四、裂缝宽度的计算理论五、裂缝的控制六、受弯构件的变形与刚度结构构件的可靠性具有足够的承载力和变形能力安全性:适用性:耐久性:在使用荷载下不产生过大的裂缝和变形在一定时期内维持其安全性和适用性的能力极限状态设计理论承载能力极限状态:正常使用极限状态:混凝土结构的使用性能包括裂缝、挠度、振动、疲劳等裂缝控制、变形控制和振动控制混凝土结构的极限荷载下的强度产生裂缝的原因:在混凝土结构中裂缝通常是由拉应力引起的。
因混凝土的极限拉伸应变εt u 随混凝土品种、配合比、添加剂、养护条件、加载速度、截面上的应力梯度等不同会发生变化。
严格地说,只有当混凝土的拉伸应变εt 达到某处混凝土的极限拉应变εt u 时才会出现裂缝。
1. 受力裂缝:拉、弯、剪、扭、粘结等引起的裂缝斜裂缝!!垂直裂缝!目前,只有拉、弯状态下混凝土横向裂缝宽度的计算理论比较成熟钢筋混凝土轴心受拉构件,贯穿整个截面宽度的裂缝为“主裂缝”;用变形钢筋钢筋配筋的构件,在主裂缝之间还出现有位于钢筋附近的短的“次裂缝”,有人称之为“粘结裂缝”。
当钢筋应力接近屈服时,将出现沿钢筋的纵向裂缝。
在梁中,主裂缝首先从受拉区边缘开始向中和轴发展,同样在主裂缝之间可以看到短的次裂缝。
梁高较大的T形梁或工字形梁中,钢筋附近的次裂缝可发展成与主裂缝相交的“枝状裂缝”(图c)。
在厚度较大的单向板或墙中(图d所示为板底面的裂缝)同样会产生这种“枝状裂缝”。
枝状裂缝在梁腹或钢筋间距中间处的裂缝宽度要比钢筋处的裂缝宽度大得多。
承受剪力和扭矩的构件,将出现垂直于主拉应力方向的裂缝。
钢筋混凝土结构在轴压力或压应力作用下也可能产生裂缝,例如梁受压区顶部的水平裂缝、薄腹梁端部连接集中荷载和支座的斜向受压裂缝、螺旋箍筋柱沿箍筋外沿的纵向裂缝、局部承压和预应力筋锚固端的局部裂缝等。
发生受压裂缝时,混凝土的应变值一般都超过了单轴受压峰值应变,临近破坏,使用阶段中应予避免。
钢筋混凝土构件变形、裂缝和耐久性

,此处 为换算截面对其重心轴的惯性矩, 为混
凝土的弹性模量。
图9.2 适筋梁
图9.3 抗弯刚度沿构件 跨度的变化
关系曲线图 9.2 变 形 验 算
9.2 变 形 验 算
裂缝出现以后(第Ⅱ阶段):
裂缝出现以后,
曲线发生了明显的转折,出现了第一个转折点
()
。配筋率
越低的构件,其转折越明显。试验表明,尺寸和材料
202X
钢筋混凝土构件变形、 裂缝和耐久性
单击此处添加正文具体内容
教学提示:本章介绍钢筋混凝土构件正常使用极限状态验算的主要内容。构件 的最大挠度根据截面抗弯刚度,用结构力学的方法计算;钢筋混凝土受弯构件 截面的抗弯刚度不为常数,考虑到荷载作用时间的影响,有短期刚度Bs和长期 刚度B的区别,且二者随弯矩的增加、配筋率的降低而减小。最大裂缝宽度的 计算公式是在平均裂缝间距和平均裂缝宽度理论计算值的基础上,根据试验资 料统计求得并乘以“扩大系数”后加以确定;该式为半经验性理论公式。混凝 土结构的耐久性应根据环境类别和设计使用年限进行设计。
Mk
Mkh0式中
sm cm
1
○ 9.2 变 形 验 算
根据材料力学中刚 度的计算公式和式 (9-3),有 ○ ——荷按载效应标 准组合计算的弯矩 值。
2
裂缝截面处的应变 和 在荷载效应的标准组合下,裂 缝截面处纵向受拉钢筋重心处 拉应变 和受压区边缘混凝土的压应变 按下式计算:
9.2 变 形 验 算
04.
03.
——受压翼缘的加强 系数,。
——裂缝截面处受压 区高度系数;
——裂缝截面处内力 臂长度系数;
——压应力图形丰满 程度系数;
9.2 变 形 验 算
3) 平均应变 s m 和c m
钢筋混凝土构件的变形裂缝及混凝土结构的耐久性

二、平均裂缝间距
理论分析表明Lm和钢筋直径 与有效配筋率比值有关
试验分析表明Lm还与混凝土 保护层厚度有关
wm ls lc smlm cmlm
wm 三 s、m (1平 均csmm )裂lm 缝 宽c s度mlm
sm
sk
sk
Es
wm
c
sk
Es
lm
一般构件: c 0.85
四、最大裂缝宽度
(
' f
0 )h0
2、ck裂缝截(面'f应M变k0 )bh02
' f
(b'f b)h'f bh0
sm cm
sm
sk
sk
Es
Mk
Ash0 Es
3、裂缝截面平均应变 cm
和
cck
c
ck Ec
c
(
' f
Mk
0 )bh02Ec
(
cm 4、bMh短02kE期c 刚度Bs表达E式s A刚shE0度2 计算公式
外在环境:温度、湿度腐 蚀性介质等。
技术措 施和构 造要求
弹塑性材料: B M
sm cm
h0
受弯构件的短期刚度
Bs
Bs
Mk
Mk
sm cm
M k h0
sm cm
h0
Mcr
第Ⅰ阶段
弹性材料: EI M
弹塑性材料: B M
sm cm
h0
二、受弯构件的短期刚度Bs
Bs
Mk
Mk
sm cm
M k h0
sm cm
1、截面的h0平均曲率
受压区混凝土的面积 sk
ck
和
sk
混凝土结构裂缝设计要求

混凝土结构裂缝设计要求混凝土结构裂缝设计要求主要是为了确保混凝土结构在使用寿命内能够满足安全性和使用性能的要求。
混凝土结构中的裂缝是常见的缺陷,裂缝的产生主要是因为混凝土的收缩和温度变化。
裂缝的存在对结构的强度和稳定性都会造成影响,因此,在混凝土结构的设计中,需要考虑裂缝的控制和防止。
1.控制裂缝的宽度:混凝土结构中的裂缝宽度对结构的安全性和使用寿命有重要影响。
通常,裂缝的宽度应控制在一定范围内,以保证结构的稳定性和耐久性。
裂缝宽度的控制通常采用两种方式,一是通过控制混凝土的收缩和膨胀形变,二是通过使用合适的裂缝宽度控制剂。
2.控制裂缝的分布:混凝土结构中的裂缝分布需要合理控制,以确保裂缝的集中分布,避免出现长裂缝和大面积裂缝。
裂缝的分布控制通常通过合理安排结构中的梁柱布置、做好疏解缝和合理设置伸缩缝等方式来实现。
3.考虑温度变化引起的裂缝:温度变化是裂缝产生的主要原因之一、在混凝土结构设计中,需要合理考虑结构在温度变化下的热膨胀和收缩特性,采取一定的措施来减小温度变化引起的裂缝,例如设置温度伸缩缝、使用合适的温度控制剂等。
4.考虑混凝土收缩引起的裂缝:混凝土的收缩变形是裂缝产生的另一个主要原因。
为了减小收缩引起的裂缝,可以采取措施控制混凝土的收缩变形。
例如,可以在混凝土中添加适量的缩短剂和控制剂,以减小混凝土的收缩变形。
5.考虑荷载引起的裂缝:荷载是导致结构产生应力和变形的主要原因,也会引起混凝土的开裂。
为了减小荷载引起的裂缝,需要合理设计结构的强度和刚度,增加结构的抗弯和抗剪强度,保证结构在正常荷载下不会产生过大的应力和变形。
综上所述,混凝土结构裂缝设计的要求主要包括控制裂缝宽度和分布、考虑温度和收缩引起的裂缝、以及考虑荷载引起的裂缝。
通过合理的设计和施工措施,可以有效地减少裂缝的产生和发展,提高混凝土结构的使用寿命和安全性。
混凝土受拉裂缝与刚度

裂缝表面是一个规则的曲面。裂缝宽度沿截面发生显著变化,在钢 筋周界处的宽度最小,构件表面的裂缝宽度最大。这样粘结-滑移 法假设裂缝两侧为平行的平面及裂缝宽度沿截面宽度等宽不符。 ② 钢筋周界处的裂缝宽度很小,表面钢筋和混凝土的相对滑移很小。 ③ 构件的受拉裂缝,除了表面上垂直与钢筋轴线、间距和宽度都大的 裂缝外,还有自钢筋表面横肋处向外延伸的内部裂缝。 ④ 钢筋周围混凝土的变形状况复杂。
式中h得取值为 400 h 1600 。
(0.7
120 ) m h
钢筋混凝土梁,受拉区临开裂时的应变值很小,压区应力接近于 三角形,拉区改用名义弯曲抗拉强度 f t , f 后,可以用换算截面法计算开 裂弯矩。梁内的受拉和受压钢筋,按弹性模量比 n Es / Eo 换算成等效 ' 面积 nAs 和 nAs ,看作均质弹性材料计算换算截面面积 Ao 、中和轴位置 和受压区高度x,及惯性矩 Io 和受拉边缘的截面抵抗矩 Wo Io /(h x) 等。 在截面内力作用下,受拉边缘混凝土的应力为:
1.钢筋锈蚀,降低结构的耐久性
混凝土开裂使构件中的局部钢筋直接与周围介质接触,对于露天结 构和处在潮湿环境,甚至含酸、氯介质的侵蚀环境中,钢筋表层将逐渐 氧化而发生锈蚀,并往内部发展。钢筋锈蚀物比原体积增大,很易将周 围混凝土保护层涨裂,形成纵向裂缝,甚至表层脱落,使钢筋加速锈蚀。 钢筋的受力面积因锈蚀而逐渐减小,纵向裂缝破坏了钢筋和混凝土的粘 结力,都使构件的承载力减小,影响结构的安全度。
最大拉应力值为
的平衡方程: 1
2
f t 和压区三角形最大压应力为
bx ( x 3 ) 2 f t b(h x ) f t hx 4
x 2 f t ,建立水平力 hx
混凝土裂缝的判定及处理依据规范

混凝土裂缝的判定及处理依据规范1、GB50204-2015混凝土结构工程施工质量验收规范2、混凝土结构设计规范GB50010-20103、GB50367-2013混凝土结构加固设计规范4、混凝土结构工程施工规范 GB50666-2011混凝土裂缝及其修复混凝土裂缝是混凝土结构的主要病害之一 , 是一个相当普遍的技术问题, 工程的破坏与倒塌, 地下结构的渗漏, 都与混凝土结构裂缝发展有关。
混凝土结构裂缝会对混凝土结构产生以下主要影响: 钢筋锈蚀, 降低结构的耐久性; 降低结构的抗渗性, 甚至造成渗漏;降低结构的刚度, 增大变形; 加快混凝土结构碳化剥落, 降低结构抗疲劳能力; 混凝土结构冻融破坏; 裂缝的显现发展, 使人在心理上产生不安全感。
混凝土裂缝类型及形成原因一、结构性裂缝二、非结构性裂缝:塑性收缩裂缝干缩裂缝温度裂缝沉降裂缝化学反应引起裂缝结构性裂缝在正常荷载条件下, 由于结构承载力不够, 混凝土结构出现裂缝, 这种裂缝方向一般都与结构的最大拉应力方向垂直。
( 1) 混凝土强度不够引起的开裂由于设计、施工等原因, 或者结构荷载增加, 混凝土结构强度不能满足使用要求, 造成混凝土结构出现裂缝。
( 2) 结构刚度不够引起的裂缝混凝土结构刚度低, 变形量大, 结构的过大变形, 必然产生相对应的裂缝。
影响混凝土结构刚度的因素很多, 其中混凝土结构的截面尺寸对结构刚度影响最大。
( 3) 配筋率低引起的裂缝一般的受拉钢筋混凝土结构, 在拉应力作用下, 混凝土首先开裂退出工作, 钢筋承担全部拉力, 当混凝土结构配筋率低时, 因抗拉力不够, 结构变形增大, 加剧混凝土结构开裂。
( 4) 钢筋锚固长度不够引起开裂受拉筋必须有足够的锚固长度, 否则粘接力不够,产生钢筋滑移裂缝。
( 5) 预应力张拉引起的裂缝在混凝土结构施工完后, 进行后张拉施工, 由于施工顺序不对, 在混凝土结构内部产生附加弯矩, 造成结构出现裂缝。
混凝土的裂缝与刚度理论

f sm lcr
为两相临裂缝间 钢筋的平均应变
混凝土伸长量忽略不计,这里 给出特征裂缝宽度为 fc
1.7 sm lcr
max 2.5 sm lcr
所谓特征裂缝宽度是指假定裂缝宽度属于正态分布, 其均方差为0.4,失效率为5%时的裂缝宽度 最大裂缝宽度为
2) 无滑移理论
上世纪60年代,由瑞典的Broms和Base提出,假设沿 钢筋的水平面上钢筋与混凝土之间不存在相对滑移,钢筋 处的裂缝宽度应该为零,裂缝开展的外形呈楔形,在混凝 土边沿上裂缝最宽,按无滑移理论,裂缝形成的重要原因 是钢筋周围混凝土的变形所引起的。两条裂缝之间混凝土
第六篇 混凝土的裂缝与刚度理论
混凝土的裂缝与刚度 裂缝计算理论 刚度及挠度计算 受弯构件裂缝与刚度的关系及其应用 小结 本章参考文献
混凝土的裂缝与刚度
配筋混凝土的裂缝与刚度密切相关,裂缝的开展会使 刚度降低,挠度增大,而刚度较小的构件,会提早开裂, 加剧刚度变小。
(1) 裂缝
混凝土的裂缝问题是工程界最关心的课题之一,因 为裂缝的出现牵涉到结构外观的破损,力筋的腐蚀及结构 功能的丧失。结构的破损和倒塌大多也是从裂缝的扩展开 始的,所以人们对裂缝往往产生一种破坏前兆的巩惧感 从近代强度理论的发展中可以看到,裂缝的扩展是结 构破坏的初始阶段,的确应引起高度重视。 国际上很多著名机构(如美国AC1224委员会,英国C & CA,德国DIN,法国CCBA,欧洲CEB、CEB—FIP等 )都有专业从事混凝土裂缝研究的机构,并取得相当丰富 的研究成果
在任一截面处其内外力矩的平衡方程为取xzhaxss????3??????sfahh?0mbhzhxct??2????3200??在开裂截面可求得fzctssfsz?0?0max?m?????????3fszh?若假定两裂缝间钢筋应力分布与中心受拉杆件相同即2chchlxxsfs?????代入平衡方程经运算得混凝土的应力分布为?????0h2chchlxxsfs?????????????????????????????????2ch3ch3130lzxzhbhzhmxfct???当开裂发生在时混凝土即开裂即处有0?xctcff??cutc?ctctefx???bhzhzhzhmfbhzhmlfct??????????????????????????33332ch000?若裂缝间距为混凝土应力达但尚未开裂则得最大???zhm30?xctf??????????????????????cutc?fbhezhzhml?33arcch200max与中心受拉相向可得裂缝宽度为??2es??????????????????????????????2th33323th12000lzhzhbhezhmbhezhmlfccs???max将最大裂缝间距最小裂缝间距及平均裂缝间距lmin2代入上式即可得相应的最大最小和平均裂缝宽度??maxmax1ll?2minmaxlllm????ccssfbhezhmlbhezhz3healzhm0max00maxmax3?312th3?2???l??????????????????????????????和min分别以m和置换ml即可?minlmax王铁梦对工字型截面受弯构件也作了详细推导见文献1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
在以主应力
为轴的主应力空间中,取拉
应力为正,压应力为负,将 实验中获得的混凝土多轴强
度数据(
)标
在其中,相邻各点以光滑曲 面相连,就可得到一个混凝
土的破坏包络面:
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
在破坏包络面上可找到一些反映特殊应力状态的点。
混凝土单轴抗压、抗拉强度
混凝土双轴等压、等拉强度( (
和 各有3个点,分别位于各主轴上;
)和
)位于坐标平面内的两个坐标轴的等分
线上,同样在3个坐标平面内各有一点; 混凝土三轴等拉强度( 落在静水压力轴的正方向上。 )只有一点,
和
值较大的双
斜剪破坏 只发生在三轴受压(C/C/C)应力状态,且
挤压流动 只发生在三轴受压应力状态(C/C/C),且
和 值较大。
§7.1.2 混凝土破坏准则
1、混凝土破坏形态
混凝土的5种典型的破坏形态,主要是从试件破坏后
的表面宏观现象加以区分和命定的。
如果从混凝土受力破坏的机理和本质出发,即考虑引
抗压强度相等,三轴抗压(C/C/C)强度与
土多轴强度的试验规律大相径庭。
无关等,都与混凝
§7.1.2 混凝土破坏准则
3、古典强度理论——统计平均剪应力理论(Von Mises,
1913)
当材料的统计平均剪应力或八面体剪应力达到一极限值 时
发生屈服,其表达式为:
这一破坏面是以静水压力轴为中心的圆柱面。它最适合于软钢 类塑性材料,在塑性力学中应用最广。
高等桥梁结构理论
第七章 混凝土的 强度、裂缝及刚度理论
§7.1.2 混凝土破坏准则
§7.1.2 混凝土破坏准则
1、混凝土破坏形态
对典型破坏形态:
拉断 发生这类破坏的应力状态,除了单轴、双轴和三轴受拉(T,
T/T,T/T/T),还有主拉应力较大( (T/C,T/C/C,T/T/C)等。 )的双轴和三轴拉∕压
§7.1.2 混凝土破坏准则
3、古典强度理论——最大拉应变理论(Mariotto,1682)
当材料某主方向的最大拉应变达到一极限值 表达式为: 或 时发生破坏。
破坏面为以静水压力轴为中心的角锥。 这一理论可适用于混凝土双轴和三轴拉/压(T/C,T/C/C, T/T/C)的部分应力状态。但是在多轴受拉(T/T,T/T/T)应力状 态,就导出强度提高 的错误结论。
破坏包络面的交线定义为
拉、压子午线。破坏包络 面的三维立体图既不易绘
制,更不便于分析和应用,
一般改为用偏平面包络线 和拉、压子午线来表示。
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
如果将图形坐标原点逆时针方向旋转 ,得到静水压力轴
为横坐标,偏应力
为纵坐标的拉、压子午线。于是,空间破坏曲
面改为由子午面和偏平面上的包络线表示。 破坏面上的任一点的坐标 3个参数(圆柱坐标系)表示。 改为( )
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
平面
§7.1.2 混凝土破坏准则
3、古典强度理论简介
混凝土的破坏准则是在实验的基础上,考虑混凝土的特点而建 立起来的。为了便于对混凝土强度理论的理解,先对古典强度理 论作一回顾。 古典强度理论是根据一些材料的强度试验和理论研究成果而 提出来的。它们的特点是:对于材料的破坏原因有明确的理论 (物理)观点;对一些特定的材料,如金属、岩土等有试验验证; 破坏包络面的几何形状简单、规则;计算式简明,只包含一或两 个参数,易于标定等。这些古典强度理论应用于实际工程中,在 其适用的材料强度分析时取得了较好的效果。
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
破坏包络面与坐标平面的
交线,即为混凝土的双轴强度
包络线。偏平面与破坏包络面 的交线为偏平面包络线;不同 静水压力下的偏平面包络线构 成一族封闭曲线:
§7.1.2 混凝土破坏准则
2、混凝土破坏包络面的特点与表达
静水压力轴和个主应力
轴(如 轴)组成的平 面称为拉压子午面,其与
起破坏的主要应力成份、破坏的过程和特点、变形的发
展规律,以及裂缝的物理特征等因素,则可以将混凝土 的破坏归结为两种基本的破坏形态,即单轴受拉和单轴
受压:
§7.1.2 混凝土破坏准则
1、混凝土破坏形态
主拉应力作用 产生横向拉断裂缝和破坏,即拉断破坏。 主压应力作用 引起纵向劈裂裂缝和破坏,包括柱状破
柱状压坏 发生这类破坏的应力状态有单轴受压,以及应力
不大的双轴和三轴受压或拉∕压(C/C,T/C,T/C/C和T/T/C)等。
和
值
§7.1.2 混凝土破坏准则
1、混凝土破坏形态
对所有混凝土多轴试验的试件进行分析,可归纳为5种典型破坏形态: 片状劈裂 发生这类破坏的应力状态是主压应力
轴(C/C)、三轴受压和拉∕压(C/C/C,T/C/C)等。
§7.1.2 混凝土破坏准则
3、古典强度理论——Mohr-Coulomb理论(1900)
材料的破坏不仅取决于最大剪应力,还受剪切面上正应力的影 响,其表达式为: 这一破坏面是以静水压力轴为中心的六角锥面,但拉、压子午 线有不同的斜角 。因而可以反映材料的抗拉强度和抗压强
§7.1.2 混凝土破坏准则
3、古典强度理论——最大剪应力理论(Tresca,1864)
当材料承受的最大剪应力达到一极限值 达式为: 时发生屈服,其表
破坏面是以静水压力轴为中心的正六角棱柱面,表面不连续、
不光滑。
这一理论适用于塑性材料,如软钢。但是,按此理论计算的结 果得:单轴抗拉和抗压的强度相等,双轴抗压(C/C)强度与单轴
§7.1.2 混凝土破坏准则
3、古典强度理论——最大拉应力理论(Rankine,1876)
当材料承受的任一方向主拉应力达到一极限值 其表达式为: 这一理论的破坏面为在主应力坐标的正方向,与坐标面平行且 相距 角锥。 适用于混凝土 的 单轴 、 双轴和三轴受拉 ( T,T/T,T/T/T)应 力状态,但不能解释双轴和三轴压/拉(T/C,T/C/C,T/T/C)应力 状态的强度降低,及多轴受压(C/C,C/C/C)应力状态的破坏。 的3个互相垂直的平面,组成以静水压力轴为中心的正直 时发生破坏。