整式的除法(基础)知识讲解
整式的除法笔记

整式的除法笔记
1.定义:
整式除法是将一个整式(被除数)除以另一个整式(除数)的过程,其结果是一个整式或商式。
2.基本法则:
当两个整式相除时,我们可以将其视为分数的形式,即被除数/除数。
例如,对于整式A和B,A ÷ B 可以表示为A/B。
3.多项式除以单项式:
当我们有一个多项式除以一个单项式时,可以将其视为多项式的每一项分别除以该单项式。
例如,对于多项式3x^2 + 4x + 5 和单项式x,结果为3x + 4 + 5/x。
4.除法与乘法的关系:
整式除法与整式乘法是互为逆运算。
这意味着,如果我们有一个整式A除以另一个整式B得到商C,那么A可以表示为B与C的乘积。
5.余数与除式:
当整式除法不能整除时,会有一个余数。
例如,对于多项式5x^2 + 3x + 2 和单项式x+1,商为5x - 2,余数为4。
6.长除法:
当被除数和除数都是多项式时,我们通常使用长除法来找到商和余数。
这种方法类似于我们在小学时学习的长除法,但应用于整式。
7.注意事项:
o确保在除法过程中,除数的每一项都不能为0。
o当整式除法得到的结果是一个多项式时,注意结果的每一项的系数和指数。
o注意余数的存在,它可以帮助我们验证除法的正确性。
8.应用:
整式除法在代数、方程求解、多项式函数等领域都有广泛的应用。
它帮助我们简化复杂的表达式,找到多项式的根,以及解决各种与多项式相关的问题。
大庆景园中学《整式的除法》课件

在几何图形中的应用
面积和周长的计算
在几何图形中,整式的除法可以用于 计算图形的面积和周长。例如,通过 矩形面积公式和周长公式,可以计算 矩形的面积和周长。
坐标几何中的运算
在坐标几何中,整式的除法可以用于 进行点的坐标运算,例如求两点的距 离、中点坐标等。
04
整式的除法的注意事项
Chapter
运算的顺序性
除法运算的结果可以是有限小数、无限循环小数或无限 不循环小数。
整式的除法的性质
交换律
整式的除法满足交换律,即交换 被除式和除式的位置不影响结果
。
结合律
整式的除法满足结合律,即改变运 算的顺序不影响结果。
分配律
整式的除法满足分配律,即被除式 与一个数相乘,等于被除式分别与 这个数的每一个因子相乘的积之和 除以这个数。
行解决。
综合练习题
总结词:整合知识
详细描述:综合练习题是为了帮助学生整合整式除法的相关知识,提高综合运用能力。这些题目通常 包括多个知识点和技巧的融合,需要学生综合考虑和分析。同时,综合练习题还可以帮助学生培养逻 辑推理和问题解决的能力。
THANKS
感谢观看
整式的除法的运算规则
整式的除法运算中,通常采用长除法 或短除法进行计算。
短除法:将除数和被除数的首位数字 对齐,从高位到低位依次进行运算, 直到余数为零。
长除法:按照运算规则,将被除式写 在横线的上方,除式写在横线的下方 ,从高位到低位依次进行运算,直到 余数为零。
在进行整式的除法运算时,需要注意 运算的顺序和运算的精度,以避免出 现计算错误或精度损失。
例如,将多项式 (3x^2y^3 + 2x^2y^2) 除以单项式 (2x^2y^2), 结果为 (frac{3}{2}xy + frac{1}{2}y + frac{1}{2})。
整式的除法讲义

整式的除法讲义知识梳理:1、同底数幂的除法同底数幂的除法法则:同底数幂相除,底数不变,指数相减。
即a^m ÷ a^n = a^(m-n) (m、n都是正整数且m>n,a≠0)。
特别地,当m=n时,a^m ÷ a^n = a^(m-n) = a,而a^m ÷ a^n = 1,所以规定a≠0.2、单项式或多项式除以单项式两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,连同它的指数作为商的个因式。
多项式除以单项式,先把这个多项式每一项除以单项式,再把所得的商相加。
3、本章知识综合与提高①对字母表示数的再认识字母表示数是代数的基本思想之一,字母不仅表示任何一个数,也可以表示一个代数式(单项式、多项式)从而使法则和公式更具有普遍性。
②字母指数的讨论问题在决定幂的符号时需要对字母指数分奇偶加以讨论,这是研究中的一个难点。
③乘法公式的拓展立方和公式”a^3-b^3=(a-b)(a^2+ab+b^2),“立方差公式”a^3+b^3=(a+b)(a^2-ab+b^2)。
④“十字相乘法”对于一般的二次三项式ax^2+bx+c(a≠0),寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则ax^2+bx+c=a1x+c1)(a2x+c2)。
⑤换元法、配方法数学方法在因式分解中的应用。
典型例题及针对练:考点1 同底数幂的除法例1 计算下列各式⑴ (-y)^4 ÷ (-y)^3;⑵ (-x)^4 ÷ (-x^2);⑶ (-a)^3 ÷ (-a);⑷(4n) ÷ (-y)^2n。
注:1、其一底数不同,不能直接应用法则进行计算,应当把各因式都化为同底数幂后再应用法则计算,其二是指数相减,不是指数相除a^m ÷ a^n ≠ a^(m/n)。
2、含有零指数幂,通过计算,我们发现幂的运算法则对零指数幂仍旧适用,计算零指数幂的值时,要特别小心符号错误,如 (-3)^0 的值应当是1而不是-1.补例练:1、计算:⑴(a-b)^5 ÷(b-a)^3;⑵a^5 ÷(a·a^3);⑶ a^5 ÷ [(a^2)^3 ÷ a^2)];⑷ (am·an)^p ÷ a^q。
七年级下册整式除法知识点

七年级下册整式除法知识点整式除法是七年级下册数学中重要的知识点之一,它在数学中具有极其重要的位置。
整式除法是指将一个整式(多项式)除以另一个整式的运算,下面就来详细了解一下整式除法的知识点。
1. 什么是整式?整式是一类特殊的多项式,多项式是由常数和变量的积以及常数相加减的代数式组成的。
一个多项式中,如果每一项的次数都是一样的,那么这个多项式就是整式。
例如,2x^3-5x^2+3x-7就是一个整式,而3x+2xy-4不是整式。
整式有常数项、一次项、二次项等。
2. 整式的除法整式的除法就是将一个多项式除以另外一个多项式的运算。
除数和被除数一般都是整式,这是整式除法的基础。
整式除法的答案也是一个整式,即商式。
3. 整式的性质(1)整式除法满足唯一性,即对于任意的多项式f和g,存在唯一的商式q和余式r,使得f=gq+r,并且r的次数小于g的次数。
(2)整式除法满足可减性,即如果f=q1g+r1,g=q2h+r2,则f=(q1q2)h+(q2r1+r2)。
在整式的计算过程中,可用可减性使整个过程更加简单。
(3)整式的系数也可以是复数,例如,x^2+(2+3i)x-1除以x+1就是(x+1)+(2+2i)。
4. 整式的除法步骤(1)先将除数与被除数按照次数从高到低排列,确保计算的准确性。
(2)将被除数的最高次项除以除数的最高次项,得到商。
(3)将商乘以除数,然后减去被除数,得到余数。
(4)将余数再次除以除数,得到新的商。
(5)重复上述步骤,直到余数的次数小于等于除数的次数。
(6)最后的商即为整式的商式,而最后的余数即为整式的余式。
5. 一个简单的例子例如,将多项式f(x)=x^3+2x^2+3x+1除以g(x)=x+1。
(1)首先将f(x)和g(x)按照次数排列,得到f(x)=x^3+2x^2+3x+1,g(x)=x+1。
(2)将f(x)的最高次项x^3除以g(x)的最高次项x,得到商x^2。
(3)将x^2乘以g(x)得到x^3+x^2,然后减去f(x)得到x^2+x+1。
七年级数学整式的除法

关键知识点总结
除法运算步骤 将被除式与除式按降幂排列。
用被除式的第一项除以除式的第一项,得到商式的第一项。
关键知识点总结
将商式的第一项与除式相乘, 得到积式。
用被除式减去积式,得到差式 。
将差式作为新的被除式,重复 以上步骤,直到差式为0或次 数低于除式。
关键知识点总结
注意事项 在除法运算中,要保证每一步的运算都是准确的。
整式的除法与因式分解有着密切的联系。在 整式的除法中,如果被除式可以分解为两个 因式的乘积,那么可以通过因式分解的方法 简化运算过程。同时,因式分解也可以看作 是整式的除法的一种特殊情况,即被除式为 0的情况。因此,掌握因式分解的方法对于
理解和应用整式的除法具有重要意义。
THANK YOU
感谢聆听
练习题与答案
$a$ 的指数部分
$a^4 div a^2 = a^{(4-2)} = a^2$
$b$ 的指数部分
$b^3 div b = b^{(3-1)} = b^2$
练习题与答案
02
01
03
$c$ 保持不变 因此,$(15a^4b^3c) div (5a^2b) = 3a^2b^2c$ 练习题2:计算 $(18x^5y^6z^3) div (9x^3y^3z)$
整式除法可用于解决经济问题中的利 润率、折扣率、税率等问题。
工程问题
在工程问题中,利用整式除法可以计 算工作效率、工作时间、工作总量等 问题。
05
整式除法运算技巧与注意事项
简化计算过程技巧
01
02
03
利用乘法分配律
将除法转化为乘法,简化 计算过程。
提取公因式
在整式除法中,可以提取 被除数和除数的公因式, 使计算更简便。
整式乘除知识点

整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。
下面就让我们一起来深入了解整式乘除的相关知识点。
一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。
例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。
整式的除法法则

整式的除法法则整式的除法法则是指在代数学中,对两个整式进行除法运算的规则。
整式的除法法则是代数学中的基本概念,它是解决代数问题的重要工具。
本文将介绍整式的除法法则的基本概念、步骤和相关例题。
一、整式的基本概念在代数学中,整式是由数字、变量和它们的乘积与幂的和构成的式子。
例如,3x^2+2xy-5是一个整式。
整式的除法是指对两个整式进行除法运算,得到商式和余式的过程。
在整式的除法中,被除式和除数都是整式,它们的系数可以是实数,也可以是复数。
二、整式的除法法则整式的除法包括长除法和短除法两种方法。
下面分别介绍这两种方法的具体步骤。
1. 长除法长除法是一种逐步相除的方法,适用于任意整式的除法运算。
其具体步骤如下:(1)将被除式和除数按照同类项排列。
(2)将被除式的最高次项与除数的最高次项相除,得到商式的最高次项。
(3)用商式的最高次项乘以除数,得到一个中间结果。
(4)将中间结果减去被除式,得到一个新的多项式。
(5)重复步骤(2)~(4),直到无法再相除为止,得到最终的商式和余式。
2. 短除法短除法是一种简化的除法方法,适用于除数为一次式的情况。
其具体步骤如下:(1)将被除式和除数按照同类项排列。
(2)用被除式的首项除以除数的首项,得到商式的首项。
(3)用商式的首项乘以除数,得到一个中间结果。
(4)将中间结果减去被除式,得到一个新的多项式。
(5)重复步骤(2)~(4),直到无法再相除为止,得到最终的商式和余式。
三、相关例题下面通过一些例题来演示整式的除法法则的具体应用。
例题1:计算多项式(3x^3-5x^2+2x-1)÷(x-2)。
解:按照长除法的步骤进行计算,首先将被除式和除数按照同类项排列:3x^3-5x^2+2x-1÷ x-2然后将被除式的最高次项与除数的最高次项相除,得到商式的最高次项3x^2。
用3x^2乘以除数x-2,得到一个中间结果3x^3-6x^2。
将中间结果减去被除式,得到一个新的多项式x^2+2x-1。
整式的乘除知识点总结

整式的乘除知识点总结一、幂的运算1. 同底数幂的乘法- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n (m,n都是正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m,n都是正整数)。
- 例如:(3^2)^3 = 3^2×3=3^6。
3. 积的乘方- 法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即(ab)^n=a^nb^n(n是正整数)。
- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。
4. 同底数幂的除法- 法则:同底数幂相除,底数不变,指数相减。
即a^mdiv a^n=a^m - n(a≠0,m,n都是正整数,m > n)。
- 例如:5^5div5^3 = 5^5 - 3=5^2。
- 规定:a^0 = 1(a≠0);a^-p=(1)/(a^p)(a≠0,p是正整数)。
二、整式的乘法1. 单项式与单项式相乘- 法则:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
- 例如:3x^2y·(-2xy^3)=[3×(-2)](x^2· x)(y· y^3)= - 6x^3y^4。
2. 单项式与多项式相乘- 法则:就是用单项式去乘多项式的每一项,再把所得的积相加。
即m(a + b + c)=ma+mb+mc。
- 例如:2x(3x^2 - 4x + 5)=2x×3x^2-2x×4x + 2x×5 = 6x^3-8x^2 + 10x。
3. 多项式与多项式相乘- 法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
即(a + b)(m + n)=am+an+bm+bn。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的除法(基础)【学习目标】1. 会进行单项式除以单项式的计算.2. 会进行多项式除以单项式的计算. 【要点梳理】要点一、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点诠释:(1)法则包括三个方面:①系数相除;②同底数幂相除;③只在被除式里出现的字母,连同它的指数作为商的一个因式.(2)单项式除法的实质即有理数的除法(系数部分)和同底数幂的除法的组合,单项式除以单项式的结果仍为单项式.要点二、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点诠释:(1)由法则可知,多项式除以单项式转化为单项式除以单项式来解决,其实质是将它分解成多个单项式除以单项式.(2)利用法则计算时,多项式的各项要包括它前面的符号,要注意符号的变化. 【典型例题】类型一、单项式除以单项式1、计算:(1)342222(4)(2)x y x y ÷; (2)2137323m n m m n xy z x y x y z +⎛⎫÷÷- ⎪⎝⎭;(3)22[()()]()()x y x y x y x y +-÷+÷-; (4)2[12()()][4()()]a b b c a b b c ++÷++.【思路点拨】(1)先乘方,再进行除法计算.(2)、(3)三个单项式连除按顺序计算.(3)、(4)中多项式因式当做一个整体参与计算. 【答案与解析】解:(1)342222684424(4)(2)1644x y x y x y x y x y ÷=÷=. (2)2137323m n m m n xy z x y x y z +⎛⎫÷÷- ⎪⎝⎭21373211()()()3m m m n n x x x y y y z z +⎡⎤⎛⎫=÷÷-÷÷÷÷÷ ⎪⎢⎥⎝⎭⎣⎦21432n xy z -=-.(3)22[()()]()()x y x y x y x y +-÷+÷-222()()()()x y x y x y x y =+-÷+÷- 2()()x y x y x y =-÷-=-.(4)2[12()()][4()()]a b b c a b b c ++÷++2(124)[()()][()()]a b a b b c b c =÷+÷++÷+3()33a b a b =+=+.【总结升华】(1)单项式的除法的顺序为:①系数相除;②相同字母相除;③被除式中单独有的字母,连同它的指数作为商的一个因式.(2)注意书写规范:系数不能用带分数表示,必须写成假分数. 举一反三: 【变式】计算:(1)3153a b ab ÷; (2)532253x y z x y -÷;(3)2221126a b c ab ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)63(1010)(210)⨯÷⨯. 【答案】解:(1)33202153(153)()()55a b ab a a b b a b a ÷=÷÷÷==. (2)532252323553(53)()()3x y z x y x x y y z x yz -÷=-÷÷÷=-. (3)22222201111()()332626a b c ab a a b b c ab c ac ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-÷-÷÷== ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. (4)63633(1010)(210)(102)(1010)510⨯÷⨯=÷÷=⨯.2、(泾阳县校级月考)金星是太阳系九大行星中距离地球最近的行星,也是人在地球上看到的天空中最漂亮的一颗星.金星离地球的距离为4.2×107千米,从金星射出的光到达地球需要多少时间?(光速为3.0×105千米/秒)【答案与解析】 解:t=秒,答:从金星射出的光到达地球需要1.4×102秒.【总结升华】本题考查了同底数幂的除法法则,关键是利用时间=路程÷速度这一公式,此题比较简单,易于掌握. 类型二、多项式除以单项式3、计算(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭ ;(2)()()32271833x x x x -+÷-.【思路点拨】直接利用多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加计算.【答案与解析】解:(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭54325242323211224111124424482x x x x x x x x x x x x x⎛⎫=++÷ ⎪⎝⎭=÷+÷+÷=++(2)()()32271833x x x x -+÷-()()()32227318333961x x x x x x x x =÷--÷-+÷-=-+-【总结升华】本题考查多项式除以单项式的运算,熟练掌握运算法则是解题的关键,要注意符号的处理.4、计算:(1)324(67)x y x y xy -÷; (2)42(342)(2)x x x x -+-÷-; (3)22222(1284)(4)x y xy y y -+÷-; (4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭. 【答案与解析】解:(1)32432423(67)(6)(7)67x y x y xy x y xy x y xy x y x -÷=÷+-÷=-. (2)42(342)(2)x x x x -+-÷-42[(3)(2)][4(2)][(2)(2)]x x x x x x =-÷-+÷-+-÷-33212x x =-+. (3)22222(1284)(4)x y xy y y -+÷-222222212(4)(8)(4)4(4)x y y xy y y y =÷-+-÷-+÷-2321x x =-+-(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭22322432110.3(0.5)(0.5)(0.5)36a b a b a b a b a b a b ⎛⎫⎛⎫=÷-+-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭22321533ab a b =-++.【总结升华】(1)多项式除以单项式是转化为单项式除以单项式来解决的.(2)利用法则计算时,不能漏项.特别是多项式中与除式相同的项,相除结果为1.(3)运算时要注意符号的变化. 举一反三:【高清课堂399108 整式的除法 例5】 【变式1】计算:(1)23233421(3)2(3)92xy x x xy y x y ⎡⎤--÷⎢⎥⎣⎦; (2)2[(2)(2)4()]6x y x y x y x +-+-÷. 【答案】解: (1)原式223239421922792x yx x x y y x y ⎛⎫=-÷ ⎪⎝⎭52510428(927)93x y x y x y x xy =-÷=-. (2)原式2222[44(2)]6x y x xy y x =-+-+÷2222(4484)6x y x xy y x =-+-+÷ 2(58)6x xy x =-÷5463x y =-. 【变式2】(滕州市校级月考)计算:[(3a+b )2﹣b 2]÷3a. 解:[(3a+b )2﹣b 2]÷3a,=(9a 2+6ab+b 2﹣b 2)÷3a,=(9a 2+6ab )÷3a, =3a+2b 【巩固练习】一.选择题1. 下列计算结果正确的是( )A .2334222x y xy x y -⋅=- B .222352x y xy x y -=-C .4232874x y x y xy ÷= D .()()2323294a a a ---=-2. 423287a b a b ÷的结果是 ( ) A.24abB.44a bC. 224a bD. 4ab3.(下城区二模)下列运算正确的是( ) A .(a 3﹣a )÷a=a 2 B .(a 3)2=a 5 C .a 3+a 2=a 5 D .a 3÷a 3=14. 如果□×3ab =23a b ,则□内应填的代数式是( )A.abB.3abC.aD.3a5.下列计算正确的是( ). A.()13n n x y z +-÷()13n n x y z +- =0B.()()221510532x y xy xy x y -÷-=- C.x xy xy y x 216)63(2=÷- D.231123931)3(x x x x xn n n +=÷+-++ 6. 太阳的质量约为2.1×2710t ,地球的质量约为6×2110t ,则太阳的质量约是地球质量的( )A.3.5×610倍 B.2.9×510倍 C.3.5×510倍 D.2.9×610-倍 二.填空题7. 计算:()()22963a b ab ab -÷=_______. 8. 2xy •(______)=26x yz -. 9. 计算()()34432322396332x y x y x y x y x y xy -+÷=-+-.10.直接写出结果:(1)()()35aa -÷-=_______;(2)()24a a -÷-=_______;(3)1042x x x ÷÷=_______; (4)10n ÷210n -=_______;(5)()3mm aa ÷=_______;(6)()()21nn y x x y --÷-=_______.11.(成都校级月考)(﹣a 6b 7)÷= .12.学校图书馆藏书约3.6×410册,学校现有师生约1.8×310人,每个教师或学生假期平均最多可以借阅______册图书. 三.解答题13.(陇西县期末)(1)计算:()2÷(﹣)2(2)计算:(x 2y ﹣xy 2﹣y 3)(﹣4xy 2).14. 先化简,再求值:()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦,其中a =-5. 15.天文学上常用太阳和地球的平均距离 1.4960×810千米作为一个天文单位,已知月亮和地球的平均距离约为384401千米,合多少天文单位?(用小数表示,精确到0.0001)【答案与解析】 一.选择题1. 【答案】C ;【解析】A 、2334224x y xy x y -⋅=-,所以A 选项错误;B 、两个整式不是同类项,不能合并,所以B 选项错误;D 、()()2323294a a a ---=-+,所以,D 选项错误.2. 【答案】D ;3. 【答案】D ;【解析】解:A 、(a 3﹣a )÷a=a 2﹣1,错误;B 、(a 3)2=a 6,错误;C 、a 3与a 2表示同类项,不能合并,错误;D 、a 3÷a 3=1,正确; 故选D .4. 【答案】C ;5. 【答案】D ; 【解析】()13n n xy z +-÷()13n n xy z +- =1;()()221510532x y xy xy x y-÷-=-+;21(36)612x y xy xy x -÷=-. 6. 【答案】C ;【解析】(2.1×2710)÷(6×2110)=0.35×610=3.5×510. 二.填空题7. 【答案】32a b -; 8. 【答案】3xz -;【解析】26x yz -÷2xy =3xz -. 9. 【答案】23xy -;10. 【答案】(1)2a ;(2)-2a ;(3)4x ;(4)100;(5) 2ma ;(6) ()1n x y +- ;【解析】(6)()()()()21211nn n n n y x x y x y x y --++-÷-=-=-.11.【答案】﹣3a 2b 5; 【解析】解:(﹣a 6b 7)÷=,故答案为:﹣3a 2b 5. 12.【答案】20册;【解析】3.6×410÷(1.8×310)=20. 三.解答题 13.【解析】 解:(1)()2÷(﹣)2=×=;(2)(x 2y ﹣xy 2﹣y 3)(﹣4xy 2)=﹣3x 3y 3+2x 2y 4+xy 5.14. 【解析】解:原式=()61264594a a a a -÷÷ =6444a a -÷ =2a -当a =-5时,原式=-25. 15.【解析】解:由题意得:384401÷1.4960×810≈0.0026(个天文单位) 答:月亮和地球的平均距离约为0.0026个天文单位.。