ad_da转换原理

合集下载

AD、DA转换

AD、DA转换

5V
/每1个最低有效位 个最低有效位
(2) D/A的组成 的组成 由三部分电路组成
电阻网络 模拟电子开关 求和运算放大器
1、权电阻D/A变换器 、权电阻 变换器
这种变换器由“电子模拟开关” 这种变换器由“电子模拟开关”、“权电阻求和网 运算放大器” 基准电源”等部分组成。 络”、“运算放大器”和“基准电源”等部分组成。
模-数转换:模拟信号→数字信号: 数字信号: 数转换:模拟信号 数字信号 A/D转换器 (ADC:Analog Digital Converter) 转换器 数-模转换:数字信号→模拟信号: 模拟信号: 模转换:数字信号 模拟信号 D/A转换器 (DAC:Digital Analog Converter) 转换器
uo 控 制 逻 辑
时钟 清 0、置数 、 “1”状态是否保留 状态是否保留 控制端 清 0、置数 、 CP、(移位命令 、 移位命令 移位命令)
D / A
1 0 0 0
数码寄存器
1 0 0 0
移位寄存器
原理框图
3、双积分型ADC 、双积分型
双积分型ADC是一种电压双积分型ADC是一种电压-时间间接型模数转换器 ADC是一种电压 主要有积分器、比较器、 主要有积分器、比较器、计数器和控制电路组成 工作过程由对基准源和样值两次积分完成。 工作过程由对基准源和样值两次积分完成。
∞ C - +
B A
这种A/D 这种A/D 变 D1 换器的优点是转 换速度快, 换速度快,缺点 D0 是所需比较器数 目多, 数字输出 目多,位数越多 矛盾越突出。 矛盾越突出。
逻辑状态关系表
输入电压
uxLeabharlann 比较器输入编码器输出
A B C D E F G D2 D1 D0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0

AD-DA原理

AD-DA原理

数字系统
D/A
A/D




1. 概述
典型数字控制系统框图
1. 概述
分类
网络权电阻DAC 倒梯形电阻网络DAC
DAC
权电流型DAC 权电容型DAC
开关树型DAC
输入/输 出方式
并行 串行
ADC
直接ADC 间接ADC
2.D/A转换器原理
(1) D/A功能: 将数字量成正比地转换成模拟量
4位 数字量
入到寄存器1
WR1 = 0时存入数据 WR1 = 1时锁定
数据由寄存器 1转送寄存器 2从输出端取
模拟量
0
WR2 = 0时存入数据 WR2 = 1时锁定
无控制信号, 随时可取
例1. 单步输入操作 ----- 适用于单个DAC工作
D... 7
CS WR1
Rfb
Iout1 - +
D0
ILE WR2 XFER
一、权电阻型D/A转换器
UREF
R
R
R
R
2n1
2n2
2i
2
R
Sn-1
Sn-2
Si
S1
S0
Rf
1
01
01
0 1 01
0
i
uO
Dn-1
Dn-2
Di
D1
D0
uO i iiRininnf0121Di UD2RRiEnRF1f2U•R•UURUR2R2EERRnFFRnREE1niF2niF0101DDi 2ii,2i , Di D(0,i1) (0, 1)
n1
Di 2i
i0
运算放大器的输出电压为

ad转换器和da转换器

ad转换器和da转换器
• 单片机测控系统中的ADC和DAC
电流输出型DA转换原理
总电流
•转换电流
分支电流
……
•I01转换电流与“逻辑开关”为1的各支路电流的总和成正比 ,即与D0~D7口输入的二进制数成正比。
•DAC0832
•反馈电 阻 •外接放大器
转换电压
•即,转换电压正比于待转换的二进制数和参考电压
DAC的性能指标: 1、分辨率 通常将DAC能够转换的二进制的位数称为分辨率。 位数越多分辨率也越高,一般为8位、10位、12位、16位等
•参考程序如下:
INIT1: SETB IT1
;选择外部中断1为跳沿触发方式
SETB EA
;总中断允许
SETB EX1 ;允许外部中断1中断
MOV DPTR,#7FF8H ;端口地址送DPTR
MOV A,#00H
MOVX @DPTR,A;启动ADC0809对IN0通道转换
………
;完成其他的工作
•电路分析
➢ 由P2.0形成高8位地址(0xfe),与WR信号合成START/ALE正脉冲启动 ADC,与RD信号合成OE正脉冲输出转换数据;
➢ 启动IN0~IN7通道AD转换的命令的地址为:0xfef8,……,0xfeff。
➢ 读取AD结果的命令的地址为:任何高8位为0xfe的地址均可。
•电路分析
DAC2第1级地址: 1111 1101 …(0xfdff) DAC1和2第二级地址:1110 1111 …(0xefff)
例3参考程序
•语句DAOUT = num的作用只是启动DAC寄存器,传输什么数据都没关 系。
例3 运行效果 (多路D/A同步输出 )
•11.2 AT89S51与ADC的接口

第8章DA与AD转换电路

第8章DA与AD转换电路

10 28
7
Di
i0
2i
当输入的数字量在全0和全1之间变化时,输出模拟电压的 变化范围为0~9.96V。
8.3 A/D转换器
一、A/D转换器的基本原理
四个步骤:采样、保持、量化、编码。
模拟电子开关S在采样脉冲CPS的控制下重复接通、断开 的过程。S接通时,ui(t)对C充电,为采样过程;S断开时,C
I0
VREF 8R
I1
VREF 4R
I2
VREF 2R
I3
VREF R
i I0d0 I1d1 I2d2 I3d3
VREF 8R
d0
VREF 4R
d1
VREF 2R
d2
VREF R
d3
VREF 23 R
(d3
23
d2
22
d1
21
d0
20)
uo
RFiF
R i 2
VREF 24
(d3 23
可推得n位倒T形权电流D/A转换器的输出电压
vO
VREF R1
Rf 2n
n1
Di
2i
i0
❖ 该电路特点为,基准电流仅与基准电压VREF和电 阻R1有关,而与BJT、R、2R电阻无关。这样,电 路降低了对BJT参数及R、2R取值的要求,对于集
成化十分有利。
❖ 由于在这种权电流D/A转换器中采用了高速电子 开关,电路还具有较高的转换速度。采用这种权 电流型D/A转换电路生产的单片集成D/A转换器有 AD1408、DAC0806、DAC0808等。这些器件都采用 双极型工艺制作,工作速度较高。
三、D/A转换器的主要技术指标
1.转换精度 D/A转换器的转换精度通常用分辨率和转换误差来描述。 (1)分辨率——D/A转换器模拟输出电压可能被分离的等级数。 N位D/A转换器的分辨率可表示为 1

《AD及DA转换》课件

《AD及DA转换》课件
AD转换器可采用不同的工作模式,包括单次采样模式、连续采样模式和返馈 式模式。工作模式的选择取决于应用的工作模式可供选择,包括并行输出模式、连续波模式和直流偏置模式。每种模式都有不同的 实现方法和性能特点。
《AD及DA转换》PPT课件
本PPT课件将深入介绍AD及DA转换的原理、分类、工作模式,以及采样率、 量化精度等关键概念。我们还会探讨信号处理技术、硬件实现和电路设计等 重要话题。
什么是AD和DA转换
AD(模数)转换将模拟信号转换为数字信号,DA(数模)转换将数字信号转换为模拟信号。这两种转换器 在许多电子系统中起着关键作用。
AD转换器可根据工作原理和特性进行分类,如逐次逼近型、积分型、双斜率 型和ΔΣ型等。每种类型都有其适用的应用场景和性能特点。
DA转换器的分类
DA转换器可以按照数字信号转换为模拟信号的方法进行分类,如加权电阻型、 串行型、并行型和PDM型等。不同类型的转换器适用于不同的应用需求。
AD转换器的工作模式
AD转换的原理和作用
AD转换器使用采样和量化技术将连续的模拟信号转换为离散的数字信号。它 在信号处理、通信系统和传感器中都有广泛应用。
DA转换的原理和作用
DA转换器将数字信号转换为模拟信号,使其能够在模拟电路中进行进一步处 理和传输。它在音频、视频和通信等领域中扮演着核心角色。
AD转换器的分类

AD_DA原理及主要技术指标

AD_DA原理及主要技术指标

AD_DA原理及主要技术指标AD/DA原理是指模拟信号与数字信号之间的转换过程,其中AD (Analog to Digital)指模拟信号转换为数字信号的过程,DA(Digital to Analog)指数字信号转换为模拟信号的过程。

AD转换过程主要包括采样、量化和编码三个阶段。

首先,采样是将连续的模拟信号按照一定的时间间隔进行离散化处理,其中的模拟信号也被称为连续时间信号。

采样频率是指每秒对模拟信号进行采样的次数,常用单位为Hz。

接下来是量化,即将连续的模拟信号转换为离散的数字量,其精度由量化位数决定,量化位数越高,精度越高。

最后是编码,将量化后的数字信号通过编码器转换为二进制码,以便能够在数字系统中进行传输和处理。

DA转换过程主要包括解码和重构两个阶段。

首先,解码是将二进制码转换为离散的数字量,采用解码器进行解码。

接下来是重构,即将离散的数字量转换为连续的模拟信号,其精度由重构位数决定,重构位数越高,精度越高。

最后通过滤波器对重构后的模拟信号进行滤波处理,以去除可能产生的噪声和失真。

主要技术指标包括采样频率、量化位数、重构位数和信噪比等。

采样频率是指每秒对模拟信号进行采样的次数,频率越高,能够更准确地还原原始模拟信号,但也需要更高的系统性能和硬件成本。

常用的采样频率有8kHz、16kHz、32kHz、44.1kHz、48kHz等。

量化位数是指将模拟信号转换为数字信号时,对信号幅值的离散级数。

例如,8位的量化位数可以表示256个离散级数,12位的量化位数可以表示4096个离散级数。

量化位数越高,数字信号的分辨率越高,能够更准确地还原原始信号。

重构位数是指将数字信号转换为模拟信号时,对数字量的精度。

与量化位数类似,重构位数越高,模拟信号的分辨率越高,能够更准确地还原原始信号。

信噪比(SNR)是模拟信号与数字信号之间的噪声水平,表示了有效信号与噪声之间的相对强度。

信噪比越高,数字信号的质量越好,表示数字信号中噪声所占比例较小。

《AD及DA转换》课件

一、AD及DA转换简介1.1 AD转换概述模拟信号与数字信号的概念模拟信号转换为数字信号的意义1.2 DA转换概述数字信号转换为模拟信号的意义DA转换的基本原理1.3 AD及DA转换的应用领域电子秤工业控制音频处理二、AD转换器(模数转换器)2.1 AD转换器的工作原理采样保持量化和编码2.2 AD转换器的类型逐次逼近型(SAR)双积分型流水线型2.3 AD转换器的主要性能指标分辨率和量化误差转换时间和转换速率动态范围和线性范围三、DA转换器(数模转换器)3.1 DA转换器的工作原理数字到模拟的转换过程D/A转换器的类型及特点3.2 DA转换器的主要性能指标分辨率转换误差转换速度3.3 DA转换器的应用实例音频DAC视频DAC通信系统中的DA转换应用四、AD及DA转换器的选择与评估4.1 AD及DA转换器的选择依据精度要求转换速度要求成本和功耗考虑4.2 AD及DA转换器的评估方法测试转换特性分析转换误差对比不同转换器的性能4.3 AD及DA转换器的应用案例分析模拟信号采集与数字处理数字信号调节与模拟输出五、AD及DA转换技术的未来发展5.1 高速AD及DA转换技术亚微米和深亚微米工艺并行处理技术5.2 高精度AD及DA转换技术低噪声和低功耗设计温度补偿技术5.3 集成AD及DA转换技术片上系统(SoC)混合信号集成技术5.4 新型AD及DA转换技术展望生物医学信号处理领域无线通信和物联网应用领域六、模拟信号的采样与保持6.1 采样定理奈奎斯特采样定理采样频率的选择6.2 采样保持电路采样保持电路的工作原理采样保持电路的设计要点七、模拟信号的量化与编码7.1 量化过程量化的概念与过程量化误差7.2 编码方法二进制编码格雷码编码八、逐次逼近型AD转换器(SAR ADC)8.1 SAR ADC的工作原理转换过程解析转换速率与功耗8.2 SAR ADC的设计要点模拟开关的选择基准电压源的设计九、双积分型AD转换器9.1 双积分型ADC的工作原理转换过程解析转换时间与精度9.2 双积分型ADC的应用场景电流传感器压力传感器十、流水线型AD转换器10.1 流水线型ADC的工作原理转换过程解析转换速率与功耗10.2 流水线型ADC的设计要点级间匹配与补偿模拟开关的选择十一、DA转换器(数模转换器)的类型及原理11.1 权电阻网络DA转换器工作原理分辨率和线性度11.2 电压反馈型DA转换器工作原理特点和应用11.3 电流反馈型DA转换器工作原理特点和应用十二、DA转换器的性能指标及评估12.1 分辨率数字位数的含义分辨率与精度的关系12.2 转换误差静态误差动态误差12.3 转换速度转换时间更新速率十三、DA转换器的应用实例13.1 音频DAC音频信号的数字到模拟转换音频DAC芯片的选择13.2 视频DAC视频信号的数字到模拟转换视频DAC芯片的选择十四、AD及DA转换器的接口技术14.1 模拟接口差分信号传输阻抗匹配14.2 数字接口SPI接口I2C接口USB接口十五、AD及DA转换器的实际应用问题与解决方案15.1 噪声问题模拟噪声的来源数字噪声的来源降噪技术15.2 匹配问题内部组件匹配外部组件匹配匹配技术15.3 温度补偿温度对AD及DA转换器的影响温度补偿技术重点和难点解析本文主要介绍了AD及DA转换的相关概念、原理、性能指标、应用实例以及接口技术,重点内容包括:1. AD及DA转换的基本原理:理解模拟信号与数字信号的转换过程,掌握AD 及DA转换的意义和应用领域。

第9章AD与DA转换



例如,满量程值为10V时,n位D/A转换器的 精度为±1/2 LSB,则其最大可能误差为:

精度为±0.05%表示最大可能误差为:
(3)转换速率 转换速率是指大信号工作时,模拟输出电压 的最大变化速度,单位为V/μs (4)建立时间 建立时间指的是,当输入数值满量程后,输 出模拟值稳定到最终值的±1/2LSB时所需要 的时间。该时间是表征D/A转换器性能的重要 指标,显然建立时间越大,转换速率越低。



DI7~ DI0:8位数据输入端,与CPU数据总线 相连。 CS:片选信号,输入,低电平有效,与ILE 配合决定WR1是否起作用。 ILE:输入锁存允许信号,输入,高电平有 效。


WR1 :写信号1,将数据8位输入数据锁存到输入寄 存器中,低电平有效。此信号必须同CS、ILE同时 有效,即当CS和WR1同时为低电平、ILE为高电平时, 输入数据不锁存;当WR1变为高电平、ILE变为低电 平时,输入数据被锁存在输入寄存器中。 WR2 :写信号2将锁存在输入寄存器中的数据送到8 位DAC寄存器中进行锁存,低电平有效。当WR2与传 送控制信号XFER同时为低电平时,DAC寄存器中的 数据不锁存;当WR2 或XFER变为高电平时,输入寄 存器中的数据被锁存在DAC寄存器中。
1.ADC0809引脚

ADC0809是28引脚的双列直插式芯片,如 图9-15所示。各引脚的定义及功能如下。


IN7~IN0:8路模拟电压输入端。 D7~D0:8位数字量输出端。 ADDA、ADDB和ADDC:地址输入端, 它们的不同组合可用来选择不同的模拟 输 入 通 道 , 编 码 000~111 分 别 对 应 IN0~IN7,如表9-1所示。 START:启动转换的控制信号,输入, 高电平有效。

AD和DA转换器的分类及其主要技术指标

AD和DA转换器的分类及其主要技术指标AD和DA转换器(Analog-to-Digital and Digital-to-Analog converters)是电子设备中常用的模数转换器和数模转换器。

AD转换器将连续的模拟信号转换成对应的离散数字信号,而DA转换器则将离散的数字信号转换成相应的连续模拟信号。

本篇文章将介绍AD和DA转换器的分类以及它们的主要技术指标。

一、AD转换器分类AD转换器主要分为以下几个类型:1.逐次逼近型AD转换器(Successive Approximation ADC)逐次逼近型AD转换器是一种常见且常用的AD转换器。

它采用逐渐逼近的方法逐位进行转换。

其基本原理是将模拟输入信号与一个参考电压进行比较,不断调整比较电压的大小,确保比较结果与模拟输入信号的差别小于一个允许误差。

逐次逼近型AD转换器的转换速度相对较快,精度较高。

2.模数积分型AD转换器(Sigma-Delta ADC)模数积分型AD转换器是一种利用高速和低精度的ADC与一个可编程数字滤波器相结合的技术。

它通过对输入信号进行高速取样并进行每个采样周期的累积和平均,降低了后续操作所需的带宽。

模数积分型AD转换器具有较高的分辨率和较好的线性度,适用于高精度应用。

3.并行型AD转换器(Parallel ADC)并行型AD转换器是一种通过多个比较器并行操作的AD转换器。

它的转换速度较快,但其实现成本相对较高。

并行型AD转换器适用于高速数据采集和信号处理。

4.逐渐逼近型AD转换器(Ramp ADC)逐渐逼近型AD转换器是一种通过线性递增电压与输入信号进行比较的转换器。

它利用逐渐逼近的方法寻找与输入信号最接近的电压值,然后以此电压值对应的时间来估计输入信号的值。

逐渐逼近型AD转换器转换速度较慢,但精度较高。

5.其他类型AD转换器除了上述几种常见的AD转换器类型外,还有其他一些特殊的AD转换器类型,如比例调制型AD转换器、索耳转换器等。

ad和da的原理

ad和da的原理
ad和da分别是模拟信号和数字信号之间的转换过程中使用的
缩写词。

AD转换过程,即模拟信号(Analog Signal)转换为数字信号(Digital Signal)。

在AD转换中,模拟信号首先通过采样(Sampling)将连续的模拟信号转换为离散的信号,然后通过
量化(Quantization)将离散信号的幅值转换为一系列离散的
数值,最后通过编码(Encoding)将这些数值转换为二进制数,以便在计算机系统中传输和处理。

DA转换过程,则是数字信号转换为模拟信号。

在DA转换中,数字信号通过解码(Decoding)将二进制数转换为一系列离散的数值,然后通过数字到模拟转换器(DAC,Digital-to-Analog Converter)将这些离散数值转换为连续的模拟信号,
最终得到模拟信号。

AD和DA的原理是基于模拟信号和数字信号的不同特性来实
现的。

模拟信号是连续的,在时间和幅值上都可以取任意值;而数字信号是离散的,只能取有限个数值。

AD转换将模拟信
号的连续性转换为离散性,通过采样和量化将模拟信号离散化为数字信号。

DA转换则将数字信号的离散性转换为连续性,
通过解码和DAC将数字信号还原为模拟信号。

AD和DA的应用广泛,例如在音频设备中,AD转换将模拟
声音信号转换为数字信号进行处理和存储,然后DA转换将数
字信号转换回模拟信号输出。

这样的转换能够实现高质量的音频处理和传输,在音乐、广播等领域发挥重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 采样 - 保持电路
R1
RF
CF
ui
T
+
uo
UL
当 UL为高电平时, MOS管T导通, ui 经电阻 R1和管T向电容 CF充电 。 当 UL为低电平时, MOS管T截止, 忽略各种漏电流,电容CF上的电压得以保持 。
E R 7E/8 R 6E/8 R
ux
+
+ +
5. 3. 2 并联比较型
- + G F
D3 (MSB) 最高位
I3 = 8I0 I = I 0 + I1 + I 2 + I 3
S
1
T1 T2
0
a
D
当 D = 0 时, T2 管截 止,T1 管饱和导通, S 点与地相通 。
模拟电子开关的 简化原理电路
I 23R 22R I0 21R 20R
R/2
+
I3
uo
I1
I2
VREF
D0 (LSB)
§5. 2 数 / 模 转换器 ( DAC )
5. 2. 1 权电阻网络型 5. 2. 2 权电流型 5. 2. 3 T型电阻网络型
5. 2. 4 D/A变换器的主要技术指标
5. 2. 5 集成 DAC 0832及其应用
5. 2. 1 权电阻网络型
D/A转换器工作原理(P111)
D/A转换器从工作原理上可分为并行D/A转换器及串行D/A转换器两种。 并行D/A转换器的转换速度快,但电路复杂。随着微电子技术的发展, 并行D/A转换器集成电路目前已大量生产,广为采用。 并行D/A转换器的位数与输入数码的位数相同,对应输入数码的每一 位都设有信号输入端,用以控制相应的模拟切换开关,把基准电压 Un接到电阻网络上。
5. 2. 4 D/A转换器的主要技术指标
二、转换误差 转换误差通常用输出电压满刻刻度FSR ( Full Scale Range ) 的百分数表示 。 例如 , 给出转换误差为 1 LSB , 这就表示输出模拟 2 电压的绝对误差等于输入数字代码为 00…01 时输出电压的一半 。 造成转换误差的原因主要有 : 参考电压 VREF的波动 ; 运算放大器的零点漂移 ; 模拟开关的导通内阻和导通电压 ; 电阻网络中的电阻值偏差 ;…...
5. 2. 2 权电流网络型 D / A 转换器 :
D0
D1
D2
D3
iI
+
S0
R
uo
S1 I/16
S2 I/8
S3 I/4
I/2
VREF
每个支路 电流的大小, 与有关数字量 的权重密切相 关。
uo =
IR ( 8 D3 + 4 D2 + 2 D1 + D0 ) 4 2
5. 2. 3 T形解码网络D / A转换器( 以4位为例 )
5. 2. 4 D/A转换器的主要技术指标 三、D/A转换器的转换速度 2. 转换速率 SR 转换速率 SR 以大信号工作状态下 输出模拟电压的变化率表示 。 D/A转换器完成一次转换所需要的 时间应包括建立时间和上升(或下降)时 间两部分 , 它的最大值为 TTR(max) = tS + VO(max) / SR
uo
RF
D0
D1
D2
D3
iI
+
A
+
uo
I 16
2R
S0
I 16
2R
R
S1
S2
S3
I/8
2R
R
I/4 I/2
2R R I
2R
倒T型电阻网络 D / A转换器
UR
5. 2. 4 D/A转换器的主要技术指标(P116) 一、分辨率 用输入数字量的有效位数来表示分辨率。 也可以用D/A转换器能够分辨出来 此外, 的最小输出电压 (此时输入的数字代码只有最 低有效位为 1,其余各位都是 0 ) 与最大输出 电压 (此时输入的数字代码所有各位全是 1 ) 之比来给出分辨率 。 例如, 对一个十位D/A转换器来说 , 1 1 = = 0. 001 10 1023 2 -1
1. 采样定理(奈奎斯特定理) 为了保证能从采样 ui 信号将原来的被采样信 号恢复, 必须满足
0
t
fS > 2 f i max fS : 采样频率 。
ui
f i max : ui 的最高频分 量的频率 。
0
t
2. 量化和编码
而且, 数字信号不仅在时间上是离散的, 数值大小的变化也是不连续的。 这就是说, 任何一个数字量的大小只能是某个规定的最 小数量单位的整数倍。因此 ,在进行 A / D 转 换时也必须把采样电压化为这个最小单位 的 整数倍。 这个转化过程就叫做 “量化”, 所 取的最少数量单位叫做量化单位, 用 表示。 显然,数字信号最低有效位的 1 代表的数量 大小就等于 。 把量化的结果用代码 (二进制或二 - 十 进制 )表示出来,称为 “ 编码 ” 。
VCC
D7
. . . . . .
D0 ILE CS WR1 XFER WR2
1
八位 输入 寄存器 (1)
八位 DAC 寄存器 (2)
UR 八位 Rfb A/D Iout1 变换器 Iout2




uo
LE1
&
AGND DGND
1
当这三个控制端均有效时, LE1端才有效 , 寄存器(1) 的输出随其输入变化, 否则 就不随数据总线而变化 。
运放需 要外接
ADC 0832 简化电路框图
VCC D7
. . . . . .
D0 ILE CS WR1 XFER WR2
1
八位 输入 寄存器 (1)
&
八位 DAC 寄存器 (2)
UR 八位 Rfb A/D Iout1 变换器 Iout2 AGND DGND




uo
输入数据先存放在寄存器 (1) 中, 而输出的模拟值由存 1 放在寄存器(2)内的数据决定。 当把数据由输入寄存器(1)转存到DAC寄存器 (2)以后, 输入寄存器(1)就可以接受新数据而不影 响模拟输出值。 该结构便于多路DAC同时工作。
I 23R S0 22R 21R I1 20R I2 S3 I3 R/2
-
+
uo 电子开关 : Dn = 1 时, Sn 接VREF ;
I0
S1
S2
VREF
D0 (LSB)
D1
D2
D3 (MSB)
Dn = 0 时, Sn 接地端 。
S
0
T1 T2
1
a
D
当 D = 1 时, T2 管饱 和导通, T1 管截止 ,
八位 DAC 寄存器 (2)

XFERD0 WR2 ILE CS WR1 XFER WR2
. . . CS . WR1 . .
ILE D7
1
& 八位 输入 寄存器 (1) 1
+ 变换器 Iout2 + VCC AGND UR 八位 Rf B DGND A/D Iout1 变换器 Iout2
uo
AGND DGND
WR2 变高时 , 八位DAC寄存器便将输入数据锁存 。
例. 单步输入操作 ----- 适用于单个DAC工作
D7 CS ILE 1 WR1 Rfb Iout1 Iout2
. . .
D0
WR2 XFER
+ +
(a)
D7
CS
~ D0
WR1 数据 数据 存入 锁定
( b)
§5. 3 模 / 数 转换器 ( ADC ) 5. 3. 1 采样定理 5. 3. 2 并联比较型 5. 3. 3 逐次逼近型 5. 3. 4 A / D 转换器的主要技术指标
- +
5E/8
4E/8
R
R
- + - +
E
D C B A
编 码 器
D2 D1 D0 数字输出
+ + +
3E/8 R 2E/8 E/8 R R
- + - +
模拟电子开关的 简化原理电路
S 点与 a 点相通 , 而 a 点在电路中和VREF连 。
当 D3D2D1D0 = 1111时 :
23R
S0
I
R/2
+
I3 I0 =
VREF 23 R
22R I0
S1
2 1R I1
S2
20R I2
S3
uo
I1 = 2I0
VREF
参考 电压
I2 = 4I0 D1 D2
D0 (LSB) 最低位
5. 2. 1 权电阻网络型 D / A 转换器 :
I 2 3R S0 22R 21R I1 20R I2 S3 I3 R/2
-
+
uo
I0
S1
S2
VREF
D0 (LSB)
D1
D2
D3 (MSB)
所谓“权电阻”, 是指电阻值 的大小, 与有 关数字量的权 重密切相关。
5. 2. 1 权电阻网络型 D / A 转换器 :
D1
D2
D3 (MSB)
VREF uo = - IR / 2 = - 4 ( 8 D3 + 4 D2 + 2 D1 + D0 ) 2
I
23R 22R I0 21R I1 20R I2 I3
R/2
+
uo
VREF
D0 (LSB) D1
D2
相关文档
最新文档