材料的冲击韧性

合集下载

材料的冲击韧性和低温脆性

材料的冲击韧性和低温脆性

材料的冲击韧性和低温脆性冲击韧性是指材料在受到冲击或者动态载荷时,能够吸收能量并延展变形的能力。

冲击韧性的高低取决于材料的组织结构和成分,具体包括塑性变形的能力、断裂韧性和强度等。

一般来说,高韧性的材料能够吸收更多的冲击能量,从而具有较好的抗冲击性能。

低温脆性是指材料在低温环境下失去延展性和韧性而表现出脆性断裂的现象。

低温脆性的主要原因与材料的晶体结构和化学成分有关。

低温下,材料的原子和分子运动减慢,晶格结构受到约束而不能发生足够的塑性变形。

当应力超过了材料的极限时,材料会发生断裂而失去韧性。

冲击韧性和低温脆性在一些情况下有着密切的关系。

一些材料在低温下,由于低温脆性的影响,其冲击韧性会明显降低。

例如,常用的金属材料如碳钢和铸铁,在低温下会变脆,从而导致其冲击韧性下降。

这对一些低温环境下工作的设备和结构会带来安全隐患。

为了提高材料的冲击韧性和抵抗低温脆性的能力,通常采取以下几种方法:1.合金化:通过加入合适的合金元素来调节材料的组织结构和晶体缺陷,从而改善材料的冲击韧性和低温脆性。

例如,在铝合金中添加适量的锂可以提高其低温强度和塑性。

2.热处理:通过热处理过程来改变材料的晶体结构和组织形态,从而提高材料的冲击韧性和低温韧性。

热处理包括淬火、回火等工艺,可以使材料得到均匀细小的晶粒和相关的析出相,从而提高其延展性和韧性。

3.添加增强相:通过向材料中添加纳米颗粒、纤维等增强相,可以改善材料的力学性能,包括冲击韧性和低温脆性。

这些增强相可以阻碍位错移动和晶格滑移,从而增加材料的塑性变形能力。

4.提高材料的变形能力:通过控制材料的加工过程和热处理工艺,使材料得到均匀细小的晶粒和相关的析出相,从而增加其变形能力。

这样,材料在受到冲击时能够承受更大的变形而不发生断裂。

综上所述,冲击韧性和低温脆性是材料力学性能的两个重要指标,对于材料在不同温度和应力条件下的可靠性和安全性具有重要影响。

通过合金化、热处理、添加增强相和提高材料的变形能力等方法,可以提高材料的冲击韧性和低温脆性,从而满足不同工程应用和环境条件下的需求。

第三章 材料的冲击韧性及低温韧性

第三章 材料的冲击韧性及低温韧性

三、冲击脆化效应 由于冲击载荷下的应力水平较高,可使许多位 错源同时开动,结果在单晶体中抑制了易滑移阶段 的产生和发展。此外,冲击载荷还增加位错密度和 滑移系数目,出现孪晶,减小位错运动自由行程的 平均长度,增加点缺陷浓度。上述诸点均使金属材 料在冲击载荷作用下塑性变形难以充分进行,导致 屈服强度和抗拉强度提高。
(2)工程意义: ①反映出原始材料的冶金质量和热加工产品质量; ②测定材料的韧脆性转变温度; ③对σs大致相同的材料,根据AK值可以评定材料对 大能量冲击破坏的缺口敏感性。
11
Introductions of Material Properties
2.多次冲击
(1)某种冲击能量A下的冲断周次N; (2)要求的冲击工作寿命N时的冲断能量A 多冲抗力取决于塑性和强度: ①A高时,取决于塑性; A低时,取决于强度。
溶质原子占据溶剂晶格中的结点位臵而形成的固溶体 称臵换固溶体
杂质元素S、P、Pb、Sn、As等使钢的韧性下降。
26
Introductions of Material Properties
3.显微组织的影响 (1)晶粒大小 细化晶粒能使材料韧性增强 韧脆转变温度降低 细化晶粒尺寸是降低 冷脆转变温度的有效措施
Introductions of Material Properties
第三章 材料的冲击韧性及低温韧性
1
Introductions of Material Properties

3.1
冲击弯曲试验与冲击韧性
高速作用于物体上的载荷称为冲击载荷 冲击载荷与静载荷主要区别在于加载速率不同
加载速率即载荷施加于试样的速率,用单位时间内应力 增加的数值表示
(4) T工作≥NDT+67℃(FTP), σ工作达到σb 发生韧性断裂

材料性能与测试-第3章材料的冲击韧性和低温脆性

材料性能与测试-第3章材料的冲击韧性和低温脆性

低温脆性的危害
❖ 发生脆变时,裂纹的扩展速度可高达1000~3000m/s,无法加以 阻止,无任何征兆。
❖ 1938 年和1940 年, 在比利时的哈塞尔特城和海伦赛贝斯城先后 发生了两次钢桥坍塌事故。经研究,这些事故正是材料的冷脆 造成的。
§3.2 低温脆性
❖ 定义:体心立方或某些密排六方晶体金属及其合金,特别是工程上常用的 中、低强度结构钢,在试验温度低于某一温度tk时,会由韧性状态变为脆 性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理,断
§3.1 冲击载荷下金属变形和断裂特点 §3.2 冲击弯曲和冲击韧性 §3.3 低温脆性 §3.4 影响韧脆转变温度的因素
§3.1 冲击载荷下金属变形和断裂特点
冲击载荷和静载荷的区别
加载速率的不同
加载速率:载荷施加于试样或机件时的速率,用单位时间内应力增加
的数值表示。
形变速率可间接反应加载速率的变化。
口特征由纤维状变为结晶状,这就是低温脆性。
屈服强度/MPa
840
700 W
560 Mo
420 Байду номын сангаасe
280
140 Ni
几类不同冷脆倾向的材料
0 200 400 600 800 1000
温度/℃
❖ 测量不同温度下冲击韧性aK(AK)与温度t的关系曲线(AK~t)。tk称为韧脆转
变温度或冷脆转变温度,是安全性指标之一。
(3) FTE(fracture transition elastic):低阶能和高阶能平均值对应的温度。
➢ 冲击弯曲试验,冲击吸收功-温度曲线 Ak急剧减小;
(4) 以Akv为 20.3 N·m对应的温度作为韧脆转变温度,记为 V15TT。

钢冲击实验报告

钢冲击实验报告

一、实验目的1. 了解冲击试验的基本原理和方法。

2. 掌握冲击试验机的操作方法和注意事项。

3. 通过冲击试验,测定材料的冲击韧性,分析材料的脆性转变温度。

4. 比较不同材料的冲击性能,为材料选择提供依据。

二、实验原理冲击试验是评估材料在受到冲击载荷作用时抵抗断裂的能力。

冲击试验的基本原理是利用冲击试验机对试样进行冲击,测定试样在冲击过程中吸收的能量,即冲击吸收功。

冲击吸收功越大,材料的冲击韧性越好。

冲击韧性是指材料在受到冲击载荷作用时,抵抗断裂的能力。

冲击韧性可以通过冲击试验机测定,常用的冲击试验机有摆锤冲击试验机和落锤冲击试验机。

本实验采用摆锤冲击试验机进行冲击试验。

冲击韧性试验中,试样受到冲击后,断口形貌分为三个区域:韧性区、脆性区和过渡区。

韧性区是指试样断裂前发生较大塑性变形的区域,脆性区是指试样断裂前几乎没有塑性变形的区域,过渡区是指韧性区和脆性区之间的区域。

冲击韧性的表示方法有:冲击吸收功(Ak)、冲击韧度(KIC)和冲击韧性(JIC)等。

本实验采用冲击吸收功(Ak)来表示材料的冲击韧性。

三、实验设备1. 冲击试验机:JB-300型摆锤冲击试验机2. 试样:低碳钢、中碳钢、高碳钢等3. 游标卡尺4. 温度计5. 计算器四、实验步骤1. 试样制备:按照国家标准GB/T 229—1994《金属夏比缺口冲击试验方法》制备试样,试样尺寸为10mm×10mm×55mm,缺口为U形或V形。

2. 试样测量:使用游标卡尺测量试样尺寸,精确到0.01mm。

3. 冲击试验:将试样放入冲击试验机的试样夹具中,调整试样位置,使缺口位于冲击方向。

4. 冲击试验机操作:打开冲击试验机电源,调整摆锤高度,使摆锤与试样距离为一定的距离。

按动冲击试验机按钮,使摆锤自由落下冲击试样。

5. 数据记录:记录冲击试验过程中冲击吸收功(Ak)、冲击韧度(KIC)等数据。

6. 冲击试验重复:对同一试样进行多次冲击试验,取平均值作为最终结果。

材料的冲击韧性和低温脆性

材料的冲击韧性和低温脆性

(4) 50%FATT(fracture appearance
transition temperature)结晶区面积百分比 的增大,表示材料变脆。通常取结晶状断口面积占 50%时的温度为韧脆转化温度,记为50%FATT
● (5) V15TT――以V型切口冲击试件测定的冲击功AK=15 ft 1bf(20.3N m)对应的温度作为韧脆转化温度,并记为V15TT。 实践经验总结而提出 的方法.
冲 击 试 验 机
2020/5/4

● 二、 冲击韧性及其工程意义 ● ● 冲击韧性:材料在冲击载荷的作用下吸收塑性变形功和断裂功
的能力。 ● ● 冲击韧性是数学平均值,实际上缺口截面上的应力应变分布是
极不均匀的,塑性变形和试样所吸收的功主要集中在缺口附近, 取平均值无物理意义。
2020/5/4
●用途: ●1.反映原材料的冶金质量和热加工后产品
2020/5/4
如何确定Tk? NDT? 太可怕! FTP? 太保守!
以低阶能和高阶能 平均值对应的温度作 为Tk——FTE。
❖以结晶区面积占断口 面积50%的温度作为 Tk——FATT50。但此方 法人为因素较大。
2020/5/4
冲击功 结晶区面积(%)
温度
0 高阶能
低阶能
NDT FTE
100 FTP 50%FATT
2020/5/4
● 第四节 影响材料低温脆性的因素

内部因素
化学成分 晶体结构 宏观组织 金相组织
温度
外部因素
加载速率
试样尺寸和形状
•1. 晶体结构的影响: 面心立方晶格的金属,如铜、 铝、奥氏体钢,一般不出现解理断裂而处于韧性状态,
也没有韧-脆转变,其韧性可以维持到低温。

冲击韧性

冲击韧性

冲击韧度指标的实际意义在于揭示材料的变脆倾向。

是反映金属材料对外来冲击负荷的抵抗能力,一般由冲击韧性值(ak)和冲击功(Ak)表示,其单位分别为J/cm2和J(焦耳)冲击韧性或冲击功试验(简称"冲击试验"),因试验温度不同而分为常温、低温和高温冲击试验三种;若按试样缺口形状又可分为"V"形缺口和"U"形缺口冲击试验两种。

冲击韧性(冲击值)ak工程上常用一次摆锤冲击弯曲试验来测定材料抵抗冲击载荷的能力,即测定冲击载荷试样被折断而消耗的冲击功Ak,单位为焦耳(J)。

而用试样缺口处的截面积F去除Ak,可得到材料的冲击韧度(冲击值)指标,即ak=Ak/F,其单位为kJ/m2或J/cm2。

因此,冲击韧度ak表示材料在冲击载荷作用下抵抗变形和断裂的能力。

ak值的大小表示材料的韧性好坏。

一般把ak值低的材料称为脆性材料,ak值高的材料称为韧性材料。

ak值取决于材料及其状态,同时与试样的形状、尺寸有很大关系。

ak值对材料的内部结构缺陷、显微组织的变化很敏感,如夹杂物、偏析、气泡、内部裂纹、钢的回火脆性、晶粒粗化等都会使ak值明显降低;同种材料的试样,缺口越深、越尖锐,缺口处应力集中程度越大,越容易变形和断裂,冲击功越小,材料表现出来的脆性越高。

因此不同类型和尺寸的试样,其ak或Ak值不能直接比较。

材料的ak值随温度的降低而减小,且在某一温度范围内,ak值发生急剧降低,这种现象称为冷脆,此温度范围称为“韧脆转变温度(Tk)”。

[1]冲击韧性( ak ):材料抵抗冲击载荷的能力,单位为焦耳/ 厘米 2 ( J/cm2 ) . 代号:аk单位:J/cm2简介:将冲击吸收功除以试样缺口底部处横截面积所得的商。

注:用夏氏U形缺口试样求得的冲击功和冲击值,代号分别为AkU和akU;用夏氏V形缺口试样求得的冲击功和冲击值,代号分别为AKV和аkV。

用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以αk表示。

第三章材料的冲击韧性及低温脆性

第三章材料的冲击韧性及低温脆性

2.试验结果
样品破坏前 N ﹤1000~500次者,破坏规律及形态与一 次冲击相同;
样品破坏前 N﹥100000次者,破坏规律及形态与疲劳相 似。可概括为如下一些规律: (1)冲击能量高时,材料的多次冲击抗 力主要取决于塑 性;冲击能量低时,材料的多冲抗力主要取决于强度。 (2)不同的冲击能量要求不同的强度与塑性配合。 (3)材料强度不同对冲击疲劳抗力的影响不同。高强度钢 和超高强度钢的塑性和冲击韧性对提高冲击疲劳抗力有较 大作用;而中、低强度钢的塑性和冲击韧性对提高冲击疲 劳抗力作用不大。
定材料的韧脆转变温度。
一、系列冲击实验与低温脆性
1. 系列冲击试验: 对某些材料,当冲击实验分别在低温、室温和高温下进
行时可以得到一系列冲击值AK(或ak),将这些冲击值与 所对应的实验温度在直角坐标系中标出,然后用光滑曲线 将这些实验数据连接起来,可以得到这种材料冲击韧性与 温度的关系曲线,即AK—t0C或ak-t0C。这种不同温度下的 冲击试验称为系列冲击试验。
4.塑性和韧性随着应变率增加而变化的特征与断裂方式 有关。
§3.2 金属材料的低温脆性
◆上节回顾: ◆冲击弯曲实验,冲击吸收功AK 、冲击韧度aK。 ◆工程意义: 1.反映原材料的冶金质量和热加工产品的质量; 2.评定材料对大能量冲击破坏的缺口敏感性;
3.根据系列冲击试验获得AK与温度的关系曲线,确
Ak T
3.低温脆性产生的原因
宏观原因:
材料低温脆 性的产生与其屈 服强度σS和断 裂强度σ 随温
C
度的变化有关。
微观原因:体心立方金属的低温脆性与位错
在晶体中运动的阻力σI对温度变化非常敏感有 关, 温度下降σI大幅度升高,位错运动难以
进行;体心立方金属的低温脆性还与迟屈服现

冲击韧性名词解释

冲击韧性名词解释

冲击韧性名词解释
冲击韧性是指材料在受到冲击或外力作用下仍能保持其完整性和强度的能力。

冲击韧性是一个材料的重要力学性能指标,它反映了材料抵抗外力冲击的能力。

冲击韧性可以从两个方面来进行解释。

首先,冲击韧性可以是指材料的抗冲击能力。

即材料在受到高能冲击载荷时,能够承受冲击力并吸收冲击能量,从而减小冲击的破坏程度。

例如,某些合金材料和复合材料具有较高的冲击韧性,能够防止因外部冲击而产生的裂纹和破坏。

其次,冲击韧性还可以指材料的韧性性能。

韧性是指材料在受到外力作用下能够延展和形变的能力。

具有高韧性的材料可以吸收冲击能量并通过塑性变形来分散该能量,从而避免发生断裂。

例如,钢材表现出较高的冲击韧性,它具有良好的塑性和延展性,能够在遭受冲击时变形而不断裂。

冲击韧性的评估通常采用冲击试验来进行。

常见的冲击试验方法有冲击试验机和夏比尔冲击试验等。

在冲击试验中,样品会受到冲击载荷并记录相关数据,如冲击力、冲击时间和变形程度等,从而评估材料的冲击韧性。

冲击韧性的提升可以通过多种方法实现。

一种常见的方法是改变材料的组成和微观结构,例如添加增韧剂、纤维增强剂和颗粒填料等,以提高材料的韧性和抗冲击能力。

此外,优化材料的加工工艺和热处理过程也可以改善材料的冲击韧性。

总的来说,冲击韧性是一个重要的材料力学性能,它直接影响材料的应用范围和安全性能。

通过评估材料的冲击韧性,并采用相应的改进措施,可以提高材料的抗冲击能力和机械性能,以保证产品在受到外部冲击时能够保持完整性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料的冲击韧性
一、冲击韧性的定义
冲击韧性:当试验机的重摆从一定高度自由落下时,在试样中间开V型缺口,试样吸收的能量等于重摆所作的功W。

若试件在缺口处的最小横截面积为A,则冲击韧性αk为:
式中αk的单位为J/cm2 。

冲击实验有两种:V型和U型,一般情况下V 型冲击功测的数据小于U 型的冲击功值。

钢材的冲击韧性越大,钢材抵抗冲击荷载的能力越强。

αk值与试验温度有关。

有些材料在常温时冲击韧性并不低,破坏时呈现韧性破坏特征。

但当试验温度低于某值时,αk突然大幅度下降,材料无明显塑性变形而发生脆性断裂,这种性质称为钢材的冷脆性
冲击韧性是一个对材料组织结构相当敏感的量,所以提高材料的冲击韧性的途径有:改变材料的成分,如加入钒,钛,铝,氮等元素,通过细化晶粒来提高其韧性,尤其是低温韧性;提高材料的冶金质量,减少偏析,夹渣等。

二、缺口冲击试验的应用
缺口冲击韧性试验的应用,主要表现在两方面:
1.用于控制材料的冶金质量和铸造,锻造,焊接及热处理等热加工工艺的质量。

2.用来评定材料的冷脆倾向。

而评定脆断倾向的标准常常是和材料的具体服役条件相联系的。

在这种情况下所提出的材料冲击韧性值要求,虽然不是一个直接的服役性能,但应理解为和具体服役条件有关的性能指标。

材料因温度的降低导致冲击韧性的急剧下降并引起脆性破坏的现象叫作冷脆。

可将材料的冷脆倾向归结为3种类型,如图2-15所示。

三.冷脆转化温度的评定
工程上希望确定一个材料的冷脆转化温度,在此温度以上只要名义应力还处于弹性范围,材料就不会发生脆性
破坏。

在冷脆转化温度的确定标准
一旦建立之后,实际上是按照冷脆
转化温度的高低来选择材料。

例如,
有两种材料A和B,在室温以上A
的冲击韧性高于B,但当温度降低
时,A的冲击韧性就急剧下降了,如
按冷脆转化温度来选择材料时应选
材料B,见图2-16。

(1)断口形貌特征:在这种类型时,使用得最多的称为断口形貌转化温度FATT,是根据断口上出现50%纤维状的韧性断口和50%结晶状态的脆性断口作标准的。

和静拉伸断口一样,冲击试样断口一般也存在三个区域,见冲击试样断口形貌图。

(2)能量标准:以某一固定能量来确定脆化温度。

(3)断口的变形特征:将缺口试样冲断时,缺口的一侧收缩,另一侧膨胀,测量两侧面的边长,以边长差值为0.38作为冷脆转化温度。

理论上讲,材料的脆性转变温度可通过实验进行测试,得到该种材料在不同温度下的冲击功,当相邻两冲击功下降到一半时所对应的温度可认为是该种材料的冷脆转化温度。

当该种材料的使用环境温度大于冷脆转化温度,我们可认为该材料不会发生冷脆。

四、影响材料脆性断裂的冶金因素
1.材料成份:含碳量对钢的韧-脆转化曲线的影响见图2-18。

随着钢中含碳量的增加,冷脆转化温度几乎呈线性地上升,且最大冲击值也急剧降低。

钢的含碳量每增加0.1%,冷脆转化温度升高约为13.9℃。

钢中含碳量的影响,主要归结为珠光体增加了钢的脆性。

2.晶粒大小:细化晶粒一直是控制材料韧性避免脆断的主要手段。

理论与实验均得出冷脆转化温度与晶粒大小有定量关系。

如图2-19所示。

3.显微组织:在给定强度下,钢的冷脆转化温度决定于转变产物。

就钢中各种组织来说,珠光体有最高的脆化温度,按照脆化温度由高到低的依次顺序为:珠光体,上贝氏体,铁素体下贝氏体和回火马氏体。

五.结论
1.冲击功与温度之间没有近似的关系,不同的材料曲线变化不一致,即使是同种材料由于制作工艺、扎制方法不同曲线也不同,该曲线是通过实验测得,可近似为S形,每种材料的转折点各不相同,甚至相差很远。

2.理论上讲,材料的脆性转变温度可通过实验进行测试,得到该种材料在不同温度下的冲击功,当相邻两冲击功下降到一半时所对应的温度可认为是该种材料的冷脆转化温度。

当该种材料的使用环境温度大于冷脆转化温度,我们可认为该材料不会发生冷脆。

3.冲击韧性是一个对材料组织结构相当敏感的量,所以提高材料的冲
击韧性的途径有: 1)改变材料的成分,如加入钒,钛,铝,氮等元素,通过细化晶粒来提高其韧性,尤其是低温韧性; 2)提高材料的冶金质量,减少偏析,夹渣等。

4.0°冲击功不能取代-20°冲击功。

原因:0°冲击功即使定得再高也不能反映该种材料的低温冷脆性。

任何一种钢材都有一个转折点,即一个上平台和下平台,当一但达到冷脆转化温度,材料会很快出现断裂。

5.0°冲击功和-20°冲击功在制作成本上基本相差不大,不同的是
-20°冲击功的材料在合金元素的控制、型材的扎制方向、制造质量稍微严格,当工艺稳定后上两种冲击功的材料在制作成本上应不会有太大的差异,仅仅是顺应市场上的要求规定了不同要求的冲击功有不同的价格。

相关文档
最新文档