人教版八年级数学上册第十五章分式单元测试题

合集下载

人教版八年级上数学第15章 分式单元检测(含答案)(含答案)

人教版八年级上数学第15章 分式单元检测(含答案)(含答案)

数学人教版八年级上第十五章 分式单元检测一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在2a b -,(3)x x x +,5πx +,a b a b +-中,是分式的有( ). A .1个B .2个C .3个D .4个 2.如果把分式2x x y+中的x 和y 都扩大2倍,那么分式的值( ). A .不变B .扩大2倍C .扩大4倍D .缩小2倍 3.分式22x y x y-+有意义的条件是( ). A .x ≠0 B .y ≠0C .x ≠0或y ≠0D .x ≠0且y ≠04.下列分式中,计算正确的是( ).A .2()23()3b c a b c a +=+++ B .222a b a b a b +=++ C .22()1()a b a b -=-+ D .2212x y xy x y y x -=--- 5.化简211a a a a --÷的结果是( ). A .1a B .a C .a -1 D .11a - 6.化简21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)的结果是( ). A .2B .21x -C .23x -D .41x x -- 7.化简1111x x -+-,可得( ). A .221x - B .221x -- C .221x x - D .221x x -- 8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则根据题意列出的方程是( ).A .80705x x =-B .80705x x =+C .80705x x =+D .80705x x =- 二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x =__________时,分式13x -无意义. 10.化简:22x y x y x y---=__________. 11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm 2,这个数用科学记数法表示为__________ mm 2. 12.已知x =2 012,y =2 013,则(x +y )·2244x y x y+-=__________. 13.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,…,根据你发现的规律计算:2222122334(1)n n +++⋅⋅⋅+⨯⨯⨯+=__________(n 为正整数). 14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x ,则x 的值是__________.15.含有同种果蔬但浓度不同的A ,B 两种饮料,A 种饮料重40千克,B 种饮料重60千克,现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__________千克.16.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程__________.三、解答题(本大题共5小题,共36分)17.(本题满分6分)化简:32322222b b ab b a b a a b ab b a++÷--+-. 18.(本题满分6分)已知x -3y =0,求2222x y x xy y +-+·(x -y )的值. 19.(本题满分10分,每小题5分)解方程:(1)271326x x x +=++; (2)11222x x x -=---.20.(本题满分7分)已知y =222693393x x x x x x x +++÷-+--.试说明不论x 为任何有意义的值,y 的值均不变.21.(本题满分7分)为抗旱救灾,某部队计划为驻地村民新修水渠3 600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?参考答案1.B 点拨:(3)x x x +和a b a b+-是分式,故选B. 2.A 3.C 点拨:若分式22x y x y-+有意义,则x 2+y 2≠0,所以x ≠0或y ≠0.故选C. 4.D 点拨:2222212(2)()x y x y x y xy x y x xy y x y y x ---===----+---,故选D. 5.B 点拨:221111a a a a a a a a ---÷=⨯-=a .故选B. 6.B 点拨:21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)=1-211x x +-·(x -3)=1-22223222111x x x x x x --+==---.故选B. 7.B 点拨:原式=2211112(1)(1)(1)(1)11x x x x x x x x x x -+----==-+-+---.故选B. 8.D9.3 点拨:当x =3时,分式的分母为0,分式无意义.10.x +y 点拨:2222()()x y x y x y x y x y x y x y x y-+--==----=x +y . 11.7×10-7 12.-1 点拨:(x +y )·2244x y x y +-=(x +y )·222222()()x y x y x y ++-=(x +y )·221x y -=(x +y )·11()()x y x y x y=+--, 当x =2 012,y =2 013时,原式=1120122013x y =--=-1. 13.21n n + 点拨:222122334++⨯⨯⨯+…+211112(1)122334(1)n n n n ⎡⎤=+++⋅⋅⋅+⎢⎥+⨯⨯⨯+⎣⎦ =1111111121223341n n ⎛⎫-+-+-+⋅⋅⋅+- ⎪+⎝⎭=122111n n n ⎛⎫-= ⎪++⎝⎭. 14.6 点拨:由题意得24x x x x--+=1,解得x =6,检验知x =6是原分式方程的根且符合题意.15.24 点拨:设A 种饮料浓度为a ,B 种饮料浓度为b ,倒出的重量为x 千克,由题意得(40)(60)4060bx a x ax b x +-+-=,解得x =24. 16.12030012030(120%)x x -+=+(或1201801.2x x +=30) 点拨:根据题意可得题中的相等关系为前后两次铺设共用的时间等于30天,铺设120 m 后每天的工效为1.2x m ,铺设120 m 所用时间为120x 天,后来所用时间为3001201.2x -天,因此可列方程1206001201.2x x-+=30. 17.解:原式=322()(2)()()b b b a b a b a a ab b a b a b ++÷--+-+- =32()()()()b b b a b a b a a b a b a b ++÷---+- =32()()()()b b a b a b a b a a b b a b -+-+⋅--+ =22()()()b b ab b a b a a b a a b a a b -=----- =2()ab b b a a b a-=-. 18.解:2222x y x xy y +-+·(x -y )=22()x y x y +-·(x -y )=2x y x y +-. 当x -3y =0时,x =3y .原式=677322y y y y y y +==-. 19.解:(1)去分母,得2x ×2+2(x +3)=7,解得,x =16, 经检验,x =16是原方程的解. (2)方程两边同乘(x -2)得,1-x =-1-2(x -2),解得,x =2.检验,当x =2时,x -2=0,所以x =2不是原方程的根,所以原分式方程无解.20.解:2269(3)393x x x x y x x x ++-=÷-+-+=2(3)(3)3 (3)(3)3x x xxx x x+-⨯-+ +-+=x-x+3=3.所以不论x为任何有意义的值,y的值均不变,其值为3. 21.解:设原计划每天修水渠x米.根据题意得360036001.8x x-=20,解得x=80,经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.。

人教版初中数学八年级上册第十五章《分式》测试题(含答案)

人教版初中数学八年级上册第十五章《分式》测试题(含答案)
24.解:(1) + + +…+
=1- + - + - +…+ -
=1-
= ;
(2)①∵ + =
= ,
∴ ,
解得 .
∴A和B的值分别是 和- ;
②∵ = • - •
= •( - )- ( - )
∴原式= • - • + • - • +…+ • - •
= • - •
= -
= .
故 且 .
故答案为 且 .
18.解:(1)去分母得:2x﹣5=3(2x﹣1),解得:x=﹣ ,
经检验x=﹣ 是分式方程的解;
所以原方程的解是x=﹣ ;
(2)去分母得:2x﹣1﹣x+1=0,解得:x=0,
经检验x=0是增根,所以分式方程无解.
19解:设 ,则 , , .
所以 .
20解:原式=[ + ]÷ =( + )•x=x﹣1+x﹣2=2x﹣3
10.计算(a2)3+a2·a3-a2÷a-3的结果是( )
A.2a5-aB.2a5- C.a5D.a6
11.已知关于x的分式方程 =1的解是负数,则m的取值范围是( )
A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2
12.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
八年级上册《第15章分式》单元同步测验卷
一、单选题
1.代数式 中的x取值范围是( )
A.x B.x C.x D.
2.下列各式:2个C.3个D.4个
3.若分式 中的x和y都扩大10倍,那么分式的值()

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

人教版八年级数学上册第十五章《分式》测试带答案解析

人教版八年级数学上册第十五章《分式》测试带答案解析

人教版八年级数学上册第十五章《分式》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.据报道,在新冠疫苗的防重症保护效力下,德尔塔毒株的“突破性感染”占比约为0.00098,将0.00098用科学记数法表示为( ) A .29.810-⨯ B .39.810-⨯C .49.810-⨯D .59.810-⨯2.若分式23x x -+的值等于0,则x 的值是( ) A .2B .﹣2C .3D .﹣33.在某核酸检测任务中,甲医疗队比乙医疗队每小时多检测15人,甲队检测600人所用的时间比乙队检测500人所用的时间少10%.设甲队每小时检测x 人,根据题意,可列方程为( ) A .600500(110%)15x x =⨯-- B .600500(110%)15x x ⨯-=- C .600500(110%)15x x=⨯-- D .600500(110%)15x x⨯-=- 4.为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中荧光棒共花费40元,缤纷棒共花费30元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x 元( ) A .4030201.5x x-= B .4030201.5x x-= C .3040201.5x x-= D .3040201.5x x-= 5.某班级开展活动共花费2300元,但有4位同学因时间冲突缺席,若总费用由实际参加的同学平均分摊,则每人比原来多支付4元,设原来有x 人参加活动,由题意可列方程( ) A .2300230044x x =++ B .2300230044x x +=+ C .2300230044x x =+- D .2300230044x x +=- 6.代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( )A .2个B .3个C .4个D .5个7.若关于x 的方程221mx x =+无解,则m 的值为( ) A .0B .4或6C .6D .0或48.数学家斐波那契编写的《算经》中有如下问题,一组人平分90元钱,每人分得若干,若再加上6人,平分120元钱,则第二次每人所得与第一次相同,求第二次分钱的人数.设第二次分钱的人数为x 人,则可列方程为( ) A .90x =120(x +6) B .90(x ﹣6)=120x C .901206x x =+ D .901206x x=- 9.若整数a 使关于x 的不等式组41232x a x x x -≤-⎧⎪⎨--<⎪⎩有且只有2个偶数解,且关于y 的分式方程342122y y ay y --+=--有整数解,则符合条件的所有整数a 的和为( ) A .4 B .8 C .10 D .1210.已知关于x 的方程232x mx +=-解是正数,那么m 的取值范围为( ) A .m >﹣6且m ≠2 B .m <6C .m >﹣6且m ≠﹣4D .m <6且m ≠﹣211.分式方程1112x x x --=+的解为( ) A .=1x -B .1x =C .2x =-D .2x =12.若数a 使关于x 的不等式组51123522x x x a x a-+⎧+≤⎪⎨⎪->+⎩至少有五个整数解,关于y 的分式方程32211a y y--=--的解是非负整数,则满足条件的所有整数a 之和是( ) A .15 B .14 C .8 D .7二、填空题 13.分式方程532x x=-的解是_______. 14.计算:21211a a a +-=++______.15.若关于x 的分式方程7344mx x x +=--无解,则实数m =_________. 16.分式方程3111x x x +=--的解是_______三、解答题17.某单位党支部在“精准扶贫”活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗.已知每棵乙种树苗的价格比甲种树苗的价格贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,求甲、乙两种树苗每棵的价格.18.解分式方程:1133x x x =-+-. 19.戴口罩可以有效降低感染新型冠状病毒的风险.某学校在本学期开学初为九年级学生购买A 、B 两种口罩,经过市场调查, A 的单价比B 的单价少2元,花费450元购买A 口罩和花费750元购买B 口罩的个数相等. (1)求A 、B 两种口罩的单价;(2)若学校需购买两种口罩共500个,总费不超过2100元,求该校本次购买A 种口罩最少有多少个?20.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?21.2022年北京冬奥会吉祥物“冰墩墩”深受人们的喜欢,为了抓住商机,某商店决定购进A ,B 两种“冰墩墩”纪念品进行销售.已知每件A 种纪念品比每件B 种纪念品的进价高30元.用1000元购进A 种纪念品的数量和用400元购进B 种纪念品的数量相同.求A ,B 两种纪念品每件的进价分别是多少元? 22.计算(1)()()()223a b a b a a b -+-+ (2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭23.先化简,再求值:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭,其中m 是已知两边分别为2和3的三角形的第三边长,且m 是整数. 24.观察下列等式: 第1个等式:1411=332⎛⎫-÷ ⎪⎝⎭;第2个等式:1921=483⎛⎫-÷ ⎪⎝⎭;第3个等式:11631=5154⎛⎫-÷ ⎪⎝⎭;第4个等式:12541=6245⎛⎫-÷ ⎪⎝⎭;第5个等式:13651=7356⎛⎫-÷ ⎪⎝⎭;……按照以上规律,解决下列问题: (1)写出第6个等式:___________;(2)写出你猜想的第n个等式_________(用含n的等式表示),并证明.25.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.(1)求A,B两种学习用品的单价各是多少元;(2)若购买A、B两种学习用品共100件,且总费用不超过2800元,则最多购买B型学习用品多少件?参考答案:1.C【分析】小于1的正数用科学记数法表示一般形式为10n a -⨯ ,n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.00098=9.8410-⨯ 故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1≤a <10,n 为由原数左边起第一个不为零的数字前面的0的个数. 2.A【分析】根据分式的值为0的条件:分子为0,分母不为0性质即可求解. 【详解】由题意可得:20x -=且30x +≠,解得2,3x x =≠-. 故选A .【点睛】此题主要考查分式为零的条件,解题的关键是熟知分式的性质. 3.A【分析】设甲队每小时检测x 人,根据甲队检测600人所用的时间比乙队检测500人所用的时间少10%,列出分式方程,即可解答. 【详解】设甲队每小时检测x 人,根据题意得,600500(110%)15x x =⨯--, 故选A .【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,找出等量关系,列出相应的分式方程. 4.B【分析】若设荧光棒的单价为x 元,根据等量关系“缤纷棒比荧光棒少20根”可列方程求解. 【详解】解:设荧光棒的单价为x 元,则缤纷棒单价是1.5x 元,由题意可得: 4030201.5x x-= 故选:B .【点睛】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.5.D【分析】设原来有x 人参加聚餐,则实际有(x -4)人参加聚餐,根据“总费用由实际参加的同学平均分摊,则每人比原来多支付4元”,列出方程即可解答. 【详解】解:设原来有x 人参加聚餐,则实际有(x -4)人参加聚餐, 根据题意得,2300230044x x +=- 故选:D .【点睛】本题考查由实际问题抽象出分式方程,是重要考点,掌握相关知识是解题关键. 6.B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是224x +,1x ,12x x ++, ∴分式有3个, 故选:B .【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键. 7.D【分析】先将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=, 整理得(4)2m x -=, 原方程无解,∴当40m -=时,4m =;当40m -≠时,0x =或210x +=,此时,24x m =-, 解得0x =或12x =-,当0x =时,204x m ==-无解; 当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4; 故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键. 8.D【分析】设第二次分钱的人数为x 人,则第一次分钱的人数为(x -6)人,根据两次每人分得的钱数相同,即可得出关于x 的分式方程,此题得解.【详解】解:设第二次分钱的人数为x 人,则第一次分钱的人数为(x ﹣6)人, 依题意得:906x -=120x .故选:D .【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键. 9.C【分析】解不等式组得13a-≤x <4,再由题意可得a 的可取值由1,2,3,4,5,6,解分式方程得y =3﹣2a且y ≠2,由此可得符合条件的a 的值有4,6.【详解】解:41?232x a x x x -≤-⎧⎪⎨--<⎪⎩①②, 由①得,x ≥13a -, 由②得,x <4, ∴13a-≤x <4, ∵不等式组有且只有2个偶数解, ∴﹣2<13a-≤0, ∴1≤a <7, ∵a 是整数,∴a 的可取值由1,2,3,4,5,6,342122y y ay y --+=--, 去分母得3y ﹣4+y ﹣2=2y ﹣a , 解得y =3﹣2a ,∵方程有整数解, ∴a 是2的倍数,∵3﹣2a≠2,∴a ≠2,∴a 的取值为4,6,∴符合条件的所有整数a 的和为10, 故选:C .【点睛】本题主要考查了解不等式组和分式方程,解题的关键是掌握解不等式的和分式方程方法. 10.C【分析】先求得分式方程的解(含m 的式子),然后根据解是正数可知m +6>0,从而可求得m >-6,然后根据分式的分母不为0,可知x ≠2,即m +6≠2,由此即可求解. 【详解】将分式方程转化为整式方程得:2x +m =3x -6 解得:x =m +6.∵方程得解为正数,所以m +6>0,解得:m >-6. ∵分式的分母不能为0, ∴x -2≠0,∴x ≠2,即m +6≠2. ∴m ≠-4.故m >-6且m ≠-4. 故选C .【点睛】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m 的不等式是解题的关键. 11.A【分析】根据解分式方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,解方程,最后验根即可求解. 【详解】解:1112x x x --=+ 去分母得:(1)(2)(2)x x x x x -+-=+ , 去括号得:22222x x x x x x +---=+ , 合并同类项移项得:22x =- , 系数化为1得:=1x - ,当=1x -时,2()0x x +≠ , ∴ 经检验,=1x -是原方程的根.故选A .【点睛】本题考查了分式方程的求解,注意在去分母时,常数也要乘以公分母,并且最后必须验根,这是解分式方程的易错点和关键点. 12.D【分析】解不等式组,根据整数解的个数判断a 的取值范围;解分式方程,用含a 的式子表示y ,检验增根的情况,再根据解的非负性,确定a 的范围,然后根据方程的整数解,确定符合条件的整数a ,相加即可.【详解】51123522x x x a x a -+⎧+≤⎪⎨⎪->+⎩①② 解不等式①,得x ≤11 解不等式②,得x >a∵不等式组至少有五个整数解 ∴a <732211a y y--=-- 322(1)a y -+=- 122a y -=- 21y a =+12a y +=10y -≠ 1y ∴≠∴112a +≠ ∴1a ≠ ∵0y ≥ ∴102a +≥ ∴1a ≥-∴1<7,1a a -≤≠且,a 为整数又∵12a +为整数 ∴a 可以取-1,3,5∴满足条件的所有整数a 之和是-1+3+5=7 故选:D【点睛】本题考查解不等式组求整数解、解分式方程、正确解不等式组是关键,利用不等式组的解集求参数是中考的常考题型. 13.x =-3【分析】方程两边都乘x (x -2)得出整式方程,求出方程的解,再进行检验即可. 【详解】解:方程两边都乘x (x -2),得 5x =3(x -2), 解得:x =-3,检验:当x =-3时x (x -2)≠0, 所以x =-3是原方程的解, 故答案为:x =-3.【点睛】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.解分式方程注意要检验. 14.1a -##1a -+【分析】直接利用分式的加减运算法则计算即可.【详解】解:原式=2121a a +-+ =211a a -+ =(1)(1)1a a a +-+=1a -.【点睛】本题考查了分式的加减运算法则,正确掌握分式的加减运算法则是解题的关键. 15.3-或74【分析】将分式方程转化为整式方程,根据分式方程无解,分类讨论求解即可. 【详解】解:由7344mx x x +=--可得:3127mx x +-= 即(3)19m x += 因为分式方程无解,所以,30m +=或4x =由30m +=可得3m =-将4x =代入(3)19m x +=可得,(3)419m +⨯=,解得74m = 故答案为:3-或74【点睛】本题考查分式方程无解计算,解题时需注意,分式方程无解要根据方程的特点进行判断,既要考虑分式方程有增根的情况,又要考虑整式方程无解的情况.16.x =2【分析】两边都乘以(x -1),去分母,得到x +x -1=3,再移项合并同类项系数化成1,得到化成整式方程的根x =2,检验10x -≠,确定原方程的根为x =2. 【详解】3111x x x +=--, 去分母,得,x +x -1=3移项合并同类项,得,2x =4,系数化成1,得,x =2,检验:当x =2时,12110x -=-=≠,∴x =2是原方程的根,∴故答案为:x =2.【点睛】本题考查了解分式方程,解决问题的关键是熟练去分母,解化成的整式方程,最后须验根.17.甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元【分析】设甲种树苗价格是x 元/棵,则乙种树苗价格是(x +10)元/棵,根据题意列出方程求解即可.【详解】解:设甲种树苗价格是x 元/棵,则乙种树苗价格是(x +10)元/棵, 依题意得:48010x +=360x, 解得:x =30,经检验,x =30是原方程的解,x +10=30+10=40(元),答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.【点睛】本题考查了分式方程的应用,解题关键是设出未知数,根据题目中的等量关系列出方程,注意:分式方程要检验.18.6x =-【分析】观察可得最简公分母是(x +3)(x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程两边同乘以最简公分母()(33)x x +-,得3(3)(3)(3)x x x x x -=+-+-去括号,得22339x x x x -=+-+解方程,得6x =-检验:当6x =-时,(3)(3)0x x +-≠∴原方程的根是6x =-【点睛】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(1)A 、B 两种型号口罩的单价分别为3元、5元;(2)该校本次购买A 种口罩最少有200个.【分析】(1)设A 种口罩的单价为x 元,则B 种口罩的单价为(x +2)元,根据题意列出方程并解答即可;(2)设购买A 种口罩m 个,则购买B 种口罩(500-m )个,利用总价=单价×数量,结合总价不超过2100元,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.(1)解:设A 种口罩的单价为x 元,则B 种口罩的单价为(x +2)元, 依题意得:4507502x x =+, 解得:x =3,经检验:x =3是原方程的根,且符合题意,∴x +2=5.答:A 、B 两种型号口罩的单价分别为3元、5元;(2)解:设购买A 种口罩m 个,则购买B 种口罩(500-m )个,依题意得:3m +5(500-m )≤2100,解得:m ≥200.答:该校本次购买A 种口罩最少有200个.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式. 20.40万【分析】设原先每天生产x 万剂疫苗,根据现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天可得方程,解之即可.【详解】解:设原先每天生产x 万剂疫苗,由题意可得:()2402200.5120%x x +=+, 解得:x =40,经检验:x =40是原方程的解,∴原先每天生产40万剂疫苗.【点睛】此题主要考查了分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性.21.A 种纪念品每件的进价是50元,B 种纪念品每件的进价是20元【分析】设A 种纪念品每件的进价是x 元,则B 种纪念品每件的进价是x-30元,根据题意列出分式方程,解方程即可得出答案.【详解】解:设A 种纪念品每件的进价是x 元,则B 种纪念品每件的进价是x-30元, 根据题意列分式方程得,100040030x x =-, 去分母得,1000(30)400x x -=,解得50x =,经检验,50x =是原方程的解,所以A 种纪念品每件的进价为:50(元),B 种纪念品每件的进价为:503020-=(元)答:A 种纪念品每件的进价是50元,B 种纪念品每件的进价是20元.【点睛】本题考查分式方程的实际应用,根据题目中等量关系列出分式方程是解题关键,注意求出解后要进行检验.22.(1)243b ab --1x - 【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)先因式分解,再根据分式的减法和除法解答本题.(1)解:(1)()()()223a b a b a a b -+-+()22243a b a ab =--+22243a b a ab =---243b ab =--(2)(2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭()()()()222212111x x x x x x x x -+-⎡⎤+=÷-⎢⎥---⎣⎦ ()()()()222211x x x x x -+-+⎡⎤=÷⎢⎥--⎣⎦()()()()()222121x x x x x ⎡⎤-+-=⎢⎥-+-⎢⎥⎣⎦ 21x x -=- 【点睛】本题考查整式的混合计算,分式的混合运算、单项式乘多项式、平方差公式,熟悉相关性质是解答本题的关键.23.32m m --;12【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用三角形三边的关系,求得m 的值,代入计算即可求出值. 【详解】解:322293443m m m m m m -⎛⎫÷++ ⎪-+-⎝⎭222(2)99(2)33m m m m m m ⎛⎫--÷+ ⎪---⎝⎭= 2223m m m m ÷--= 2232m m m m-⋅-=2m -∵m 是已知两边分别为2和3的三角形的第三边长,∴3-2<m <3+2,即1<m <5,∵m 为整数,∴m =2、3、4,又∵m ≠0、2、3∴m =4,∴原式=431422-=-. 【点睛】本题主要考查了分式的化简求值以及三角形三边的关系,解题的关键是掌握分式混合运算顺序和运算法则.24.(1)14961=8487⎛⎫-÷ ⎪⎝⎭ (2)21(1)12(2)1n n n n n n +⎛⎫-÷= ⎪+++⎝⎭,见解析【分析】(1)根据题目中的等式,可以写出第6个等式;(2)根据题目中的等式,可以写出第n 个等式,然后根据分式的乘除法,以及平方差公式因式分解,可以将等号左边的式子化简,从而可以证明结论成立.【详解】(1)解:由题意可得,第6个等式:1497486(1)4889784-÷=⨯=, 故答案为:1496)87(148-÷=; (2)解:猜想:第n 个等式是:()2211(1)2(1)11n n n n n +-÷=++-+, 证明: ()2211(1)2(1)1n n n +-÷++- ()221(2)21n n n n n +-+=⋅++ ()2111n n n +=⋅+1n +∴()2211(1)2(1)11n n n n n +-÷=++-+成立. 【点睛】本题考查数字的变化类规律探究,分式乘除法,掌握发现数字的变化特点,写出相应的式子.分式乘除法法则,平方差公式,规律探究的方法是解题关键.25.(1)A ,B 两种学习用品的单价分别为20元和30元(2)80【分析】(1)设A 种学习用品的单价为x 元,则B 种学习用品的单价为(10)x +元,由题意得18012010x x=+,然后解分式方程解即可; (2)设最多购买B 型学习用品x 件,则购买A 型学习用品()100x -件,由题意得,()30201002800x x +⨯-≤,解不等式即可.【详解】(1)解:设A 种学习用品的单价为x 元,则B 种学习用品的单价为(10)x +元 由题意得18012010x x=+ 去分母得,()18012010x x =+移项合并得,601200x =系数化为1得,20x经检验,20x 是原分式方程的解∴1030x +=元∴A 、B 两种学习用品的单价分别为20元和30元.(2)解:设最多购买B 型学习用品x 件,则购买A 型学习用品()100x -件由题意得,()30201002800x x +⨯-≤解得80x ≤∴最多购买B 型学习用品80件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用.解题的关键在于根据题意正确的列等式与不等式.。

人教版八年级数学上册 第15章 分式 单元测试卷

人教版八年级数学上册  第15章 分式 单元测试卷

人教版八年级数学上册第15章分式单元测试卷一、选择题(本大题共10小题,共30分)1.式子32x ,1π,−4a+b,a+b3中是分式的有()个.A. 1B. 2C. 3D. 42.要使分式3x−6x+1的值等于零,则x的取值是()A. x=2B. x=−2C. x≠1D. x≠−13.下列与分式a−ba+b的值相等的是()A. b−a−a+b B. b−aa+bC. −b−aa−bD. −a−b−a−b4.计算1a−1−aa−1的结果为()A. 1+aa−1B. −aa−1C. −1D. 25.化简a+1a2−2a+1÷(1+2a−1)的结果是()A. 1a−1B. 1a+1C. 1a2−1D. 1a2+16.x(x≠0)为何值时,分式x−2x2的值为负()A. x>2B. x<2C. x=2D. x<07.计算4x1−x2÷2x2x2+x的结果是()A. 21+x B. 21−xC. −21+xD. −21−x8.计算1x+1+11−x的正确结果是()A. 0B. 2x1−x C. 21−x2D. 2x2−19.镇江市教育局为帮助全市贫困师生举行“一日捐”活动,甲、乙两校教师各捐款60000元,已知“…”,设乙学校教师有x人,则可得方程60000x −60000(1+20%)x=20,根据此情景,题中用“…”表示的缺失的条件应补()A. 乙校教师比甲校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%B. 甲校教师比乙校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%C. 甲校教师比乙校教师人均多捐20元,且甲校教师的人数比乙校教师的人数多20%D. 乙校教师比甲校教师人均多捐20元,且乙校教师的人数比甲校教师的人数多20%1第!异常的公式结尾页,共3页 210. 若 23x 2+4x+7的值为14,则 16x 2+8x−1的值是( )A. 1B. −1C. −17D. 15二、填空题(本大题共6小题,共18分) 11. 化简:2x −1x =______. 12. 计算:(y −2x )2= ______ . 13. 当x =________时,分式x 2−4x 2−4x+4的值为零.14. 当x ______ 时,分式x 2−4x+2无意义;当x ______ 时,分式x 2−4x+2值为零.15. 计算:2a−1a+1a=________.16. 若分式2−3xx 2+1的值是负数,则x 的取值范围是______. 三、计算题(本大题共7小题,共72分) 17. 先化简,再求值:x−3x 2−1⋅x 2+2x+1x−3−(1x−1+1),其中x =√2+1.18. 计算:6−2aa−2÷(a +2−5a−2).19. 先化简(1−3x+2)÷x−1x 2+2x −1,再从−2≤x ≤2的范围内选取一个合适的整数x 代入求值.20.21.已知x2=y3=z4,求2x+2y+z3y−z.22.化简并求值:(1x−y −1x+y)÷2x−yx2−y2,其中x,y满足|x+2|+(2x+y−1)2=0.23.3x+4x2+x−6=Ax−2+Bx+3,求A、B的值.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的54,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?24.1、在最软入的时候,你会想起谁。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路公里,根据题意列出的方程正确的是()A. B. C.D.2、若分式的值为零,则x的值为( )A.3B.3或-3C.-3D.03、如果等式(2a﹣1)a+2=1成立,则a的值可能有()A.4个B.1个C.2个D.3个4、某校为进一步开展“阳光体育”活动,购买了一批篮球和足球.已知购买足球数量是篮球的2倍,购买足球用了4000元,购买篮球用了2800元,篮球单价比足球贵16元.若可列方程表示题中的等量关系,则方程中x表示的是()A.足球的单价B.篮球的单价C.足球的数量D.篮球的数量5、式子成立的条件是()A. ≥3B. ≤1C.1≤≤3D.1<≤36、计算|﹣2|-1的结果是()A.2B.C.-2D.7、若代数式+有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠18、把分式中的值都扩大为原来的倍,那么新分式的值是原分式的值的()A.一半B.一倍C.两倍D.四倍9、下面各分式:,,,,其中最简分式有()个.A.4B.3C.2D.110、化简÷,其结果是().A. B.2 C.﹣2 D.11、为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化米,则所列方程正确的是()A. B. C. D.12、下列计算中,正确的是()A. B. C.D.13、计算•的结果为()A.6xyzB.12xyzC.﹣6xyzD.6x 2yz14、计算4﹣2的结果是()A.-8B.-C.-D.15、分式方程的解是()A. B. C. D.二、填空题(共10题,共计30分)16、计算的结果是________.17、若式子有意义,则实数x的取值范围是________.18、若﹣2有意义,则a的取值范围是________.19、若分式的值为0,则x的值等于________20、若分式方程=﹣的解是x=3,则a=________.21、从这七个数中,随机取出一个数,记为,那么使关于的方程有整数解,且使关于的不等式组有解的概率为________.22、关于x的方程=3的根为x=1,则a=________.23、当________时,分式的值为0.24、化简=________25、若分式的值为零,则________.三、解答题(共5题,共计25分)26、先化简,再求值:(x﹣1+ )÷,其中x的值从不等式﹣1≤x <2.5的整数解中选取.27、化简分式(+ )÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.28、先化简(1﹣)÷,再从|m|≤2中选一个合适的整数代入求值.29、先化简:•(x ),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.30、下列式子,, x﹣, x3﹣,,﹣,,﹣,其中分式的个数是m,求使分式无意义的p的值.参考答案一、单选题(共15题,共计45分)1、D3、D4、D5、D6、D7、D8、A9、D10、C11、A12、D13、A14、D15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题考试时间:120分钟 满分:120分一、选择题(共9小题,每小题3分,共27分) 1.使分式2x x +有意义的x 的取值范围是( )A .2x ≠B .2x ≠-C .2x >-D .2x <2.在式子xx y x y x x c b a xy a 232109,87,65,43,2,1,+++π中,分式个数有( )A .2个B .3个C .4个D .5个3.下列等式:○111++=a b a b ,○2am bm a b =,○3a b am bm =,○4ab a ab =2,○522a b a b =,○61-=-+-b a b a ,○71111-+=-+b b ab ab ,○8yx y x y x +=--122从左到右变形正确的个数有( ) A .3个 B .4个 C .5个 D .6个4. 如果2a b=,则2222a ab b a b -++= ( )A .45B . 1C . 35 D . 25. 计算a b a b b a a +⎛⎫-÷⎪⎝⎭的结果为( ) A .a b b- B .a b b+ C .a b a- D .a ba+6.已知0322=++b ab a (a ≠0,b ≠0),( )A. 3B. −3C. abb a 22+ D. 无法确定8.甲、乙两人两次到某粮店去买大米,两次的大米价格分别为每斤a 元和b 元(a>b),甲每次买100斤大米,乙每次买100元的大米,那么比较甲乙两次买的大米平均价格,结果是( )A.甲比乙便宜B. 乙比甲便宜C.甲与乙相同D.都有可能 9.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) A.1a < B.1≤a C.1a <且0a ≠ D.1≤a 或0a ≠二、填空题(共9小题,每小题3分,共27分) 10.若分式033=--x x ,则x 的值为 .11.若要使x x x 有意义,则0234⎪⎪⎭⎫⎝⎛+-满足的条件是 .12.华为Mate40系列智能机搭载着麒麟9000,5nm 制程芯片,集成了153亿个集成电路.1nm=0.0000001cm ,那么5nm 用科学记数法表示为 米. 13.已知关于x 的方程4333k x x x-+=--有增根,则k = . 14.当42=---=x ax bx x 无意义,当时,分式时,分式的值为0,则a+b= . 15.已知113x y -=,则代数式21422x xy y x xy y----的值为 . 16.已知152=-x x ,那么221x x+= .17.已知x ,y ,z 满足x z z y x +=-=532,则zy y x 25+-= .18.已知)0(4112222≠+=+ab b a b a ,则代数式20222021)()(ba ab -的值为 .三、解答题(共9个大题,共66分) 19.计算:(每题4分,共8分)(1)111112122+-⋅-+÷+--x x x x x x x (2))1521(122---+÷-+x x x x x20.解方程(每题4分,共8分) (1)x x x --=--21321 (2)9631322--=-++x x x21.(6分)已知325102--=++b a a ,求代数式42()b a b -·32232a ab a b b +-÷222b a ab b -+的值.22. (6分)先化简:1441132++-÷⎪⎭⎫ ⎝⎛+-+a a a a a 并从0,-1,2中选一个合适的数作为a 的值求值.23.(7分)的取值范围的解是正数,求的方程已知关于m x x x x m x x x 112)12)(1(124-+=+--+.24.(7分)若关于x 的方程233x k x x =+--无解,求k 的值.25. (8分)中秋节是我国的传统节日,人们素有吃月饼的习俗.某超市节前购进了甲、乙两种畅销口味的月饼.已知购进甲种月饼的金额是1200元,购进乙种月饼的金额是600元,购进甲种月饼的数量比乙种月饼的数量多50个,甲种月饼每个的单价是乙种月饼每个单价的1.5倍.(1)求甲、乙两种月饼的每个的单价分别是多少元?(2)为满足消费者需求,该超市准备再次购进甲、乙两种月饼共200个,若总金额不超过1100元.问最多购进多少个甲种月饼?26.(8分)若关于x 的分式方程42212-=-+x m x x 的解也是不等式组⎪⎩⎪⎨⎧-≤-->-8)3(2221x x x x 的解,求m 的取值范围.27.(8分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参 考 答 案一、选择题(共9小题,每小题3分,共27分) 1.使分式2x x +有意义的x 的取值范围是( B )A .2x ≠B .2x ≠-C .2x >-D .2x <2.在式子xx y x y x x c b a xy a 232109,87,65,43,2,1,+++π中,分式个数有( C )A .2个B .3个C .4个D .5个3.下列等式:○111++=a b a b ,○2am bm a b =,○3a b am bm =,○4ab a ab =2,○522a b a b =,○61-=-+-b a b a ,○71111-+=-+b b ab ab ,○8yx y x y x +=--122从左到右变形正确的个数有( B ) A .3个 B .4个 C .5个 D .6个6. 如果2a b=,则2222a ab b a b -++= ( C )A .45B . 1C . 35 D . 27. 计算a b a b b a a +⎛⎫-÷⎪⎝⎭的结果为( A ) A .a b b- B .a b b+ C .a b a- D .a ba+6.已知0322=++b ab a (a ≠0,b ≠0),( B )A. 3B. −3C. abb a 22+ D. 无法确定8.甲、乙两人两次到某粮店去买大米,两次的大米价格分别为每斤a 元和b 元(a>b),甲每次买100斤大米,乙每次买100元的大米,那么比较甲乙两次买的大米平均价格,结果是( B )A.甲比乙便宜B. 乙比甲便宜C.甲与乙相同D.都有可能 9.关于x 的方程11ax =+的解是负数,则a 的取值范围是( C ) A.1a < B.1≤a C.1a <且0a ≠ D.1≤a 或0a ≠ 三、填空题(共9小题,每小题3分,共27分) 10.若分式033=--x x ,则x 的值为 3-=x .11.若要使x x x 有意义,则0234⎪⎪⎭⎫⎝⎛+-满足的条件是 32≠±≠x x 且 .12.华为Mate40系列智能机搭载着麒麟9000,5nm 制程芯片,集成了153亿个集成电路.1nm=0.0000001cm ,那么5nm 用科学记数法表示为 7105-⨯ 米. 13.已知关于x 的方程4333k x x x-+=--有增根,则k = 1 . 14.当42=---=x ax bx x 无意义,当时,分式时,分式的值为0,则a+b= 2 . 15.已知113x y -=,则代数式21422x xy y x xy y----的值为 4 . 16.已知152=-x x ,那么221x x+= 27 .17.已知x ,y ,z 满足x z z y x +=-=532,则zy y x 25+-= 31 .18.已知)0(4112222≠+=+ab b a b a ,则代数式20222021)()(ba ab -的值为 0或-2 .三、解答题(共66分) 19.计算:(每题4分,共8分)(1)111112122+-⋅-+÷+--x x x x x x x (2))1521(122---+÷-+x x x x x 【解答】(1)11+--x x (2)21-x20.解方程(每题4分,共8分) (1)x x x --=--21321 (2)9631322--=-++x x x【解答】(1)3=x (2)3=x 是原分式方程的增根,原分式方程无解21.(6分)已知325102--=++b a a ,求代数式42()b a b -·32232a ab a b b +-÷222b a ab b -+的值.【解答∵】325102--=++b a a ∴03)5(2=-++b a∴3,5=-=b a原式=ba ab --2当3,5=-=b a 时 原式=845-22.(6分)先化简:1441132++-÷⎪⎭⎫ ⎝⎛+-+a a a a a 并从0,-1,2中选一个合适的数作为a 的值求值. 【解答】原式=22)2(11)2)(2(2-+-=-+⋅+-+-a a a a a a a当0=a 时原式=12020=-+-23.(7分)的取值范围。

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x ,38a ,2π,1x a -中,属于分式的个数为( ) A .0个B .1个C .2个D .3个 2.下列分式为最简分式的是( )A .11a a --B .235xy y xy -C .22m n n m +-D .22a b a b++ 3.下列各式中,变形不正确的是( )A .2233x x=-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 4.计算322b b 1·a a b⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的值为 ( ) A .222b a B .6ab 2 C .8a D .15.计算:22m-1m -1m m÷的结果是 ( ) A .m m 1+ B .1m C .m-1 D .1m-16.若111u v f+=,则用u 、v 表示f 的式子应该是( ) A .u v uv + B .uv u v + C .v u D .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( )A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米 9.计算20140的结果是( )A .1B .0C .2014D .﹣1 10.当m 为何值时,方程会产生增根( ) A.2 B.-1 C.3 D.-311.下列各式中,是分式方程的是( )A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+= B.+= C.=- D.=+二、填空题13.当x =_________时,分式242x x -+的值为0. 14.当x =__________时,分式3x x-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b b a b b ab a b ab a ++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18人教版八年级上数学第十五章分式单元测试(解析)一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=32.下列等式成立的是( )A.+=B.=C.=D.=-3.下列运算结果为x-1的是( )A.1-B.·C.÷D.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.96.计算÷-的结果为( )A. B. C. D.a7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.10.当x= 时,分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .12.计算:÷= .13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-114.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.计算(x+1)的结果是.16.若a2+5ab-b2=0,则-的值为.三、解答题(共52分)17.(4分)化简:-.18.(5分)计算:÷.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.(6分)先化简,再求值:÷·,其中a=-,b=.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?第十五章分式答案解析满分:100分;限时:60分钟一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=3答案 C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.2.下列等式成立的是( )A.+=B.=C.=D.=-答案 C +=,所以A错误;=不成立,所以B错误;==,所以C正确;=-,所以D错误,故选C.3.下列运算结果为x-1的是( )A.1-B.·C.÷D.答案 B 选项A的运算结果为,选项B的运算结果为x-1,选项C的运算结果是,选项D的运算结果为x+1.故选B.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n答案 A +=-==m+n,故选A.5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.9答案 C ·=·=.当x=6,y=3时,原式==6.6.计算÷-的结果为( )A. B. C. D.a答案 C ÷-=÷-=×-=-=,故选C.7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关答案 B 设从A地到B地的距离为2s,∵甲的速度v保持不变,∴甲所用时间为,∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为+=+,∵s>0,v>0,∴+>,故甲先到达B地.8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3答案D解分式方程,得x=-3-m,∵方程的解为正数,∴-3-m>0,解得m<-3,∵x+1≠0,∴x≠-1,∴-3-m≠-1,解得m≠-2,∴m<-3,故选D.二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.答案 6.9×10-7解析0.000 000 69=6.9×10-7.10.当x= 时,分式的值为0.答案 2解析分式的值为0,则即所以当x=2时,原分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .答案+=11解析根据题意,可列方程为+=11.12.计算:÷= .答案解析原式=a4b2c-2÷=a4b2c-2÷=b6c-2=.13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-1答案解析由题意,得=4,解得x=,经检验,x=是方程=4的解.14.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件. 答案9解析设甲每小时做x个零件,则乙每小时做(x-3)个零件,根据题意可得=,解得x=9.经检验,x=9是方程的解,且符合题意.因此甲每小时做9个零件.15.计算(x+1)的结果是.答案x解析(x+1)=(x+1)=(x+1)=x.16.若a2+5ab-b2=0,则-的值为.答案 5解析由a2+5ab-b2=0,得b2-a2=5ab,∴-===5.三、解答题(共52分)17.(4分)化简:-.解析原式=-=-==1.18.(5分)计算:÷.解析原式=·=·=·=.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解析设A4薄型纸每页的质量为x克,则厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得,x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.20.(6分)先化简,再求值:÷·,其中a=-,b=.解析÷·=··=··=.当a=-,b=时,原式==-6.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.解析(1)去分母,得x-3+x-2=-3,移项,得x+x=-3+3+2,合并同类项,得2x=2,系数化为1,得x=1,经检验,x=1为原分式方程的根,∴分式方程的解为x=1.(2)两边同时乘(x+1)(x-1),得3(x-1)=x(x+1)-(x+1)(x-1),解得x=2. 检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴原方程的解为x=2.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么? 解析原式=·=·=.(1)当x=3时,原式=2.(2)不能.理由:如果=-1,那么x+1=-x+1,则x=0,当x=0时,原代数式中的除式=0,矛盾, ∴原代数式的值不能等于-1.23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.解析 原式=÷- =×- =- =,∵a=(3-)0+-=1+3-1=3,∴原式===-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售? 解析 (1)设第一次购入的空调每台进价是x 元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元, 第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=(64 000-160y)元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=(18 000-160y)元, 依题意,得18 000-160y≥(24 000+52 000)×22%,解得y≤8.答:最多可将8台空调打折出售.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( )A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x +-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册第十五章分式单元测试题一、选择题(共10小道,每小题3分,共30分)1、(2019•广西贵港)若分式的值等于0,则x 的值为( )A .±1B .0C .﹣1D .12. 下列运算中,错误..的是( ). A.(0)a ac c b bc =≠ B. 1a b a b--=-+ C.0.55100.20.323a b a ba b a b ++=-- D. x y y x x y y x --=++ 3. ( 2019兰州市) 化简:12112+-++a a a = ( ) A. a -1 . B. a+1 . C.11+-a a . D. 11+a . 4.若分式x yx y+-中的x ,y 的值变为原来的100倍,则此分式的值( ). A .不变 B .是原来的100倍 C .是原来的200倍 D .是原来的11005.若2(a +与1b -互为相反数,则1b a-的值为( )AB 1C 1D .16.如果2ab=,则2222a ab b a b -++= ( ).A .45 B .1 C .35D .2 7.(2019甘肃陇南)下面的计算过程中,从哪一步开始出现错误( )A .①B .②C .③D .④【分析】直接利用分式的加减运算法则计算得出答案.8.化简(a ﹣1)÷(﹣1)•a 的结果是( ) A .﹣a 2 B .1C .a 2D .﹣19. (2019▪黑龙江哈尔滨)方程=的解为( )A .x =B .x =C .x =D .x =10 。

(2019•湖北十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( ) A .﹣=15 B .﹣=15 C .﹣=20D .﹣=20二、填空题(共6小道,每小题4分,共24分)11. 若分式11||--x x 的值为零,则x 的值等于 .12. 计算44xy xy x y x y x y x y ⎛⎫⎛⎫-++- ⎪⎪-+⎝⎭⎝⎭= .13. 若方程322x mx x-=--无解,则m =.14.已知113x y -=,则代数式21422x xy y x xy y----的值为 15.如果11m m-=-,则2m m += ;2221m m +-= . 16. (2019四川巴中)若关于x 的分式方程+=2m 有增根,则m 的值为 .三、解答题(共46分)17.(1)(2019山西)化简xxx x ---112的结果是 .(2).(2019四川成都)化简62123412++-÷⎪⎭⎫ ⎝⎛+-x x x x18.解下列方程: (1)2311-=+x x ; (2)1112132-=+--x x x .(3)(2019江苏泰州)解方程:+3=.19. (2019湖北鄂州)先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值. (﹣)÷20.(2019,四川巴中)已知实数x 、y 满足+y 2﹣4y +4=0,求代数式•÷的值.21. 已知(1)化简T(2)若正方形ABCD 的边长为a ,且它的面积为9,求T 的值。

22. 若方程122-=-+x ax 的解是正数,求a 的取值范围。

关于这道题,有位同学作出如下解答:解:去分母得:2x+a=2+-x化简得a x -=23故32ax -=欲方程的根为正数,必须032>-a得a<2所以当a<2时方程122-=-+x ax 的解是正数上述解法是否有误?若有错误,请说明错的原因,并写出正确解答,若设有错误,请说出每一步解法的依据。

23. (2019泰安)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A 、B 两种粽子1100个,购买A 种粽子与购买B 种粽子的费用相同.已知A 种粽子的单价是B 种粽子单价的1.2倍. (1)求A 、B 两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A 、B 两种粽子共2600个,已知A 、B 两种粽子的进价不变.求A 种粽子最多能购进多少个?24.(2019•湖南衡阳)某商店购进A 、B 两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等. (1)求购买一个A 商品和一个B 商品各需要多少元;(2)商店准备购买A 、B 两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A 、B 商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?第15章《分式》综合测试题参考答案1.D 解:==x ﹣1=0,∴x =1;故选:D .2.D 3.A解12112+-++a a a =1212+-+a a =1)1)(1(+-+a a a =a -1 .故选A.4.A 5.C 6.C7. 解:﹣=﹣==.故从第②步开始出现错误.故选:B .8.A 解:原式=(a ﹣1)÷•a=(a ﹣1)••a=﹣a 2,故选:A .9.解:=,,∴2x =9x ﹣3, ∴x =;将检验x =是方程的根, ∴方程的解为x =; 故选:C .10.解:设原计划每天铺设钢轨x 米,可得:,故选:A .11. 1-;12. 22x y -; 13. 1;14.17515.1 1 ; 16.解:方程两边都乘x ﹣2,得x ﹣2m =2m (x ﹣2) ∵原方程有增根, ∴最简公分母x ﹣2=0, 解得x =2, 当x =2时,m =1 故m 的值是1, 故答案为1 17.(1)【解析】13112112-=-+-=---x x x x x x x x x x ,故答案为13-x x(2)解:原式=12)1()3(231)3(2)1(3122-=-+⋅⎪⎭⎫ ⎝⎛+-=+-÷⎪⎭⎫ ⎝⎛+-x x x x x x x x x .18.解:(1))2)(1(23)2)(1(11-+⨯-=-+⨯+x x x x x x )1(32+=-x x52=-x25-=x经检验:25-=x 是原分式方程的根。

(2))1(11)1(12)1(132222-⨯-=-⨯+--⨯-x x x x x x1)1(2)1(3=--+x x4-=x经检验:4-=x 是原分式方程的根。

(3)【解答】去分母得2x ﹣5+3(x ﹣2)=3x ﹣3, 解得 x =4,检验:当x =4时,x ﹣2≠0,x =4为原方程的解. 所以原方程的解为x =4.19. 解:原式=[﹣]÷=[﹣])÷=•=x +2∵x ﹣2≠0,x ﹣4≠0, ∴x ≠2且x ≠4, ∴当x =﹣1时, 原式=﹣1+2=1.20.解:•÷=••=,∵+y 2﹣4y +4=0, ∴+(y ﹣2)2=0,∴x =3,y =2, ∴原式==.21.(1)(2)解:∵正方形ABCD 的边长为a ,且它的面积为9, ∴a==3∴T= =22.这位同学的解答过程有错误,因为该同学求出由分式方程化得的整式方程的解32a x -=后 ,就认为32a x -= 应为原方程的解,实际上若32ax -==2 时,原方程却没有解。

故应将322ax -==排除。

解答过程应是:去分母:22+-=+x a x 解之得32ax -=由于原方程有正数解,故必有32a x -=2≠且32ax -=>0从而4-≠a 且a<2 即当a<2且4-≠a 时原分式方程的解为正数。

23【解答】解:(1)设B 种粽子单价为x 元/个,则A 种粽子单价为1.2x 元/个, 根据题意,得:+=1100,解得:x =2.5,经检验,x =2.5是原方程的解,且符合题意, ∴1.2x =3.答:A 种粽子单价为3元/个,B 种粽子单价为2.5元/个. (2)设购进A 种粽子m 个,则购进B 种粽子(2600﹣m )个, 依题意,得:3m+2.5(2600﹣m )≤7000, 解得:m ≤1000.答:A 种粽子最多能购进1000个.24.解:(1)设购买一个B 商品需要x 元,则购买一个A 商品需要(x +10)元, 依题意,得:=, 解得:x =5,经检验,x =5是原方程的解,且符合题意, ∴x +10=15.答:购买一个A 商品需要15元,购买一个B 商品需要5元. (2)设购买B 商品m 个,则购买A 商品(80﹣m )个, 依题意,得:,解得:15≤m ≤16. ∵m 为整数, ∴m =15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.人教版八年级上册数学《第15章分式》单元测试题一.选择题(共10小题)1.下列各式中,是分式的有(),,,﹣,,,.A.5个B.4个C.3个D.2个2.要使分式有意义,x必须满足的条件是()A.x≠3B.x≠0C.x>3D.x=33.若分式的值为0,则x的值为()A.﹣1B.0C.1D.±14.如果代数式的结果是负数,则实数x的取值范围是()A.x>2B.x<2C.x≠﹣1D.x<2且x≠﹣15.如果将分式(x,y均为正数)中字母的x,y的值分别扩大为原来的3倍,那么分式的值()A.不改变B.扩大为原来的9倍C.缩小为原来的D.扩大为原来的3倍6.化简的结果为()A.﹣B.﹣y C.D.7.小明骑自行车沿公路以akm/h的速度行走全程的一半,又以bkm/h的速度行走余下的一半路程;小刚骑自行车以akm/h的速度走全程时间的一半,又以bkm/h的速度行走另一半时间(a≠b),则谁走完全程所用的时间较少?()A.小明B.小刚C.时间相同D.无法确定8.下列是最简分式的是()A.B.C.D.9.化简:的结果是()A.﹣1B.(x+1)(x﹣1)C.D.10.某校用500元钱到商场去购买“84“消毒液,经过还价,每瓶便宜1.5元,结果比用原价多买了10瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()A.﹣=10B.﹣=10C.﹣=1.5D.﹣=1.5二.填空题(共8小题)11.若+=3,则的值为.12.计算:(x+2+)=.13.已知a+b=3,ab=1,则+的值等于.14.若(a2﹣1)0=1,则a的取值范围是.15.计第:3﹣1×()0=16.李明同学从家到学校的速度是每小时a千米,沿原路从学校返回家的速度是每小时b千米,则李明同学来回的平均速度是千米/小时.(用含a,b的式子表示)17.已知分式的值为0,则x=.18.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,则乙施工队单独完成此项工程需天.三.解答题(共7小题)19.解分式方程:(1);(2).20.计算题(1)•(2)+(3)﹣21.先约分,再求值:,其中x=2,y=3.22.小马虎解方理+=3出现了错误,解答过程如下:方程两边都乘以x,得x﹣1+2=3(第一步)移项,合并同类项,得x=2(第二步)经检验,x=2是原方程的解(第三步)(1)小马虎解答过程是从第步开始出错的,出错原因是;(2)请写出此题正确的解答过程.23.甲、乙两个工程队均参与某筑路工程,先由甲队筑路40公里,再由乙队完成剩下的筑路工程60公里.已知甲、乙两队平均每天筑路公里数之比为4:5,甲队比乙队少筑路10天,求乙队平均每天筑路的公里数.24.“母亲节”前夕,某花店用3000元购进了第一批盒装花,上市后很快售完,接着又用4000元购进第二批盒装花.已知第二批所购花的进价比第一批每盒少3元,且数量是第一批盒数的1.5倍.问第一批盒装花每盒的进价是多少元?25.某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?2018年秋人教版八年级上册数学《第15章分式》单元测试题参考答案与试题解析一.选择题(共10小题)1.【解答】解:分式的有:,﹣,,,共4个,故选:B.2.【解答】解:当分母不等于0,即3﹣x≠0,解得,x≠3故选:A.3.【解答】解:∵分式的值为0,∴x2﹣1=0,解得:x=±1.故选:D.4.【解答】解:∵代数式的结果是负数,而x2+1>0,∴x﹣2<0,解得:x<2.故选:B.5.【解答】解:根据题意得:=,则分式的值不改变,故选:A.6.【解答】解:==,故选:D.7.【解答】解:设全程为1,小明所用时间是=;设小刚走完全程所用时间是x小时.根据题意,得ax+bx=1,x=.则小刚所用时间是.小明所用时间减去小刚所用时间得﹣=>0,即小明所用时间较多.故选:B.8.【解答】解:A、原式=,所以A选项错误;B、为最简分式,所以B选项正确;C、原式=x﹣y,所以C选项错误;D、原式=x+y,所以D选项错误.故选:B.9.【解答】解:原式=•=故选:D.10.【解答】解:设原价每瓶x元,根据题意,得﹣=10.故选:B.二.填空题(共8小题)11.【解答】解:∵+=3,∴=3,即b+a=3ab,则===,故答案为:.12.【解答】解:原式=•=2(x﹣3)=2x﹣6故答案为:2x﹣613.【解答】解:+==,∵a+b=3,ab=1,∴=9﹣2=7,故答案为7.14.【解答】解:由题意可知:a2﹣1≠0,a≠±1故答案为:a≠±115.【解答】解:原式=×1=,故答案为:16.【解答】解:设从家到学校的路程为x千米,则从家到学校的时间时,从学校返回家的时间时,李明同学来回的平均速度是:=千米/时,故答案为.17.【解答】解:∵分式的值为0,∴x+3=0,x﹣2≠0,解得:x=﹣3.故答案为:﹣3.18.【解答】解:设甲施工队单独完成此项工程需x天,则乙施工队单独完成此项工程需x天.根据题意得:+=1.解这个方程得:x=25.经检验:x=25是所列方程的解.∴当x=25时,x=20.∴乙施工队单独完成此项工程需20天.故答案为:20.三.解答题(共7小题)19.【解答】解:(1)去分母得:6x=x+5,移项合并得:5x=5,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:3x﹣3=x2+x﹣x2+1,解得:x=2,经检验x=2是分式方程的解.20.【解答】解:(1)原式=••=;(2)原式=﹣==;(3)原式=﹣•=﹣=;21.【解答】解:∵=﹣=﹣(x﹣y)=y﹣x,x=2,y=3,∴原式=y﹣x=3﹣2=1.22.【解答】解:(1)小马虎解答过程是从第一步开始出错的,出错原因是去分母时漏乘常数项;故答案为:一;去分母时漏乘常数项;(2)正确的解答过程为:方程两边都乘以x,得x﹣1+2=3x,移项,合并同类项,得x=,经检验,x=是原方程的解.23.【解答】解:设甲队平均每天筑路4x公里,则乙队平均每天筑路5x公里,根据题意得:﹣=10,解得:x=0.2,经检验,x=0.2是所列分式方程的解,且符合题意,∴5x=1.答:乙队平均每天筑路1公里.24.【解答】解:设第一批盒装花每盒的进价是x元,则第二批盒装花每盒的进价是(x﹣3)元,根据题意得:1.5×=,解得:x=27,经检验,x=27是所列分式方程的解,且符合题意.答:第一批盒装花每盒的进价是27元.25.【解答】解:(1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+20)元,根据题意得:=2×,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+20=70.答:购买一个甲种足球需要50元,购买一个乙种篮球需要70元.(2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,根据题意得:50×(1+10%)(50﹣m)+70×(1﹣10%)m≤2910,解得:m ≤20.答:这所学校最多可购买20个乙种足球.人教版八年级数学上册第15章《分式》单元检测一.选择题(共10小题)1.在式子1a、、2334a b c 、、、中,分式的个数有( )A .2个B .3个C .4个D .5个2.如果分式的值为零,那么x 等于( ) A .1 B .﹣1C .0D .±13.将分式中的x ,y 的值同时扩大为原来的3倍,则分式的值( )A .扩大6倍B .扩大9倍C .不变D .扩大3倍4.计算结果是( )A .0B .1C .﹣1D .x5.横坐标和纵坐标都是整数的点叫作整点,函数的图象上的整点的个数是( ) A .3个 B .4个C .6个D .8个6.计算(﹣a )2•的结果为( ) A .bB .﹣bC .abD .b a7.如果a 2﹣6ab +9b 2=0(a 、b 均不为0),那的值是( )A .﹣34B .12C .﹣12D .348.若分式方程11(1)(2)x m x x x =+--+无解,则m 的值为( ) A .1B .1或﹣2C .0或3D .39.甲、乙两人3次都同时到某个体米店买米,甲每次买m (m 为正整数)千克米,乙每次买米用去2m 元.由于市场方面的原因,虽然这3次米店出售的是一样的米,但单价却分别为每千克1.8元、2.2元、2元,那么比较甲3次买米的平均单价与乙3次买米的平均单价,结果是( ) A .甲比乙便宜 B .乙比甲便宜C .甲与乙相同D .由m 的值确定10.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑车速度的2倍,现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.设小军骑车的速度为x 千米/小时,则所列方程正确的为( ) A .5x +16=52xB .5x ﹣16=52xC .5x +10=52xD .5x ﹣10=52x二.填空题(共8小题)11.人的头发直径约为0.00007m ,用科学记数法表示0.00007m= m . 12.计算:= .13.若分式的值为0,则x 、y 需要满足的条件为 . 14.化简:÷21m m-= . 15.若分式无意义,且=0,那么ab= . 16.计算:= .17.当a=2018时,分式的值是 .18.方程3x x -=2﹣33x-的增根是 三.分式的运算(共1小题)19.计算:(1)2222124a b a b a b a ab b ---÷+++;(2)22113646449xx y x y y x -+-+-.四.解方程(共1小题) 20.解分式方程(1)﹣=0(2)+2=五.化简并求值(共2小题)21.先化简:后,再选择一个你喜欢的x值代入求值.22.化简并求值:(+)÷,其中x,y满足|x﹣2|+(2x﹣y﹣3)2=0.六.解答题(共2小题)23.已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.24.化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.七.应用题(共1小题)25.六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A 品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?2018—2019学年人教版八年级数学上册第15章《分式》单元检测参考简答一.选择题(共10小题)1.B . 2.B . 3.B . 4.C . 5.B . 6.A . 7.B . 8.C . 9.B . 10.B .二.填空题(共8小题)11. 7×10﹣5 . 12. x ﹣1 . 13. x=y 且x ≠1 . 14. m .15. ﹣12. 16. a +b . 17. 2019 . 18. x=3三.分式的运算(共1小题)19.计算:(1)2222124a b a b a b a ab b ---÷+++;(2)22113646449xx y x y y x-+-+-. 【解】:(1)原式=1﹣•=1﹣=(2)原式=﹣=﹣=﹣=﹣四.解方程(共1小题) 20.解分式方程 (1)﹣=0 (2)+2=【解】:(1)去分母得:x ﹣2﹣3x=0, 解得:x=﹣1,经检验x=﹣1是分式方程的解,所以原分式方程的解为x=﹣1;(2)原方程可变为:+2=32x -- 去分母得,x ﹣1+2(x ﹣2)=﹣3,整理,得3x ﹣5=﹣3,解得:x=23, 检验:把x=23代入x ﹣2≠0, 所以x=23是原方程的解. 五.化简并求值(共2小题)21.先化简:后,再选择一个你喜欢的x 值代入求值. 22.化简并求值:(+)÷,其中x ,y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0.21.【解】:原式=221(2)(2)4x x x x x x x ⎡⎤+--⨯⎢⎥---⎣⎦ =2(2)(2)(1)(2)4x x x x x x x x +---⨯-- =2224(2)4x x x x x x x --+⨯-- =21(2)x -; 当x=3时,原式=21=1(32)-. 注:本题答案不唯一,只要x 的取值不为0、2、4,计算正确均可得分.22.【解】:原式=•=,∵|x ﹣2|+(2x ﹣y ﹣3)2=0,∴|x﹣2|=0,(2x﹣y﹣3)2=0,∴x=2,y=1.∴原式==43.六.解答题(共2小题)23.已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.【解】:方程两边同时乘以(x+2)(x﹣1),去分母并整理得(m+1)x=﹣5,(1)∵x=1是分式方程的增根,∴1+m=﹣5,解得:m=﹣6;(2)∵原分式方程有增根,∴(x+2)(x﹣1)=0,解得:x=﹣2或x=1,当x=﹣2时,m=1.5;当x=1时,m=﹣6;(3)当m+1=0时,该方程无解,此时m=﹣1;当m+1≠0时,要使原方程无解,由(2)得:m=﹣6或m=32,综上,m的值为﹣1或﹣6或1.5.24.化简,并求值,其中a与2,3构成△ABC的三边,且a为整数.【解】:原式=•+=+==,∵a与2,3构成△ABC的三边,∴1<a<5,且a为整数,∴a=2,3,4,又∵a≠2且a≠3,∴a=4,当a=4时,原式=1.七.应用题(共1小题)25.六•一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A 品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.(1)求A、B两种品牌服装每套进价分别为多少元?(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?【解】:(1)设A品牌服装每套进价为x元,则B品牌服装每套进价为(x﹣25)元,由题意得:=×2,解得:x=100,经检验:x=100是原分式方程的解,x﹣25=100﹣25=75,答:A、B两种品牌服装每套进价分别为100元、75元;(2)设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,由题意得:(130﹣100)a+(95﹣75)(2a+4)>1200,解得:a>16,答:至少购进A品牌服装的数量是17套.人教版八年级数学上册第十五章分式单元测试题(2)一、选择题1.如果分式有意义,则x的取值范围是()A. 全体实数B. x≠1C. x=1D. x>12.如果把分式中的x和y都扩大3倍,那么分式的值是( )A. 扩大3倍;B. 不变;C. 缩小3倍;D. 缩小6倍.3.下列分式中,最简分式是()A. B. C. D.4.若分式的值为零,则()A. x=3B. x=﹣3C. x=2D. x=﹣25.计算的结果是( )A. a-bB. a+bC. a2-b2D. 16.计算的结果是()A. B. C. D.7.(- )-1=()A. B. C. 3 D. -38.已知x2﹣3x+1=0,则的值是()A. B. 2 C. D. 39.化简=()A. B. C. D.10.若关于的方程无解,则的值是()A. 1B. 2C. 3D. 411.甲、乙二人做某种机械零件,已知甲每小时比乙少做6个,甲做60个所用时间与乙做90个所用时间相等,求甲、乙每小时各做零件多少个.如果设甲每小时做x个,那么所列方程是()A. B. C. D.二、填空题12.当x________时,分式的值为0.13.若把分式的x、y同时扩大10倍,则分式的值________(填变大,变小,不变)14.约分:________.15.计算:=________.16.已知,则=________17.计算:= ________ .18.当x=2018时,分式的值为________.19.________.20.若关于x的分式方程有增根,则________.21.关于x的方程的解是________.三、计算题22.化简:(1)(2)23.解方程:.24.先化简( -a+1)÷ ,并从0,-1,2中选一个合适的数作为a的值代入求值.四、解答题25.甲、乙两名同学在练习打字时发现,甲打1800字的时间与乙打2400字的时间相同。

相关文档
最新文档