人教版数学八年级上册第十五章 分式单元测试题
人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
RJ人教版八年级上册第十五章《分式》单元测试卷内有答案与解析

第十五章《分式》单元测试卷 (时间:120 分钟满分:120 分)第Ⅰ卷选择题 (共42 分)一、选择题(本大题共16个小题,1~6小题,每小题2 分;7~16 小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填入后面的括号里) 1.给出下列式子:①24x +;②3xy+yz ;③199;④ab;⑤6m n+.其中是分式的是 【 】A.①③④B.①②⑤C.③⑤D.①④ 2.下列说法中,正确的是【 】A.形如AB的式子叫分式 B.分母不等于0,分式有意义 C.分式的值等于0,分式无意义 D.分子等于0,分式的值就等于0 3.如果分式31x - 有意义,则x 的取值范围是 【 】A.全体实数B.x=1C.x ≠1D.x=04.将分式121132a b a b +-的分子和分母中的各项系数都化为整数,应为 【 】A. 3632a b a b +-B.2323a b a b +-C.3623a b a b+-D.3623a ba b--5.如果分式2xx-的值为零,那么x 的值为【 】A.-2B.0C.1D.2 6.下列分式中与分式-xx y-的值相等的是【 】A.xx y ---B.x x y - C.-x y x- D.x x y+ 7.下列分式中是最简分式的是【 】A.221x x + B.24xC.211x x --D.11xx -- 8.对于非零的实数a 、b ,规定a ⊕b=1b- 1a .若2⊕(2x-1)=1,则x=【 】A.56B.54C.32D.-169.设k=(甲图中阴影部分面积):(乙图中阴影部分面积)(a >b >0),则有【 】A.k >2B.1<k <2C.12<k <1D.0<k <1210.若113⨯+ 135⨯ +157⨯ +…+1(21)(21)n n -⨯+的值为1735,则正整数n 的值是【 】A.16B.17C.18D.19 11.已知x ≠0,y ≠0,且x ,y 满足x 2-4xy+4y 2=0,则x yx y-+ 的值为【 】A.-13B.-13yC.13D.13y12.关于x 的分式方程2334ax a x +=-的根为x=1,则a 的取值为【 】A.1B.3C.-1D.-3 13.下列运算正确的是【 】A.(11x -)0=0(x ≠1) B.(1x )6÷(1x )3=(1x)2C.(1x )2·(1x )3=(1x)6D.x -p= 1x p (x ≠0,p 为正整数)14.父子两人沿周长为a 的2周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11 倍.已知儿子的速度为v ,则父亲的速度为【 】A.1.1vB.1.2vC.1.3vD.1.4v 15.某工厂生产一种零件,计划在20 天内完成,若每天多生产4 个,则15 天完成且还多生产10 个.设原计划每天生产x 个,根据题意可列分式方程为【 】A.20104x x ++ =15B.20104x x -+ =15C. 20104x x +- =15D.20104x x -- =1516.观察一列有规律的数:13,28,1315,424,535,….根据其规律可知第n 个数应该是【 】 A.2(1)1n n ++B.2(1)n n +C.21(1)1n ++ D.22n n n-第Ⅱ卷非选择题 (共78 分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填入题内的横线上)17.如果a b=2,则2222a ab b a b-++= .18.若22223a a b b ⎛⎫⎛⎫÷= ⎪⎪ ⎪⎝⎭⎝⎭,则a 4b 4的值是 . 19.关于x 的分式方程7311mx x +=--有增根,则m 为 . 20.小成每周末要到距离家5 km 的体育馆打球,他骑自行车前往体育馆比乘汽车多用10 min ,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x km/h ,根据题意列方程为________________. 三、解答题(本大题共6 个小题,共66 分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9 分) 先化简,再求值:21112aa a a a⎛⎫+÷ ⎪+⎝⎭++,其中-1. 22.(本小题满分10 分) 在等式24111+=-+的两个方格内分别填入一个数使等式成立,要求这两个数互为相反数,则第一个方格内的数是多少? 23.(本小题满分10 分) 若m 使关于x 的方程011x m xx x +-=-+产生增根,求m 的值. 24.(本小题满分11 分)一水池有一进水管和一排水管,开进水管注满水池需(a+2)h ,开排水管把一池水放完需(b-1)h.如果池中无水,先开进水管2h 后,再关闭进水管,打开排水管,问: (1)需多少时间才能把水池的水排完?(列出式子即可) (2)当a=2,b=1.5时,需多少时间才能把水池的水排完? 25.(本小题满分12 分)乌梅是郴州的特色时令水果.乌梅一上市,水果店的小李就用3 000 元购进了一批乌梅,前两天以高于进价40% 的价格共卖出150 kg ,第三天她发现市场上乌梅数量陡增,而自己的乌梅卖相已不大好,于是果断地将剩余乌梅以低于进价20%的价格全部售出,前后一共获利750 元,求小李所进乌梅的数量. 26.(本小题满分14 分) 阅读下列材料:方程1111123x x x x -=-++-的解为x=1; 方程1111134x x x x -=----的解为x=2;方程11111245x x x x -=-----的解为x=3; ……(1)请你观察上述方程与解的特征,写出能反映上述方程一般规律的方程,并求出这个方程的解; (2)根据(1)中所求得的结论,写出一个解为x=-5 的分式方程. 答案 一、1.D 点拨:根据分式定义,分母中应含有字母.2.B 点拨:选项A 中,缺少条件B ≠0;选项C 中,分式有无意义只须看分母是否为0;当分子等于0,分母不等于0 时,分式的值才为0.3.C 点拨:由x-1≠0 得,x ≠1.4.C 点拨:分子分母同乘以6 即可.5.D 点拨:由2-x=0 得x=2.6.B 点拨:x x x y x y -=--+;x xy x x y=--7.A 点拨:2421111;;121111x x x x x x x x --====-+-+-. 8.A 点拨:a ⊕b=1b -1a.若2⊕(2x-1)=11122x -=,解得x=56.9.B 点拨:k=()()()2212a b a b a b a b ba ab a a b a a+--+===+--,∵a >b ,∴0<a b <1,∴1<k<2.10.B 点拨:∵()()1111()212122121n n n n =--⨯+-+,∴111133557++⨯⨯⨯ +…+()()111111111(1)21212335572121n n n n =-+-+-++--⨯+-+=111217(1)2212212135n n n n n -=⨯==+++,∴n=17. 11.C 点拨:由x 2-4xy+4y 2=0,得x=2y ,则21233x y y y y x y y y y --===++. 12.D 点拨:把x=1 代入方程得23314a a +=-,解得a=-3.13.D 点拨:(11x -)0=1(x ≠1);(1x )6÷(1x )3=(1x )3;(1x )2·(1x )3=(1x)5.14.B 点拨:设父亲的速度为x ,则由题意得:11()x v x va a-+=,解得x=1.2v. 15.A 16.A 二、17.35点拨:由ab=2 得a=2b ,则222222222424a ab b b b b a b b b-+-+=++=35. 18.9 点拨:2442222222()()3a a a b a b b b b a ÷=⨯==,则a 4b 4=32=9.19.7 点拨:将原分式方程化为整式方程得7+3(x-1)=m ,∵分式方程有增根,则增根为x=1,将x=1 代入整式方程得m=7. 20.55126x x -= 三、21.解:化简,得原式=a+1.当 -1 时,原式 .22.解:设第一个方格内的数为x ,则第二个方格内的数为原x ,依题意可得分式方程:24111x x+=--,解得x=-1,经检验知x=-1 是该方程的根,故第一个方格内的数是原1. 23.解:m=-1. 24.解:(1)(2121a b ÷+- )h.(2)14h.25.解:设小李所进乌梅的数量为x kg ,根据题意,得150×3000x ·40%-(x-150)·3000x·20%=750,解得:x=200.经检验x=200 是原方程的解且符合题意.答:小李所进乌梅的数量为200 kg.26.解:(1)方程与解的特征是:方程共四项,分子都是1,左边两项与右边两项都是差的形式,且分母相差1,从整体上看四个分母中,若其解的代数式放在中间,则依次递减1,所以一般规律方程是:1111134x a x a x a x a -=-++-+-+-(a 取整数),其解是x=-a+2.检验:对方程两边分别通分,得2211(21)(1)(27)(3)(4)x a x a a x a x a a --=+-+-+-+--所以(2a-7)·x+(a-3)(a -4)=(2a-1)x+a (a-1).所以x=-a+2. (2)解为x=-5 的分式方程是11117643x x x x -=-++++.。
人教版八年级数学上册第十五章分式单元测试题(有答案)

. 若每个甲种零件的进价
比每个乙种零件的进价少 2 元 , 且用 80 元购进甲种零件的数量与用 100 元购进乙种零件的数量相同 .
(1) 求每个甲种零件、每个乙种零件的进价分别为多少元
?
(2) 若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的
3 倍还少 5 个 , 购进两种零件的
总数量不超过 95 个 , 该五金商店每个甲种零件的销售价格为 12 元 , 每个乙种零件的销售价格为 15
由题意 , 得
, 解得 x=10.
检验 : 当 x=10 时 ,x(x- 2) ≠0, 故 x=10 是原分式方程的解 . 10-2=8( 元 ). 故每个甲种零件的进价为 8 元 , 每个乙种零件的进价为 10 元. (2) 设购进乙种零件 y 个, 则购进甲种零件 (3y-5) 个 , 由题意 , 得
为
.
10. 如果实数 x 满足 x 2+2x-3=0, 那么
的值为
.
11. 若关于 x 的方程
无解 , 则 m的值是
.
12. 甲、乙工程队分别承接了 160 m,200 m 的管道铺设任务 , 已知乙工程队比甲工程队每天多铺设 5
m,甲、乙工程队完成铺设任务的时间相同 , 问甲工程队每天铺设多少米 ?设甲工程队每天铺设 x m,
A. 是原来的 20 倍
B. 是原来的 10 倍
C.
是原来的
D. 不变
3. 计算 -2 2+(-2) 2-
=( )
A.2
B.-2
C.6
4. 能使分式 的值为 0 的 x 的值是 ( )
A.x=0
B.x=1
C.x=0
5. 化简 :
人教版八年级数学上:第15章《分式》单元测试(含答案)(含答案)

第15章分式一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作______(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?4.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.6.(2014•晋江市)某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?18.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.19.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.20.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.21.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?22.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?23.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)24.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?25.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?26.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?27.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?30.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.第15章分式参考答案与试题解析一、解答题1.某市一项民生改造工程,由甲、乙两工程队合作20天可完成,若单独完成此项工程,甲工程对所用天数是乙工程队的2倍.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)甲工程队单独做a天后,再由甲、乙两工程队合作天(用含a的代数式表示)可完成此项工程.已知甲工程队施工费每天1万元,乙工程队每天施工费2.5万元,求甲工程队要单独施工多少天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.【解答】解:(1)设乙工程队单独完成此项工程需要x天,由题意得: +=,解得:x=30,经检验:x=30是原分式方程的解,2x=60.答:甲、乙两工程队单独完成此项工程各需要60天,30天;(2)甲工程队单独做a天后,再由甲、乙两工程队合作:(1﹣a×)÷(+)=(天),由题意可得:1•a+(1+2.5)•≤64,解得:a≥36,答:甲工程队要单独施工36天后,再由甲、乙两工程队合作完成剩下的工程,才能使工程费不超过64万元.故答案为:天.2.某市修通一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米.已知普通列车与动车的速度比是2:5,从该市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.【解答】解:设普通列车的速度2x千米/小时,则动车的速度是5x千米/小时,由题意有:解得:x=40,经检验:x=40是分式方程的解,∴2x=80,5x=200.答:普通列车的速度80千米/小时,动车的速度是200千米/小时.3.市实验学校为创建书香校园,去年进一批图书.经了解,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求去年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与去年相比保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能购进多少本文学书?【解答】解:(1)设文学书的单价是x元,则科普书的单价是(x+4)元,根据题意,得=,解得x=8.经检验:x=8是原分式方程的解,x+4=12.答:文学书的单价是8元,则科普书的单价是12元.(2)设购进科普书65本后还能购进y本文学书,则12×65+8y≤1250,解得:y≤58.75,∵y为整数,∴y最大是58,答:购进科普书65本后至多还能购进58本文学书.4.(2014•西藏)列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.5.某工程开准备招标,指挥部现接到甲乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙合作16天可以完成.求甲、乙两队单独完成这项工程各需多少天.【解答】解:设甲队单独完成这项工程需x天,由题意得:×6+(+)×16=1,解得:x=30,经检验:x=30是原分式方程的解,2x=60,答:甲队单独完成这项工程需30天,乙队单独完成这项工程需60天.6.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.7.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.8.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.9.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得 x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.10.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.11.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.12.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得 x=5经检验,x=5是原方程的解.所以 x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得 25a+5(2a+8﹣a)≤670解得 a≤21∴荣庆公司最多可购买21个该品牌的台灯.13.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.14.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.15.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.16.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.17.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.。
人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x ,38a ,2π,1x a -中,属于分式的个数为( ) A .0个B .1个C .2个D .3个 2.下列分式为最简分式的是( )A .11a a --B .235xy y xy -C .22m n n m +-D .22a b a b++ 3.下列各式中,变形不正确的是( )A .2233x x=-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 4.计算322b b 1·a a b⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的值为 ( ) A .222b a B .6ab 2 C .8a D .15.计算:22m-1m -1m m÷的结果是 ( ) A .m m 1+ B .1m C .m-1 D .1m-16.若111u v f+=,则用u 、v 表示f 的式子应该是( ) A .u v uv + B .uv u v + C .v u D .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( )A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米 9.计算20140的结果是( )A .1B .0C .2014D .﹣1 10.当m 为何值时,方程会产生增根( ) A.2 B.-1 C.3 D.-311.下列各式中,是分式方程的是( )A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+= B.+= C.=- D.=+二、填空题13.当x =_________时,分式242x x -+的值为0. 14.当x =__________时,分式3x x-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b b a b b ab a b ab a ++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18人教版八年级上数学第十五章分式单元测试(解析)一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=32.下列等式成立的是( )A.+=B.=C.=D.=-3.下列运算结果为x-1的是( )A.1-B.·C.÷D.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.96.计算÷-的结果为( )A. B. C. D.a7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.10.当x= 时,分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .12.计算:÷= .13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-114.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.计算(x+1)的结果是.16.若a2+5ab-b2=0,则-的值为.三、解答题(共52分)17.(4分)化简:-.18.(5分)计算:÷.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.(6分)先化简,再求值:÷·,其中a=-,b=.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?第十五章分式答案解析满分:100分;限时:60分钟一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=3答案 C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.2.下列等式成立的是( )A.+=B.=C.=D.=-答案 C +=,所以A错误;=不成立,所以B错误;==,所以C正确;=-,所以D错误,故选C.3.下列运算结果为x-1的是( )A.1-B.·C.÷D.答案 B 选项A的运算结果为,选项B的运算结果为x-1,选项C的运算结果是,选项D的运算结果为x+1.故选B.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n答案 A +=-==m+n,故选A.5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.9答案 C ·=·=.当x=6,y=3时,原式==6.6.计算÷-的结果为( )A. B. C. D.a答案 C ÷-=÷-=×-=-=,故选C.7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关答案 B 设从A地到B地的距离为2s,∵甲的速度v保持不变,∴甲所用时间为,∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为+=+,∵s>0,v>0,∴+>,故甲先到达B地.8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3答案D解分式方程,得x=-3-m,∵方程的解为正数,∴-3-m>0,解得m<-3,∵x+1≠0,∴x≠-1,∴-3-m≠-1,解得m≠-2,∴m<-3,故选D.二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.答案 6.9×10-7解析0.000 000 69=6.9×10-7.10.当x= 时,分式的值为0.答案 2解析分式的值为0,则即所以当x=2时,原分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .答案+=11解析根据题意,可列方程为+=11.12.计算:÷= .答案解析原式=a4b2c-2÷=a4b2c-2÷=b6c-2=.13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-1答案解析由题意,得=4,解得x=,经检验,x=是方程=4的解.14.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件. 答案9解析设甲每小时做x个零件,则乙每小时做(x-3)个零件,根据题意可得=,解得x=9.经检验,x=9是方程的解,且符合题意.因此甲每小时做9个零件.15.计算(x+1)的结果是.答案x解析(x+1)=(x+1)=(x+1)=x.16.若a2+5ab-b2=0,则-的值为.答案 5解析由a2+5ab-b2=0,得b2-a2=5ab,∴-===5.三、解答题(共52分)17.(4分)化简:-.解析原式=-=-==1.18.(5分)计算:÷.解析原式=·=·=·=.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解析设A4薄型纸每页的质量为x克,则厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得,x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.20.(6分)先化简,再求值:÷·,其中a=-,b=.解析÷·=··=··=.当a=-,b=时,原式==-6.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.解析(1)去分母,得x-3+x-2=-3,移项,得x+x=-3+3+2,合并同类项,得2x=2,系数化为1,得x=1,经检验,x=1为原分式方程的根,∴分式方程的解为x=1.(2)两边同时乘(x+1)(x-1),得3(x-1)=x(x+1)-(x+1)(x-1),解得x=2. 检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴原方程的解为x=2.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么? 解析原式=·=·=.(1)当x=3时,原式=2.(2)不能.理由:如果=-1,那么x+1=-x+1,则x=0,当x=0时,原代数式中的除式=0,矛盾, ∴原代数式的值不能等于-1.23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.解析 原式=÷- =×- =- =,∵a=(3-)0+-=1+3-1=3,∴原式===-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售? 解析 (1)设第一次购入的空调每台进价是x 元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元, 第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=(64 000-160y)元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=(18 000-160y)元, 依题意,得18 000-160y≥(24 000+52 000)×22%,解得y≤8.答:最多可将8台空调打折出售.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( )A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x +-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。
新人教版八年级数学上册第十五章《分式》单元测试卷及答案

新人教版八年级数学上册第十五章《分式》单元测试试卷及答案一、选择题1、若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠32、若分式的值为0,则x的值为 ( )A.2 B.2 C.-2 D.03、分式、与的最简公分母是 ( )A. B. C. D.4、若中的和的值都缩小2倍,则分式的值()A.缩小2倍 B.缩小4倍 C.扩大2倍 D.扩大4倍5、已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C. D.6、(2017临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A. B. C. D.7、方程的根为A.或3 B. C.3 D.1或8、(2016黑龙江省齐齐哈尔市)若关于x的分式方程的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,39、3-去分母,得().A.3-2(5x+7)=-(x+17) B.12-2(5x+7)=-x+17 C.12-2(5x+7)=-(x+17) D.12-10x+14=-(x+17)10、某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍这种计算器,于是又用2580元购进所需计算器,由于量大每个进价比上次优惠1元,该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利()元.A.508 B.520 C.528 D.560二、填空题11、计算_______________.12、函数的自变量x的取值范围是________.13、计算的结果为__________.14、计算:=________.15、已知:,则=_________.16、某商场销售一种商品,第一个月将此商品的进价提高20%作为销售价,共获利1200元,第二个月商场搞促销活动,将此商品的进价提高15%作为销售价,第二个月的销售量比第一个月增加了80件,并且商场第二个月比第一个月多获利300元.设此商品的进价是x元,则可列方程________.17、(2017黄冈)化简:=______.18、当x=_____时,分式的值为0.19、已知9x-6x+1=0,则代数式3x+的值为________20、若代数式的值为零,则代数式(a+2)(a2-1)-24的值是_________.三、计算题21、(1)计算:(2017-π)0-+|-2|;(2)化简:.22、解方程:.23、先化简,再求值:,其中.24、先化简,再求值:其中x=.四、解答题(题型注释)25、为了防止水土流失,某村开展绿化荒山活动,计划经过若干年使本村绿化总面积新增360万平方米.自2014年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.问实际每年绿化面积多少万平方米?26、小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生.若校车的速度是他骑车速度的2倍,则现在小军乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同,试求小军骑车的速度.27、今年某中学到鹅鼻嘴公园植树,已知该中学离公园约15km,部分学生骑自行车出发40分钟后,其余学生乘汽车出发,汽车速度是自行车速度的3倍,全体学生同时到达,设自行车的速度为v km/h.(1) 求v的值;(2) 植树活动完成后,由于学生比较劳累,骑自行车的学生的速度变为原来的,汽车速度不变,为了使两批学生同时到达学校,那么骑自行的学生应该提前多少时间出发.参考答案1、D2、B3、B4、C5、D6、B7、C8、C9、C10、B11、12、x>213、x+114、2a+1215、1516、17、118、219、220、-2421、(1)-1 (2)22、x=0.23、2-24、25、实际每年绿化面积为54万平方米.26、1527、(1) ;(2)骑自行车的学生应提前出发.【解析】1、分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选:D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.2、分析:要使一个分式的值为零,则必须满足分式的分子为零,分母不为零,根据性质即可求出答案.详解:根据题意可得:,解得:x=2,故选B.点睛:本题主要考查的是分式的性质,属于基础题型.要使分式有意义,则必须满足分式的分母不为零;要使一个分式的值为零,则必须满足分式的分子为零,分母不为零.3、分析:最简公分母通常取各分母系数的最小公倍数与字母因式的最高次幂的积,根据定义即可得出答案.详解:根据题意可得最简公分母为:12abc,故选B.点睛:本题主要考查的就是最简公分母的求法,属于基础题型.理解最简公分母的定义是解决这个问题的关键.4、分析:依题意分别用和去代换原分式中的x和y,利用分式的基本性质化简即可.详解:分别用和去代换原分式中的x和y得,,∴分式的值变为原来的2倍.故选C.点睛:本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.5、x2-3x-4=0,(x-4)(x+1)=0,解得x1=4,x2=-1,∵x2-x-4≠0,∴x≠4,∴当x=-1时,原式=.故选D.点睛:本题在解出x代入分式的时候一定要考虑分式有意义的条件即分母不为0.6、解:设乙每小时做x个,则甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得:,故选B.7、分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3.故选C.点睛:本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8、试题解析:等式的两边都乘以(x﹣2),得:x=2(x﹣2)+m,解得x=4﹣m,x=4﹣m≠2,由关于x的分式方程的解为正数,得:m=1,m=3,故选C.点睛:本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.9、试题解析:方程两边同乘以4得,12-2(5x+7)=-(x+17).A.第一项3没有乘以公分母4;B.等号右边去括号未变号;C.正确;D. 等号左边去括号未变号.故选C.点睛: 本题主要考查一元一次方程的解法,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10、试题分析:设第一次购进计算器x个,则第二次购进计算器3x个,根据每个进价比上次优惠1元,求出购进计算器的个数,再根据总售价﹣成本=利润,即可得出答案.解:设第一次购进计算器x个,则第二次购进计算器3x个,根据题意得:=+1,解得:x=20,经检验x=20是原方程的解,则这笔生意该店共盈利:[50×(20+60﹣4)+4×50×90%]﹣(880+2580)=520(元);故选B.考点:分式方程的应用.11、分析:根据绝对值的定义可知,负指数幂的运算法则可知,再由实数的运算法则计算即可.详解:原式=.点睛:本题考察了去绝对值符号、负指数幂.12、根据题意得,x﹣2>0,解得x>2.故答案是:x>2.13、=.故答案是:x+1.14、原式====2a+12.故答案为2a+12.点睛:分式混合运算的步骤:先乘方,再乘除,最后加减,有括号的要先算括号内的.注意分式化简的最后结果是最简分式.15、【分析】利用等式性质两边除以a,得;同时平方得;再利用乘法公式,原式化为:,再代入求值.【详解】等式两边除以a,得:,所以,,所以,,所以,,所以,原式===15【点睛】此题考核知识点:等式的性质;整式乘法公式.解题的关键在于:灵活运用等式基本性质对等式进行变形,灵活运用整式乘法公式.16、分析:求的是单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:第二个月的销售量比第一个增加了80件.等量关系为:第二个月的销售量-第一个月的销售量,算出后可得到此商品的进价.详解:解:设此商品进价是x元.,则有,故答案为:.点睛:本题考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.17、原式===1,故答案为:1.18、=0,则19、9x2-6x+1=0利用完全平方公式对方程左侧的整式进行因式分解,得 (3x-1)2=0,∴3x-1=0,∴.当时,.故本题应填写:2.20、因为=0,所以-1=0且a2+a-2≠0,解得a=±1,且a≠1,a≠-2,所以a=-1.将a=-1代入(a+2)(a2-1)-24得(-1+2)×(1-1)-24=-24.故答案为:-24.点睛:分式为零的条件是:分子为零且分母不为零.21、分析:(1)根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可;(2)先算减法和分解因式,把除法变成乘法,最后根据分式的乘法法则进行计算即可.本题解析:解:(1)原式=1-4+2=-1.(2)原式=÷==·=.22、方程两边同时乘以:得:,解得:,检验:当时,,∴是原方程的解.点睛:解分式方程的“基本思想是去分母化分式方程为整式方程”,所以我们第一步要去分母,这时需注意方程两边各项要同时乘以最简公分母,不要漏乘;第二需注意解分式方程可能会产生增根,所以最后必须检验.23、试题分析:可先将小括号里的通分化简,然后将除法转化为乘法进行进一步化简。
人教版八年级上册 第十五章分式 单元测试试题(含答案)

第十五章分式单元测试题(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.使式子-有意义的x的取值范围是()A.x=1B.x≠±1C.x=0D.x≠02.下列分式是最简分式的是()A.B.-C.D.--3.下列运算错误的是()A.--=1 B.--=-1 C.--D.--4.下列方程是分式方程的是()A.--3=B.=10-x C.-D.5x+3=2x-25.解分式方程-=1时,去分母后可得到()A.x(2+x)-2(3+x)=1B.x(2+x)-2=2+xC.x(2+x)-2(3+x)=(2+x)(3+x)D.x-2(3+x)=3+x6.方程--=0的解是()A.x=2B.x=1C.x=D.x=-27.将-,-,-这三个数按从小到大的顺序排列,正确的是()A.---B.---C.---D.---8.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x个鸡蛋,根据题意下列方程正确的是()A.-=10B.--=10 C.--=10 D.-=109.在正数范围内定义一种运算“※”,其规则为a※b=,如2※4=.根据这个规则,方程3※(x+1)=1的解为()A.x=B.x=1C.x=-1D.x=-10.学完分式运算后,老师出了一道题“化简--”.小明的做法是:原式=-----------;小亮的做法是:原式=(x+3)(x-2)+(2-x)=x2+x-6+2-x=x2-4;小芳的做法是:原式=-----=1.其中做法正确的是 ()A.小明B.小亮C.小芳D.没有正确的二、填空题(每小题4分,共32分)11.若分式-的值为0,则实数x的值为.12.计算(-1)2×--(π-3.14)0=.13.计算 -·3m-3n2=.14.已知关于x的分式方程-=2有增根,则a=.15.一组按规律排列的式子:a2,,,,…,则第n(n为正整数)个式子是.16.当x=时,分式--的值比分式-的值大3.17.已知x+=9,则x2+的值为.18.一种花粉颗粒的直径约为0.0000065米,用科学记数法表示为.三、解答题(共58分)19.(8分)计算·--.20.(8分)先化简,再求值:--,其中x=-.21.(9分)解方程---5.22.(9分)解方程=1.--23.(10分)甲、乙两位采购员同去一家饲料公司分别购买两次饲料.两次饲料的价格略有变化,两位采购员的购货方式也不同,其中甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.设两次购买饲料的单价分别为m元/千克和n元/千克(m,n是正数,且m≠n),那么甲、乙所购买的饲料的平均单价各是多少?哪一个较低?24.(14分)烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其他成本不计).则:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式获利更高.第十五章分式单元测试题【答案与解析】1.B(解析:x2-1≠0,即当x≠±1时,-有意义.故选B.)2.C(解析:因为,所以A错误;因为--,所以B错误;是最简分式;因为----,所以D错误.故选C.)3.D(解析:因为----=1,所以A正确;因为---=-1,所以B正确;因为---,所以C正确;因为---,所以D错误.故选D.)4.A(解析:A.方程--3=的分母中含未知数x,所以它是分式方程,故本选项正确;B.方程=10-x的分母中不含未知数,所以它不是分式方程,故本选项错误;C.方程-的分母中不含未知数,所以它不是分式方程,故本选项错误;D.方程5x+3=2x-2是整式方程,故本选项错误.故选A.)5.C(解析:方程两边都乘(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C.)6.A(解析:去分母,得x+1-3(x-1)=0,去括号,得x+1-3x+3=0,解得x=2,经检验,x=2是原分式方程的解.故选A.)7.A(解析:因为(-3)0=1,-=4,(-4)2=16,1<4<16,所以(-3)0<-<(-4)2.故选A.)8.B(解析:每个甲型包装箱可装x个鸡蛋,根据若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,可列出分式方程--=10.故选B.)9.A(解析:根据题意,得=1,去分母,得(x+1)+3=3(x+1),去括号得x+1+3=3x+3,解得x=,经检验,x=是分式方程的解.故选A.)10.C(解析:原式=-----=1,所以做法正确的应是小芳.故选C.)11.1(解析:由题意,得x2-1=0,且x+1≠0,解得x=1.故填1.)12.3(解析:原式=1×4-1=3.故填3.)13.(解析:-·3m-3n2=16m4n-4·3m-3n2=48mn-2=.故填.)14.-1(解析:方程两边都乘(x-3),得a+1=2(x-3 ,∵分式方程有增根,∴x-3=0,解得x=3,∴a+1=2× 3-3),解得a=-1.故填-1.)15.-(解析:分子部分为a的偶数次幂;分母为连续奇数,所以第n个式子是-.)16.1(解析:根据题意,得----=3,方程两边同乘2-x,得3-x+1=3(2-x),解得x=1.检验:当x=1时,2-x=1≠0,即x=1是原分式方程的解,即当x=1时,分式--的值比分式-的值大3.故填1.)17.79(解析:将x+=9两边平方,得=81,整理,得x2++2=81,所以x2+=79.)18.6.5×10-6米(解析:0.0000065是绝对值小于1的数,这类数用科学记数法表示的方法是写成a×10-n(1≤|a|<10,n为大于0的整数)的形式,从左起第一个非零数为6,其左边共有6个零,故0.0000065=6.5×10-6.) 19.解:原式=·-·=-a5.20.解:--·-=x-1.当x=-时,原式=x-1=--1=-.21.解:方程的两边同乘(x-1),得-3=x-5(x-1),解得x=2.检验,将x=2代入(x-1)=1≠0.∴x=2是原分式方程的解.22.解:两边同乘x2-9得3+x(x+3)=x2-9,化简得3x=-12,解得x=-4.检验:x=-4时,(x+3)(x-3)≠0,∴x=-4是原分式方程的解.23.解:∵甲每次购买1000千克,两次购买饲料的单价分别为m元/千克和n元/千克,∴甲所购买的饲料的平均单价为(元/千克),而乙每次用去800元,两次购买饲料的单价分别为m元/千克和n元/千克,∴乙所购买的饲料的平均单价为(元/千克),∴---,又m,n是正数,且m≠n,∴--->0,∴乙所购买的饲料的平均单价较低.24.解:(1)设苹果进价为每千克x元.根据题意,得400x+10%x-=2100,解得x=5,经检验x=5是原方程的解,且符合题意.答:苹果进价为每千克5元.(2)由(1)得每个超市苹果总量为=600(千克),甲超市大、小苹果售价每千克分别为10元和5.5元,则乙超市获利600×-=1650(元),∵甲超市获利2100元,2100>1650,∴甲超市销售方式获利更高.。
人教版八年级数学上册第十五章《分式》单元练习题(含答案)

则运算,若(-3) ? x = 2,则x 的值为( )《分式》单元练习卷•选择题要 使分式一=有意义,则x 的取值要满足(A. "■-如果把分式 ,中的x 和y 都扩大2倍,则分式的值(x+yb bea ac —2a =r (a 丰 0)aA . a > b >cB . c >a > bC . a >c > bD . c > b > a需要的天数为( C .1mn&若a 使关于x 的分式方程a+5 = 1的解为整数,且使关于y 的不等式组“^2^D . 213b = ,这里等式右边是通常的四a -ab3. A .扩大4倍 B .扩大2倍 C . 不变 D .缩小2倍F 列式子从左到右变形正确的是(4.如果 a = (- 2019) 0, b =( - 0.1) 1,c =')-2,那么* b 、c 三数的大小为 () 5. 已知丄- a A A . ,=2,则.的值是(b abB .-<C . 26. 分式方程 3 Y -3:.-::1--:.-的解是(A . x =-x = 2D . x = 4一项工程,甲单独做需要 m 天完成,乙单独做需要 n 天完成,「则甲、乙合作完成工程有解且最多有3个整数解,则所有符合条件的整数a 的值之和是( 2. 2 2 2A . (a+b ) = a +b2 2 2C . a - b =( a - b )竽430-7y^>-aA . m+n18 9.对于实数 a 、b ,定义一种新运算“ ? ”为:a?-C. §D.-—2 2 2丄 2 -10•已知x -—= 2,则x+—匸的值为()玄 K A . 2B . 4C . 6D . 811. “绿水青山就是金山银山”,为了加大深圳城市森林覆盖率,市政府决定在 2019年3月 12日植树节前植树2000棵,在植树400棵后,为了加快任务进程, 采用新设备,植树效 率比原来提升了 25%,结果比原计划提前 5天完成所有计划,设原计划每天植树 x 棵,依题意可列方程()x (14-25%) x 2000 2000-400= 5 x '(1+25%)= 2000-4002000-400二.填空题13 .若 x — 2y : — 3z ,则 的值是___________ .y-z11 爲亠卜I —14已知- 一则的值等于16 .若关于x 的分式」方程」・=—+1有增根,增根是 17 .为了美化校园环境,某中学今年春季购买了A ,B 两种树苗在校园四周栽种,已知树苗的单价比B 种树苗的单价多10元,用600元购买A 种树苗的棵数恰好与用 450元购买B 种树苗的棵数相同.若设A 种树苗的单价为x 元,则可列出关于x 的方程为 ______________ 18 .某班学生从学校出发前往科技馆参观,学校距离科技馆15km , 一部分学生骑自行车先走,过了 15min 后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度 是自行车速度的1.5倍,那么学生骑自行车的速度是 __________ km/h.2000 2000 「 — — 5 X 工(1+25 那)— 2000-400 2000-400 口 12.若分式方程:! = a 无解,则a 的值为(C . 0 或- 1D . 1 或-115 .当 x时,分式,无意义,当x =K +2 时,分式 亠的值是0.x+2解答题19. 解分式方程(1)―町7 q —20. 先化简,再求值:-- —*( a - 1),其中a=f^- 2.a+1 a+121. 某工地有72m2的墙面需要粉刷•若安排4名一级技工粉刷一天,结果还剩12m2墙面未能刷完;同样时间内安排6名二级技工去粉刷,则刚好全部刷完•已知每名一级技工比二级技工一天多粉刷3m2墙面.设每一名一级技工一天粉刷墙面xm2.(1)每名二级技工一天粉刷墙面 ________m2(用含x的式子表示);(2 )求每名一级技工、二级技工一天分别能粉刷多少m2墙面?(3)每名一级技工一天的施工费是300元,每名二级技工一天的施工费是200元.若另一工地有540m2的墙面需要粉刷,要求一天完工且施工总费用不超过10600元,则至少______ 名二级技工(直接写出结果)22. 若数a使关于x的分式方程—「一^ = 4的解为正数,且使关于y的不等式组{ 3 2 的解集为y v- 2,求符合条件的所有整数a的和I 2(y-a)<023. 2019年8月,因暴雨某县受灾,某市抗灾基金会组织一批救灾物资用15列车厢组成的一列火车运到该县,两地相距180km,为了更快的到达目的地. 列车以原速的1.5倍行驶, 这样提前了半小时到达.(1 )求提速后列车的速度;(2 )若车厢分A、B两种组成,每个A种车厢能运送5万元的救灾物资,每个B种车厢能运送7万元的救灾物资,总物资不低于是85万,那么最多可安排多少个A种车厢?24•阅读下列资料,解决问题:定义:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:,’,这样的分式就是真分式;当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:'!'X'l 分式也可以化为带分式(即:整式与真分式的和的形式)将假分式一".丁 |分别化为带分式;三一丄这样的分式就是假分式,假2x+l如: (1)工+2 (蓝亠1)+32分式亠是2K ----------(填“真分式”或“假分式”);(3)x-1 x+2如果分式上第亠二一卜’的值为整数,求所有符合条件的整数x的值.K+3(3)•:选择题1解:要使分式有意义, 3x^5贝3x — 5 工 0, 解得:X 「. 故选:A . 6xy s+y故选:B .2 2 23.解:A .根据完全平方公式,(a+b ) = a +2ab+b ,即A 项不合题意,B .若c = 0,则.无意义,即B 项不合题意, ac2 2 2c .根据完全平方公式,a — 2ab+b =( a — b ),即C 项不合题意, 2 1 D .根据负整数指数幕的定义, a—2=一耳(a 工0),即D 项符合题意,茁故选:D .1— 432 q4.解:a = 1, b =( •说)=—10,c =(匸)=—,••• a > c > b , 故选:C .••原式=-2, 故选:D .6.解:去分母得: 3 — x+3 = x — 2,解得:x = 4,经检验x = 4是分式方程的解,参考答案2•解:原式=2x+2y5.解:丄丄bpab•・ x = —7•解:甲单独做需要 m 天完成,则甲的工作效率为乙单独做需要n 天完成,则乙的工作效率为,故选:D .&解」:方程为 a+5 = 1两边同时乘以(x -2),可得1方34x - a - 5= x - 2, • x = 1+ a ,3•••分式方程的解为整数, ••• a 是3的倍数;由不等式组「•有解且最多有 3个整数解,• 3 v 「.a w 6,9v a w 12;• a 的取值为-6,— 3, 0, 3, 6, 9, 12; 当a = 3时,分式方程有增根,•所有符合条件的整数 a 的值之和是18 ; 故选:C .39.解:T a? b =,且(-3) ? x = 2,a -ab••• 2 (9+3x )= 3 •・ 6x =— 15经检验,x =-,是原方程的解.所以甲、乙合作完成工程需要的天数为-= m ninnirrFn由分式方程有增根,得到x - 3 = 0,即x = 3,11. 解:由题意可得,Ndix= 5,x ~x (l+25%)J 故选:D . 12.解:去分母得: x -a = ax+a ,即(a -1) x =- 2a ,显然a = 1时,方程无解;由分式方程无解,得到 x+1 = 0,即x =- 1, 把x =- 1代入整式方程得:- a+1 =- 2a ,解得:a =- 1, 综上,a 的值为1或-1, 故选:D .二.填空题(共6小题) 13. 解:••• x = 2y = 3z ,11…y = x , z = x ,y 2 3故答案为:9.故对答案为:—5故答案为:=-2, 2.16. 解:去分母得: m = 2 +x - 3,15.解:当x+2 = 0时,解得:x =- 当4 - x 2= 0且x+2工0时, 解得: 22时,分式.:无意义;x = 2时,分式二2—的值是0.x+210.解:原式= 故选:C .1 2 2—)+2 = 2 +2= 6,14. 解:已知等式整理得:■^―L = 2, 即卩 a - b =- 2ab ,ab 则原式=-5甜 ab-5,3把x = 3代入整式方程得: m = 2, 故答案为:x = 3, 217. 解:设A 种树苗的单价为x 元,贝U B 种树苗的单价为(X - 10)元,所以用600元购"买由题意,得二=丄丄x x-10 故答案是:一=:'.x x~1018. 解:设骑车学生每小时走 x 千米,解得:x _ 20,经检验x _ 20是原方程的解, 答:骑车学生每小时行 20千米. 故答案是:20. 三.解答题(共6小题)19. 解:(1)去分母得:2x+4_ 3x , 解得:x _ 4,经检验x _ 4是分式方程的解; (2)去分母得:x 2+2x - 1 _x 2- 4, 解得:x _- 1.5,经检验x _- 1.5是分式方程的解. 20•解:原式_a+1 a+11 a+2当a _ 一- 2时,原式_V3-2+2 V3A 种树苗的棵数是 —,用450元购买B 种树苗的棵数是450 x-10据题意得:1515 _ 15x 1.5K 60221 •解:(1)由题意得,每名二级技工一天粉刷墙面( x - 3) m ;故答案为:(x - 3)(2 )依题意列方程:「=—;解得x = 15经检验x = 15是原万程的解,99即每名一级技工和二级技“工一天分别能粉刷15m 、12m 墙面; (3)设需要m 名一级技工,需要 n 名二级技工,故答案为:5. + =4的解为 xT 1-y•••关于x 的分式方程 ——= 4的解为正数,X-1 1~聲[2(y-a)<0解不等式①得:y v- 2; 解不等式②得:y w a .•••关于y 的不等式组-「「的解集为y v- 2,\ 2(y-a)<0a 》一2.•/ a 为整数,•・ a = - 2、- 1、0、1、3、4、5, (—2) + (- 1) +0+1+3+4+5 = 10. 故符合条件的所有整数 a 的和是10. 23.解:(1)设提速前列车的速度为 xkm/h ,则提速后列车的速度为 1.5xkm/h ,依题意,得: -"=0.5 ,解得:x = 120,1 Bird-12n= 540 300m+200n=1060C , 一 i 一 - n=5答:至少需要 根据题意得, 解得:5名二级技工,22 •解:分式方程经检验,x= 120是所列分式方程的解,且符合题意,••• 1.5x= 180 •答:提速后列车的速度为180km/h •(2)设安排m个A种车厢,则安排(15 - m)个B种车厢,依题意,得:5m+7 (15 - m)> 85,解得:m w 10.答:最多可安排10个A种车厢.24•解:(1)v分子的次数大于分母的次数,2•分式兰—是假分式2x故答案为:假分式3+—=x - 2+——x+2(3)zF+弘声=(加—3)(x+3)+3 x+3K+33=2x- 3+ —x+3当x =- 6、- 4、- 2、0时,分式的值为整数.x+3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十五章 分式单元测试题
一、选择题(每小题4分,共20分)
1. 在式子1a 、2xy π、2334a b c 、56x +、78
y x +、109x y +中,分式的个数是( ) (A )2. (B )3. (C )4. (D )5.
2. 如果把分式10x x y
+中的x 、y 都扩大10倍,则分式的值( ) (A )扩大10倍. (B )扩大10倍.
(C )不变. (D )缩小到原来的
110. 3. 下列等式成立的是( )
(A )2(3)9--=-. (B )21(3)9--=
. (C )122
14()a a =. (D )70.0000000618 6.1810-=⨯.
4. 某厂去年的产值是m 万元,今年的产值是n 万元(m n <),则今年的产值比去年的产值增加的百分比是( ) (A )
100%m n n -⨯. (B )100%n m m
-⨯. (C )(1)100%n m +⨯. (D )100%10n m m -⨯. 5. 如图所示的电路的总电阻是6Ω,若123R R =,则1R 、2R 的值分别是( )
(A )1R =45Ω,2R =15Ω.
(B )1R =24Ω,2R =8Ω.
(C )1R =
92Ω,2R =32
Ω. (D )1R =23Ω,2R =29
Ω. 二、填空题(每小题4分,共20分)
6. x 、y 满足关系 时,分式x y x y
-+无意义.
7. )(222222m n mn mn m n +=. 8. 化简2211366a a a
÷--的结果是 . 9. 已知115a b -=,则2322a ab b a ab b +---的值是 . 10. 我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯。
为提高水资源的利用效率,某住宅小区安装了循环用水装置。
经测算,原来a 天需用水m 吨,现在这些水可多用5天。
现在每天比原来少用水 吨。
三、算一算(每小题8分,共24分)
11.
22124a a
a +-- 12. 211()()2y xy x x y x y x y x y -÷+---
13. 先化简,再求值:22243411121
x x x x x x x ---÷+--++,其中231x =.
四、做一做(每小题8分,共16分)
14.解方程:
313
221
x x
+=
--15.解方程:
112
22
x
x x
-=-
--
五、学以致用(每小题10分,共20分)
16. 比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达。
已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度。
17.联系实际编拟一道关于分式方程1501502
2
x
x x
-
=+的应用题,要求表述完整,条件
充分并写出解答过程。