砂土抗剪强度数值模拟的关键技术研究
土体抗剪强度指标的选用及各种规范的对比

土体抗剪强度指标的选用一、土强度指标在深基坑设计中,土压力的计算是支护设计的基础依据和关键所在,而在土压力计算中,土体的粘聚力c、内摩擦角Φ又是最基本的参数。
例如,同一种饱和粘性土,在固结排水和固结不排水试验中就表现出不同的摩擦角,而在不固结不排水试验中,内摩擦角为零。
在进行土强度指标试验时,分为三种情况考虑,即三轴的不固结不排水剪(UU),固结不排水剪(CU)及固结排水剪(CD),与其相对应的直接剪切试验分别为快剪,固结快剪和慢剪。
有人将直剪试验的固结快剪说成是固结不排水试验,将快剪称为不排水试验,也是错误的。
对于粘性土,很快的剪切速度对于粘土确实限制了排水,其固结快剪指标往往与三轴固结不排水试验相近;但是对于粉土、砂土来说,固结快剪和固结不排水可能就完全不同。
由于直剪试验上下盒之间存在缝隙,对于渗透系数比较大的砂土,即便在快剪过程中,这种缝隙也足以排水。
因此,对于砂土而言,固结快剪、快剪试验得到的指标基本上就是有效应力指标。
把三轴固结不排水试验指标和固结快剪指标不加区别是错误的。
二、各种规范对土压力计算参数的规定各种规范中关于土压力的计算参数的规定五花八门:1、建设部行业标准《建筑基坑支护技术规程》(JGJ120-99)对于砂性土,采用水土分算,取土的固结不排水抗剪强度指标或者固结快剪强度指标计算;对于粘性土及粉性土,采用水土合算,地下水以下取饱和重度和总应力固结不排水(固结快剪)抗剪强度指标计算。
水土合算,采用固结快剪峰值强度指标有争议。
2、冶金工业部标准《建筑基坑工程技术规范》(YB9258-97)一般情况宜按照水土分算原则计算,有效土压力取有效应力抗剪强度指标指标,粘性土无条件取得有效应力强度指标时,可采用固结不排水(固结快剪)指标代替。
当具有地区工程实践经验时,对粘性土也可采用水土合算原则,取总应力固结不排水抗剪强度指标计算。
3、《建筑地基基础设计规范》(GB50007-2002)对于砂性土,宜按照水土分算原则计算,对粘性土宜按照水土合算的原则计算。
浅析土工试验中的抗剪强度

Chn e T c n lge n r d cs ia N w e h oo isa d P o u t
高 新 技 术
浅析 土工试 验 中 的抗剪 强 度
刘 瑞 琼
( 南地 质 工 程 第 二勘 察 院 , 南 楚雄 6 50 ) 云 云 7 0 0
摘 要 : 过 对土 工试验 中直接 剪切 试验 与 三轴压 缩 试验 所测 得 的抗 剪强 度进 行对 比与分 析 , 出三轴 压缩 试验 结果 更接 近 土的 实 通 指 际理论 值 , 为地质 人 员使 用抗 剪 强度指 标提 供 了依 据 , 而对 工程 不 同的要 求提 出不 同的试验 方法 。 从 关 键词 : 剪切 试验 ; 压缩 试验 ; 强度 直接 三轴 抗剪
一
t‘ gp
淤
泥 23 15 8 7 3 2 O 46 T i f2 94 0 5
9 0 0
1.4 80
2 O 8
一
图 1直接 剪切试验 l剪切 上盒( 、 固定)2剪切下盒( 、 活动 ) 3 土样 A 试样 面积 、 、
垂 直压力 (P) ka
一
一
一
一
高 新 技 术
一
Ci w enoea o : ha e T h li nP dt nN c ogs d rus c
种度他雄胺合成新工艺
刘 龙 成
( 重庆万利康制药有 限公 司, 重 s r eA oat A #145 — 39, 学名 为( 11一 一25 双 ( 氟 甲基) 卜3 酮 一一 度他  ̄D t t i , vdr - aed ,C S : 6 62 —)化 6 5 7 )N [,- 三 , 3 苯基 一 4 氮杂一 雄 甾一 5【 0 一 1烯 一 1 羧 酰胺 , 于 5 一 13 7一 属 仅还 原酶 抑制 剂 , 目 第 一种也 是唯 一 能够 同 时抑 制 I 和 Ⅱ型 5 还原 酶的 药物 。 文以 Dr3 酮一 一 是 前 型 本 rf d 一 4 氮 杂 一d 雄 甾一 - 11 羧 酸 ,A #143 —7 6为起 始原 料 , 5一 1烯一7 一 3 C S: 29 9 —) 0 经成 盐 、 水与 胺 交换 三步 反应 合成 度他 雄胺 , 脱 总收 率达 9 %。 度 大 2 纯 于 9 . 产 品结 构 经 H N R、C N R、 、 S 认 。 方 法避免 使 用有 害、 95 %。 —M — M I M 确 R 本 有毒 化 学原料 , 工艺 简便 、 率 高、 收 质量 好 、 本低 、 成 三废
土室内剪切试验及抗剪强度分析

土的室内剪切试验及抗剪强度分析摘要:通过对土工试验中直接剪切试验与三轴压缩试验所测得的抗剪强度进行对比与分析,指出三轴压缩试验提供的数据更为准确可靠,为工程技术人员使用抗剪强度指标提供了依据,从而对工程不同的要求提出不同的试验方法。
关键词:抗剪强度;直接剪切试验;三轴压缩试验中图分类号: tg333.2+1 文献标识码: a 文章编号:1 概述土的抗剪强度是指土体抵抗剪切破坏的极限抵抗能力,其数值等于剪切破坏时滑动面上剪应力,是土的重要力学性质指标之一。
许多建筑物地基的破坏、人工或自然斜坡的滑动以及挡土墙移动或倾倒等,都是由于土内的剪应力超过其本身的抗剪强度而引起的。
因此,研究土的强度特性,主要是研究土的抗剪性。
土是由固体颗粒组成的,土粒间的连结强度远远小于土粒本身的强度,在剪应力作用下,多数土体发生的剪切破坏,并不是土粒本身的破坏,而是土粒间发生相互错动,引起土的一部分相对另一部分沿着某个面发生与剪切方向一致的滑动。
抗剪强度由土颗粒之间的内摩擦角φ以及由胶结物和束缚水膜的分子引力所产生的粘聚力 c两个参数组成。
在计算承载力、评价地基稳定性以及计算挡土墙的土的压力时,都要用到抗剪强度指标。
偏高或偏低的估计土的抗剪强度,都会给工程带来破坏和浪费。
因此,提供准确可靠的抗剪强度指标、合理地使用抗剪强度指标在工程上具有重要意义。
2 土的抗剪强度的测定测定土的抗剪强度的试验主要是模拟土剪切破坏时的应力和工作条件,利用室内或现场仪器进行土的剪切试验。
室内常用的有直接剪切试验、三轴压缩试验、无侧限抗压强度试验;现场原位测试有十字板剪切试验、现场直接剪切试验等。
选择不同的试验方法所测的抗剪强度各不相同。
本文主要针对土的直接剪切试验的三种方法及快剪试验与不固结不排水(uu)试验两种方法测得的抗剪强度指标进行对比分析。
2.1 直接剪切试验目前,直接剪切试验国内多采用四联应变控制式直剪仪。
该仪器构造简单,操作方便,易于掌握。
岩土工程中砂土剪切强度的研究

岩土工程中砂土剪切强度的研究岩土工程是一门交叉学科,涉及到土力学、岩石力学、结构力学等多个领域,也是建筑工程中一个重要的分支学科。
其中,砂土的力学性质在岩土工程中占据了重要的位置。
砂土是一种由粒径较大的砂状颗粒构成的土体,在建筑工程和土木工程中广泛使用。
砂土剪切强度是砂土的重要性质之一,是砂土受到剪切力时抵抗破坏的能力。
本文将探讨砂土剪切强度的研究。
第一部分:砂土剪切强度的定义和试验方法砂土剪切强度是指在砂土内部形成一定的剪切力时,砂土抵抗破坏的能力。
砂土的剪切强度与土体特性、孔隙结构、水分含量、粒径和粒形等有关。
剪切强度的大小与剪切应力成正比,与单位面积上所施加的剪切应力即剪切应力强度有关。
确定砂土剪切强度的试验方法根据不同目的和应用场合分为很多种,最常用的试验方法包括直剪试验、三轴剪切试验、动态剪切试验等。
直剪试验是最基本的砂土剪切强度试验方法。
试件为大小适中的正方形,通过试验仪器在试样上施加上下两个方向的载荷,使试样发生剪切破坏。
三轴剪切试验是模拟实际工程中复杂应力条件下的砂土变形和破坏的试验方法之一。
通过试验仪器在试样上施加径向应力和周向应力,以模拟实际工程条件下普遍出现的冻胀、沉降和地震等。
动态剪切试验是模拟砂土在地震等动态荷载下的破坏而开发的试验方法。
通过高强度的动态载荷施加到试样上,以模拟砂土在地震等动态荷载下的破坏过程。
第二部分:影响砂土剪切强度的因素砂土剪切强度的大小与很多因素有关,包括土体特性、孔隙结构、水分含量、粒径和粒形等。
1. 土体特性砂土剪切强度受土体特性的影响比较大。
砂土的类型、密度和振实度等因素都会对砂土的剪切强度产生影响。
密度越大、振实度越高、砂土颗粒之间的颗粒接触数越多,剪切强度就越高。
2. 孔隙结构孔隙结构是影响砂土剪切强度的主要因素之一。
砂土中的孔隙结构决定了砂土的压缩性和变形能力。
孔隙结构与砂土的密度和振实度有关。
当砂土的密度和振实度增大时,孔隙结构也会变得更加精细,从而使得砂土受到的剪切应力更加均匀,剪切强度也会提高。
砂土抗剪强度的主要影响因素及其研究现状分析

砂土抗剪强度的主要影响因素及其研究现状分析高金翎(上海大学土木工程系上海200072)中图分类号:TU441文献标识码:A文章编号:1672-7894(2013)33-0110-07摘要砂土的抗剪强度是砂土的重要力学指标之一,研究砂土的抗剪强度对于工程实践具有重要的指导意义。
研究表明,影响砂土抗剪强度的主要因素有砂土的密实度、表面粗糙度、颗粒形状、颗粒级配以及试验条件的差异等。
本文从砂土抗剪强度理论出发,分析和总结了在上述各项因素作用下砂土抗剪强度的变化规律和研究现状,并提出了目前砂土抗剪强度研究中存在的一些问题,为进一步深入研究砂土的抗剪强度问题奠定了基础。
关键词砂土抗剪强度库伦公式现状发展Analysis of the Main Factors on the Shear Strength of Sandy Soil and the Current Research Situation//Gao Jin-lingAbstract Shear strength is one of the important mechanics in-dexes of the sandy soil,so the research on the shear strength of sandy soil plays an important role in engineering practice.Several studies show that compactness,the roughness of the surface,par-ticle shape,grain size distribution and test conditions and so on have an influence on the shear strength of sandy soil.Based on the theory on the shear strength of sandy soil,this paper analyzes and summarizes the change rules and the research status of the shear strength of sandy soil under the action of the above factors. At last,the author comes up with the problems existing in the current research on the shear strength of sandy soil and lays a foundation for further researches.Key words sandy soil;shear strength;Coulomb formula;current situation;development砂土是地基土中比较常见的一种土质类型。
砂土液化及其判别的微观机理研究

砂土液化及其判别的微观机理研究一、本文概述《砂土液化及其判别的微观机理研究》这篇文章旨在深入探讨砂土液化的微观机理,以及如何通过微观机理的分析来判别砂土液化的可能性。
砂土液化是一种在地震等动力荷载作用下,砂土颗粒间的有效应力降低或完全丧失,导致砂土呈现液态化的现象。
这种现象对土木工程结构,特别是桥梁、堤坝、地下管线等基础设施的安全构成了严重威胁。
因此,对砂土液化的微观机理及其判别方法的研究具有重要的理论价值和工程实践意义。
本文首先介绍了砂土液化的基本概念、产生条件及其对工程结构的影响,然后从微观角度出发,分析了砂土颗粒间的相互作用、应力传递机制以及液化过程中颗粒间的动态变化。
在此基础上,本文提出了基于微观机理的砂土液化判别方法,包括利用颗粒尺寸、形状、排列方式等微观参数来预测砂土液化的可能性。
本文的研究方法包括理论分析、室内试验和数值模拟。
通过室内试验,模拟了地震等动力荷载作用下的砂土液化过程,观察了砂土颗粒间的动态变化,验证了理论分析的正确性。
数值模拟则进一步揭示了砂土液化过程中微观参数的变化规律,为砂土液化的判别提供了依据。
本文的研究成果不仅有助于深入理解砂土液化的微观机理,也为砂土液化的判别提供了新的思路和方法。
本文的研究对于提高土木工程结构的安全性和稳定性,具有重要的工程实践价值。
二、砂土液化的微观机理砂土液化是指在地震、波动或其他动力荷载作用下,原本固态的砂土颗粒失去其稳定性,表现出类似液态的行为。
这一过程涉及到砂土颗粒间的相互作用、颗粒排列、孔隙水压力变化以及应力传递等复杂的微观机理。
砂土由大小相近的颗粒组成,颗粒间通过接触点传递力。
在静态或低应力状态下,颗粒间主要通过摩擦力维持稳定。
然而,在强烈的动力作用下,颗粒间的摩擦力可能不足以抵抗外部荷载,导致颗粒间的相对位移增大,砂土的整体稳定性降低。
颗粒的排列方式也直接影响砂土的力学性质。
紧密的颗粒排列能够提供更好的应力传递路径,而松散的排列则容易在动力作用下发生变形。
砂土的稳态强度固结不排水三轴试验研究

流动结构、稳态线和准稳态等基本概念。
“稳态强度”是指土体在稳态变形状态下可以
动用的强度,其大小决定了土体在地震中和地震后
的稳定性和永久变形[6]。
到目前为止,人们普遍接受关于“稳态变形”
的定义是 Poulos 的定义[7,8]:对颗粒材料,“稳态
变形”是指土体在常体积、常法向有效压力、常剪
应力和常应变速率下的持续变形状态。在排水或不
1.728
F5 0.074 0.027 3.1 50.7 2.68 1.123
1.682
第 24 卷 第 22 期
魏 松等. 砂土的稳态强度固结不排水三轴试验研究
• 4153 •
累积百分比/%
100 90 80
70 60 50 40 30 20 10 0 10.000
F2 砂土 F5 砂土
1.000
saturated loose sand during CU triaxial shear test
3 试验方法简介
本试验所用 F2 和 F5 砂土样分别取自土坝的坝 基和坝体部位,为固结不排水三轴试验。砂土样的 物理性质指标及颗分曲线分别见表 1 和图 3。
试验步骤和方法:(1) 砂土样采用湿击样法制 备(根据文[14],该法可以得到较大范围孔隙比的试 样),试样直径 D = 3.91 cm、高 h = 8 cm,分 5 层击 实;(2) 采用试样在压力室内抽气饱和的方法[15],
200
100
0
0
200
400
600
p′/%
(c) F2 砂土样(ρd= 1.40 g/cm3)
400 围压/kPa
100
300
200
300
400 200
(完整版)土的抗剪强度

一、土的抗剪性
土是由固体颗粒组成的,土粒间的连结强度远远小于土粒本身的强度,故在外力作用下土粒 之间发生相互错动,引起土中的一部分相对另一部分产生滑动。土粒抵抗这种滑动的性能, 称为土的抗剪性。 土的抗剪性是由土的内摩擦角 φ 和内聚力 c 两个指标决定。对于高层建筑地基稳定性分析、 斜坡稳定性分析及支护等问题,c、φ 值是必不可少的指标。 无粘性土一般没有粘结力,抗剪力主要由颗粒间的滑动摩擦以及凹凸面间镶嵌作用所产生的 摩擦力组成,指标"内摩擦角 φ"值的大小,体现了土粒间摩擦力的强弱,也反映了土的抗 剪能力; 粘性土的抗剪力不仅有颗粒间的摩擦力,还有相互粘结力,不同种类的粘性土,具有不同的 粘结力,指标"内聚力 c"值的大小,体现了粘结力的强弱。因此,对于粘性土的抗剪能力, 由内摩擦角 φ 和粘聚力 c 两个指标决定。
三、影响土体抗剪强度的因素分析
决定土的抗剪强度因素很多,主要为:土体本身的性质,土的组成、状态和结构;而 这些性质又与它形成环境和应力历史等因素有关;此外,还决定于它当前所受的应力状态。
土的抗剪强度主要依靠室内经验和原位测试确定,试验中,仪器的种类和试验方法以 及模拟土剪切破坏时的应力和工作条件好坏,对确定强度值有很大的影响。
一、直接剪切试验
直接剪切仪分为应变控制式和应力控制式两种,前者是等速推动试样产生位移,测定相应的 剪应力,后者则是对试件分级施加水平剪应力测定相应的位移,目前我国普遍采用的是应变 控制式直剪仪。
应变控制式直剪仪主要部件由固定的上盒和活动的下盒组成,试样放在盒内上下两块透 水石之间。试验时,由杠杆系统通过加压活塞和透水石对试件施加某一垂直压力 σ,然后等 速转动手轮对下盒施加水平推力,使试样在上下盒的水平接触面上产生剪切变形,直至破坏, 剪应力的大小可借助与上盒接触的量力环的变形值计算确定。假设这时土样所承受的水平向 推力为 T,土样的水平横断面面积为 A,那么,作用在土样上的法向应力则为σ=P/A,而 土的抗剪强度就可以表示为 f =T/A。ຫໍສະໝຸດ 主要内容第一节 概述