冀教版数学八年级上册

合集下载

冀教版八年级数学(上册)知识点归纳

冀教版八年级数学(上册)知识点归纳

冀教版八年级数学(上册)知识点归纳第十二章分式注:1.对于任意一个分式,分母都不能为零.2.分式与整式不同的是:分式的分母中含有字母,整式的分母中不含字母.3.分式的值为零含两层意思:分母不等于零;分子等于零。

(中B≠0时,分式有意义;分式 A/B中,当B=0分式无意义;当A=0且B≠0时,分式的值为零。

)常考知识点:1、分式的意义,分式的化简。

2、分式的加减乘除运算。

3、分式方程的解法及其利用分式方程解应用题。

第十三章全等三角形一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。

一般情况下:疑问句不是命题.图形的作法不是命题. 每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项. 一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论. 要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。

二、证明一个命题是真命题的基本步骤是:(1)根据题意,画出图形.(2)根据条件、结论,结合图形,写出已知、求证.(3)经过分析,找出由已知推出求证的途径,写出证明过程.在证明时需注意:(1)在一般情况下,分析的过程不要求写出来.(2)证明中的每一步推理都要有根据. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

30。

所对的直角边是斜边的一半。

斜边上的高是斜边的一半。

¤能够完全重合的图形称为全等形。

全等图形的形状和大小都相同。

只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。

三.全等三角形¤1.关于全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角所谓“完全重合”,就是各条边对应相等,各个角也对应相等。

2024-2025学年初中数学八年级上册(冀教版)教案第13章全等三角形

2024-2025学年初中数学八年级上册(冀教版)教案第13章全等三角形

第十三章全等三角形13.1 命题与证明(1(2题教学反思例1 判断下列命题的真假,写出逆命题,并判断逆命题的真假:(1)如果两条直线相交,那么它们只有一个交点;(2)如果a >b ,那么a 2>b 2;(3)如果两个数互为相反数,那么它们的和为零; (4)如果ab <0,那么a >0,b <0. 教师引导,学生分析:可以先把原命题的条件和结论写出来,然后调换条件和结论即可得逆命题,最后判断真假性.教师提示:写逆命题并不是简简单单地把条件和结论互换即可,还要使命题的语句具有逻辑性. 解:(1)命题是真命题.逆命题为:如果两条直线只有一个交点,那么它们相交.是真命题.(2)是假命题.逆命题为:如果a 2>b 2,那么a >b ,是假命题.(3)是真命题.逆命题为:如果两个数的和为零,那么它们互为相反数,是真命题.(4)是假命题.逆命题为:如果a >0,b <0,那么ab <0.是真命题. 练习:请写出下列命题的逆命题,并指出原命题和逆命题的真假性:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. (2)如果两个角是对顶角,那么这两个角相等.(3)如果一个数能被3整除,那么这个数也能被6整除. (4)已知两数a ,b .如果a +b >0,那么a -b <0. 学生独立完成,教师点评:(1)原命题是真命题,逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么内错角相等.逆命题也为真命题.(2)原命题是真命题,逆命题为:如果两个角相等,那么这两个角是对顶角. 逆命题为假命题.(3)原命题是假命题,逆命题为:如果一个数能被6整除,那么这个数也能被3整除.逆命题为真命题.(4)原命题是假命题,逆命题为:如果a -b <0,那么a +b >0.逆命题为假命题. 2.证明教师提问:刚才你们是怎么判断一个命题是假命题的? 学生:举反例推翻这个命题.教师:那怎么判断一个命题是真命题呢?也用举例吗?仅仅举几个例子足以说明它是真命题吗?命题有真命题,也有假命题,要说明一个命题是假命题,只要举出反例即可;要说明一个命题是真命题,则需要进行推理论证,即证明.定义:要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明. 例2 证明:平行于同一条直线的两条直线平行.已知:如图 ,直线a ,b ,c ,a ∥c , b ∥c . 求证: a ∥b .证明:如图,作直线d ,分别与直线 a ,b ,c 相交∵ a ∥c (已知),∴ ∠1=∠2(两直线平行,同位角相等). ∵ b ∥c (已知), 教学反思A BDCE∴ ∠2=∠3(两直线平行,同位角相等). ∴ ∠1=∠3(等量代换). ∴ a ∥b (同位角相等,两直线平行). 即平行于同一条直线的两条直线平行.教师:通过这个题,如何做证明题?(学生讨论) 证明的步骤:第一步:根据题意画图,将文字语言转换为符号(图形)语言; 第二步:根据条件、结论、 图形写出已知、求证; 第三步:根据基本事实、已有定理等进行证明.定义:如果一个定理的逆命题是真命题,那么这个逆命题也可以称为原定理的逆定理.我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是定理,因此它们就是互逆定理..练习:已知:如图,点O 在直线AB 上,OD ,OE 分别是BOC AOC ∠∠,的平分线. 求证:OD ⊥OE .学生独立完成,教师点评:证明:∵ 点O 在直线AB 上,∴ ∠AOC +∠BOC =180°(平角的定义). ∵ OD ,OE 分别是∠AOC ,∠BOC 的平分线,∴ ∠DOC =21∠AOC ,∠EOC = 21∠BOC (角平分线的定义), ∴ ∠DOC +∠EOC =21(∠AOC +∠BOC )=21×180°=90°.∴ OD ⊥OE .课堂练习1.命题“如果a =b ,那么3a =3b ”的逆命题是______________________.2.写出下列命题的逆命题:(1)如果两直线都和第三条直线垂直,那么这两直线平行; (2)若a +b >0,则a >0,b >0; (3)等腰三角形的两个底角相等.3.已知:如图,直线a ,b 被直线c 所截,∠1与∠2互补. 求证:a ∥b.参考答案1.如果3a =3b ,那么a =b.2.解: (1)如果两直线平行,那么这两直线都和第三条直线垂直.(2)若a >0,b >0,则a +b >0.(3)有两个角相等的三角形是等腰三角形.3.证明:∵ ∠1和∠3是对顶角,教学反思O∴ ∠1=∠3.又∵ ∠1与∠2互补,∴ ∠1+∠2=180°.∴ ∠2+∠3=180°,∴ ∠1=∠3(等角的补角相等). ∴ a ∥b (同旁内角互补,两直线平行).课堂小结(学生总结,教师点评) 1.互逆命题 2.证明证明的一般步骤:第一步,依据题意画图,将文字语言转换为符号(图形)语言.第二步,根据图形写出已知、求证. 第三步,根据基本事实、已有定理等进行证明.布置作业完成教材第34页习题第1,2,3题.板书设计 13.1 命题与证明教学反思一个命题的条件和结论分别为另一个命题的结论和条件的两个命题,称为互逆命题.命题与证明互逆命题命题与证明要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明.第十三章全等三角形13.2 全等图形教学目标1.理解全等图形,了解全等图形的对应点、对应边和对应角.2.理解全等三角形的概念,能识别全等三角形的对应边、对应角.3.知道全等三角形的性质.教学重难点重点:了解全等图形的对应点、对应边和对应角;知道全等三角形的性质.难点:理解全等三角形的概念,能识别全等三角形的对应边、对应角.教学过程导入新课观察思考:(学生观察,教师引导)问题:如图,观察给出的五组图形.(1)每组图形中,两个图形的形状和大小各有怎样的关系?(2)先在半透明纸上画出同样大小的图形,再将每组中的一个图形叠放到另一个图形上,观察它们是否能够完全重合.(4)探究新知1.全等图形同桌两人合作完成,学生回答,教师评价.实验发现:(1)(2)(3)组中的两个图形能够完全重合,(4)(5)组中的两个图形不能完全重合.定义:能够完全重合的两个图形叫做全等图形.考考你对全等图形的理解:观察下面三组图形,它们是不是全等图形?(1)(2)(3)教师归纳:全等图形的性质:全等图形的形状和大小都相同.有关的概念:对应点当两个全等的图形重合时,互相重合的点叫对应点.如图,△ABC与△A′B′C′是两个全等三角形,点A和点A′,点B和点B′,点C和点C′分别是对应点.教学反思对应边当两个全等的图形重合时,互相重合的边叫对应边.如AB和A′B′,CB和C′B′,AC和A′C′.对应角当两个全等的图形重合时,互相重合的角叫对应角.如∠A和∠A′,∠B和∠B′, ∠C和∠C′.2.全等三角形全等的表示方法“全等”用符号“≌”表示,读作“全等于”.如△ABC与△A′B′C′全等,记作△ABC≌△A′B′C′,读作三角形ABC全等于三角形A′B′C′.(教师提示:书写时应把对应顶点写在对应的位置上)3.全等三角形的性质根据以下几个问题归纳全等三角形有哪些性质?(教师引导,学生讨论)1.两个能够完全重合的线段有什么关系?2.两个能够完全重合的角有什么关系?3.两个全等三角形的对应边之间有什么关系?对应角之间有什么关系?师生共同归纳:全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的性质的几何语言:(学生完成填空)如图,∵△ABC≌△A′B′C′,∴AB=____,AC=____,BC=_____(全等三角形对应边_____),∠A=_____,∠B=_____,∠C=_____(全等三角形对应角_____).练习:如图1,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个全等三角形的对应角.教师引导,学生分析:找对对应点是解决此题的关键(△BOD与△COE中,B-C,D-E,O-O;△ADO与△AEO中A-A,D-E,O-O)解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.图1图2例已知:如图2,△ABC≌△DEF,∠A=78°,∠B=35°,BC=18.(1)写出△ABC和△DEF的对应边和对应角.(2)求∠F的度数和边EF的长.(学生独立完成,教师评价)解:(1)边AB和边DE,边BC和边EF,边AC和边DF分别是对应边;教学反思AB CE DF∠A 和∠D , ∠B 和∠DEF , ∠ACB 和∠F 分别是对应角. (2)在△ABC 中,∵ ∠A +∠B +∠ACB =180°(三角形内角和定理), ∴ ∠ACB =180°-∠A -∠B =180°-78°-35°=67°. ∵ △ABC ≌△DEF ,∴ ∠F =∠ACB = 67°,EF =BC =18. 拓展:(1)全等三角形的对应元素相等.其中,对应元素包括对应边、对应角、对应中线、对应高、对应角平分线、对应周长、对应面积等;(2)全等三角形的性质是证明线段相等、角相等的常用依据.课堂练习1.如图1,△ABC ≌△BAD ,如果AB =6 cm , BD =4 cm ,AD =5 cm ,那么BC 的长是( )A .7 cmB .5 cmC .4 cmD .无法确定2.如图2,△ABC ≌△ADE ,∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( )A .40°B .35°C .30°D .25°3.如图3,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列选项不正确的是( ) A.AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =CD4.如图4,△ABC ≌ △ADE ,若∠D =∠B , ∠C = ∠AED ,则∠DAE =__________.5.如图5,△ABC ≌△DEF ,且B ,C ,F ,E 在同一直线上,判断AC 与DF 的位置关系,并证明.参考答案1.B2. B3.D4.∠BAC5.解:AC ∥DF . 理由如下:∵ △ABC ≌△DEF ,∴ ∠ACB =∠DFE , ∴ 180°-∠ACB =180°-∠DFE , 即∠ACF =∠DFC ,∴ AC ∥DF .教学反思A DB C A BC DE F图1 图2 图3 图4 AB C DE 图5课堂小结13.2全等图形布置作业完成教材第37页习题A组、B组.板书设计1.全等图形及相关的概念;2.全等三角形的表示方法及性质.教学反思全等图形:能够完全重合的两个图形叫做全等图形全等图形全等三角形:能够完全重合的两个三角形叫做全等三角形全等三角形的性质全等三角形的对应边相等全等三角形的对应角相等第十三章 全等三角形13.3 全等三角形的判定第1课时 边边边教学目标1.进行三角形全等条件的探索,积累数学活动经验;2.掌握基本事实一,利用基本事实一证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握基本事实一,利用基本事实一证明两个三角形全等;难点:会利用三角形全等证明线段相等、角相等.教学过程 导入新课1.什么叫全等三角形?能够完全重合的两个三角形叫全等三角形.2.如图,已知△ABC ≌△DEF①AB =DE,② BC =EF ,③CA =FD ;④∠A =∠D , ⑤∠B =∠E ,⑥∠C =∠F .探究新知 一、探究互动一 思考1:满足上述六个条件可以保证△ABC ≌△DEF 吗?思考2:可以用较少的条件判定△ABC ≌△DEF 吗?在以上六个条件中,能否选择其中部分条件,简捷地判定两个三角形全等呢?教师引导,学生探究(小组合作)探究1 只给一个条件,可以分哪几种情况?能够判断两个三角形全等吗?两个三角形不全等;两个三角形不全等; 结论:一个条件不能够判断两个三角形全等.探究2 只给两个条件.①两条边对应相等:若AB =DE ,AC =DF ,但两个三角形不全等;教学反思②一条边和一个角对应相等:若AB =DE ,∠A = ∠D ,但两个三角形不全等;③两个角对应相等:若∠A = ∠D ,∠C = ∠AFE ,但两个三角形不全等.结论:两个条件也不能够判断两个三角形全等.探究3 给出三个条件.⎧⎪⎪⎨⎪⎪⎩①三角对应相等;②三边对应相等;三个条件③两边一角对应相等;④两角一边对应相等.问题 有三个角对应相等的两个三角形全等吗?结论:不一定全等.小亮认为,剩下的三种情况才有可能判断两个三角形全等,你赞同他的说法吗?二、探究互动二——基本事实一问题1:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,折成一个边长分别是3 cm ,4 cm ,6 cm 的三角形. 把你做出的三角形和同学做出的三角形进行比较,它们能重合吗?问题2:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,余下 1 cm ,用其余部分折成边长分别是3 cm ,4 cm ,5 cm 的三角形. 再和同学做出的三角形进行比较,它们能重合吗? 小组互动,教师指导. 归纳:基本事实一:如果两个三角形的三边对应相等,那么这两个三角形全等(可简记为“_______”或“_____”).几何语言:如图,在△ABC 和△ DEF 中,,,,AB CA BC ⎧⎪⎨⎪⎩= = = ∴ △ABC ≌△ DEF ( ).例1 如图1,已知点A ,D ,B ,F 在一条直线上,AC =FE ,BC =DE ,AD =FB .求证:△ABC ≌△FDE . 教师指导,学生分析:在两个三角形中分别找到对应的三条边,然后证明它们分别相等. 证明:∵ AD =FB ,∴ AD +DB =FB +DB ,即AB =FD .教学反思在△ABC 和△FDE 中,∵ ,,AC FE AB FD BC DE ⎧⎪⎨⎪⎩===,∴ △ABC ≌△FDE (SSS ).图1 图2例2 如图2,已知:AB =AC ,AD =AE ,BD =CE . 求证:∠BAC =∠DAE .证明:在△ABD 和△ACE 中,∵ AB AC AD AE BD CE =,=,=,⎧⎪⎨⎪⎩∴ △ABD ≌△ACE (SSS),∴ ∠BAD =∠CAE . ∴ ∠BAD +∠DAC =∠CAE +∠DAC , 即∠BAC =∠DAE .练习:1.如图,下列三角形中,与△ABC 全等的是_______.2.已知:如图,AB =DE ,AC =DF ,BF =CE . 求证:(1)∠A =∠D ;(2)AB ∥DE . 学生独立完成,教师评价 1.③ 2.证明:(1) ∵ BF =CE ,∴ BF +FC =FC +CE ,即BC =EF .在△ABC 和△DEF 中, ∵,,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴ △ABC ≌△DEF (SSS), ∴ ∠A =∠D .(2)由(1)△ABC ≌△DEF ,可得∠B =∠E ,∴ AB ∥DE .三、三角形的稳定性问题1 问题2:观察右面两组木架,如果分别扭动它们,会得到怎样的结果?教学反思教师归纳:教学反思三角形的特性:三角形木架的形状_________,也就是说三角形是具有_____的图形.四边形的特性:四边形木架的形状_______,也就是说四边形是_________的图形.理解“稳定性”只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.想一想:在我们日常生活中,还有哪些地方运用到了三角形的稳定性?你能举出例子来吗?课堂练习1.如图1,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对2.下列关于三角形稳定性和四边形不稳定性的说法中正确的是( )A.稳定性总是有益的,而不稳定性总是有害的B.稳定性有利用价值,而不稳定性没有利用价值C.稳定性和不稳定性均有利用价值D.以上说法都不对3.在生活中我们常常会看见如图2所示的情况加固电线杆,这是利用了三角形的________.4.如图3,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A. 1个B. 2个C. 3个D. 4个5.如图4,D,F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件________ (填一个条件即可).6.如图5,AD=BC,AC=BD.求证:∠C=∠D .图1 图2 图3图4图5参考答案1.C2.C3.稳定性4.C5.BD=CF(答案不唯一)如果两个三角形的三边对应相等,那么这两个三角形全等(简写成“边边边”或“SSS”)内容解题思路应用边边边注意事项三角形的稳定性结合图形找隐含条件和现有条件,找出三边对应相等1.证明两三角形全等所需的条件应按对应边的顺序书写.2.结论中所出现的边必须在所证明的两个三角形中6.证明:连接AB(图略),在△ABD和△BAC中,,,, AD BC BD AC AB BA ⎧⎪⎨⎪⎩===∴△ABD≌△BAC(SSS),∴∠D=∠C.课堂小结1.基本事实一;2.基本事实一的应用;3.三角形的稳定性.布置作业完成教材第40页习题.板书设计13.3全等三角形的判定第1课时边边边教学反思第十三章全等三角形13.3 全等三角形的判定第2课时边角边教学目标教学反思1.探索并正确理解三角形全等的判定方法“SAS”;2.会用“SAS”判定方法证明两个三角形全等及进行简单的应用;3.了解“SSA”不能作为两个三角形全等的条件.教学重难点重点:会用“SAS”判定方法证明两个三角形全等及进行简单的应用;难点:了解“SSA”不能作为两个三角形全等的条件.教学过程旧知回顾回顾基本事实一的内容.导入新课问题情境小明不小心将一块大脸猫的玻璃摔成了三块(如图所示),为了配一块和原来完全一样的玻璃,他带哪一块玻璃就可以了? 你能替他解决这个难题吗? 带着问题我们还是一块儿来学习一下这节课的内容吧!探究新知观察思考:问题1:画一个三角形,使它的两条边长分别是1.5cm,2.5cm,并且使长为1. 5cm的这条边所对的角是30°.小明的画图过程如图所示.小明根据所给的条件,画出了两个形状不同的三角形,这说明两个三角形的两条边和其中一边的对角对应相等时,这两个三角形不一定全等.那么两边和它们的夹角对应相等,这两个三角形又将是怎样的呢?问题2:已知:如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,BC=B′C′.(1)将△ABC叠放在△A′B′C′上,使顶点B与顶点B′重合,边BC落在边B′C′上,点A与点A′在边B′C′的同侧.点C与点C′是否重合,边BC与边B′C′是否重合? 边BA 是否落在边B ′A ′上,点A 与点A ′是否重合? (2)由“两点确定一条直线”,能不能得到边AC 与边A ′C ′重合,△ABC 和△A ′B ′C ′全等?教师引导,学生自主探索. 归纳:基本事实二如果两个三角形的________和它们的______对应相等,那么这两个三角形全等.(可简写成“________”或“_____”)几何语言:在△ABC 和△ DEF 中, ____________AB A AC ⎧⎪⎨⎪⎩=,∠=,=, ∴ △ABC ≌△ DEF (______).例 已知:如图,AD ∥BC ,AD =CB . 求证:△ADC ≌△CBA . 教师引导,学生分析: 由两条直线平行可得内错角相等,还有隐含条件AC是公共边,可由SAS 证得结论.证明:∵AD ∥BC (已知),∴∠1=∠2(两直线平行,内错角相等).在△ADC 和△CBA 中,∵(),12(),(),AD CB AC CA ⎧⎪⎨⎪⎩=已知∠=∠已推出=公共边 ∴△ADC ≌△CBA (SAS ).三角形全等在实际生活中也有很广泛的应用.下图是一种测量工具的示意图.其中AB =CD ,并且AB ,CD 的中点O 被固定在一起, AB ,CD 可以绕点O 张合.在图中,只要量出AC 的长,就可以知道玻璃瓶的内径是多少.这是为什么?请把你的想法和同学进行交流.原理:SAS. 练习:在下列推理中填写需要补充的条件,使结论成立: 如图,在△AOB 和△DOC 中, AO =DO (已知),______=________( ),BO =CO (已知),∴ △AOB ≌△DOC ( ).学生独立完成,教师评价.答案:∠ AOB ∠ DOC 对顶角相等 SAS 课堂练习 1.如图,△ABC 中,已知AD 垂直于BC ,D 为BC 的中点,则下列结论不正确的是( ) A . △ABD ≌△ACD B . ∠B =∠CC . AD 是∠BAC 的平分线 D . △ABC 是等边三角形2.如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( )A .一定全等B .一定不全等C .不一定全等D .面积相等 3.如图1,AB ,CD ,EF 交于点O ,且它们都被点O 平分,则图中共有______对全等教学反思内容 应用 边角边 如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等.(简写成 “边角边”或“SAS ”)1.“SSA ”不能作为判断三角形全等的依据;2. 根据已知条件,找到图形中的隐含条件,如公共边,公共角,对顶角,邻补角,外角,平角等,证明三角形全等.三角形.图1 图2 4.如图2,△ABC 和△EFD 分别在线段AE 的两侧,点C ,D 在线段AE 上,AC =DE ,AB ∥EF ,AB =EF .求证:△ABC ≌△EFD .5.某大学计划为新生配备如图3所示的折叠凳,图4是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB 和CD 的长相等,O 是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD 设计为30 cm ,则由以上信息可推得CB 的长度是多少? 参考答案 1.D 2.C 3.34.证明:∵ AB ∥EF ,∴ ∠A =∠E .在△ABC 和△EFD 中,,,,AC ED A E AB EF ⎧⎪⎨⎪⎩=∠=∠=∴ △ABC ≌△EFD (SAS ).5.解:∵ O 是AB ,CD 的中点,∴ OA =OB ,OD =OC .∴ CB =AD .在△AOD 和△BOC 中,OA OB AOD BOC OD OC ⎧⎪⎨⎪⎩=,∠=∠,=, ∴ △AOD ≌△BOC (SAS ). ∵ AD =30 cm ,∴ CB =AD =30 cm.课堂小结1.基本事实二;2.SAS 的应用. 布置作业完成教材第43页习题.板书设计 13.3 全等三角形的判定第2课时 边角边 教学反思第十三章 全等三角形13.3 全等三角形的判定 第3课时 角边角、角角边教学目标1.分不同情况探索“两角一边”条件下两个三角形是否全等;2.掌握AAS 或ASA ,并会利用其证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握AAS 或ASA ,并会利用其证明两个三角形全等;难点:分不同情况探索“两角一边”条件下两个三角形是否全等.教学过程 导入新课探究新知1.角边角、角角边 问题1:如图,在△ABC和△A ′B ′C ′中,∠B =∠B ′,BC =B ′C ′.∠C =∠C ′.把△ABC 和△A ′B ′C ′叠放在一起,它们能够完全重合吗? 问题2:提出你的猜想,并试着说明理由.学生讨论会发现:将△ABC 叠放在△A ′B ′C ′上,使边BC 落在边B ′C ′上,顶点A 与顶点A ′在边B ′C ′的同侧.由BC =B ′C ′可得边BC 与边B ′C ′完全重合.因为∠B =∠B ′,∠C =∠C ′ ,∠B 的另一边BA 落在边B ′A ′上, ∠C 的另一边落在边C ′A ′上,所以∠B 与∠B ′完全重合, ∠C 与∠C ′完全重合.由于“两条直线相交只有一个交点”,所以点A 与点A ′重合.所以, △ABC 和△A ′B ′C ′全等. 归纳:基本事实三如果两个三角形的 两个角和它们的夹边对应相等,那么这两个三角形全等.(可简写成“角边角”或“ASA ”)几何语言: 如图,在△ABC 和△ DEF 中,∠A =∠D ,AB =DE ,∠B =∠E ,教学反思∴ △ABC ≌△ DEF (ASA ).问题3:已知:如问题1中的图,在△ABC 和△A ′B ′C ′中, ∠A =∠A ′, ∠B = ∠B ′,BC =B ′C ′. 求证: △ABC ≌△A ′B ′C ′.教师引导,学生观察:可将∠A =∠A ′这个条件转化为∠C =∠C ′. 证明:∵∠A +∠B +∠C =180°,∠ A ′ +∠ B ′ +∠ C ′ =180°(三角形内角和定理), 又∵ ∠A =∠A ′, ∠B = ∠B ′(已知), ∴ ∠C =∠C ′(等量代换).在△ABC 和△A ′B ′C ′中,,,,B B BC B C C C ∠=∠⎧⎪=⎨⎪∠=∠⎩′′′′ ∴ △ABC ≌△A ′B ′C ′(ASA ). 想一想:从中我们可以得到什么规律? 归纳:全等三角形的判定定理 如果两个三角形的 两角及其中一个角的对边对应相等,那么这两个三角形全等.(可简写成“角角边”或“AAS ”)几何语言:在△ABC 和△ DEF 中,∠B =∠E ,∠A =∠D ,BC =EF , ∴ △ABC ≌△ DEF (AAS ). 例 已知:如图,AD =BE ,∠A =∠FDE ,BC ∥EF . 求证:△ABC ≌△DEF .教师引导,学生分析.通过BC ∥EF ,可得∠ABC =∠E ,再根据等量代换可得AB =DE .证明:∵ AD =BE (已知),∴ AB =DE (等式的性质). ∵ BC ∥EF (已知), ∴∠ABC =∠E (两直线平行,同位角相等).在△ABC 和△DEF 中,,A FDE AB DE ABC E ⎧⎪⎨⎪⎩∠=∠,=,∠=∠∴ △ABC ≌△DEF (ASA ). 练习:1.如图1,已知△ABC 的三条边和三个角,则甲、乙两个三角形中和△ABC 全等的图形是( )A.甲B.乙C.甲、乙D.甲、乙都不是图1 图22.如图2,点D ,E 分别在线段AB ,AC 上,BE ,CD 相交于点O ,AE =AD ,要使△ABE ≌△ACD ,根据“AAS ”需添加的一个条件是___________. 学生独立完成,教师评价.答案:1.B 2.∠B =∠C (答案不唯一)课堂练习1.在△ABC 与△A ′B ′C ′中,已知∠A =44°,∠B =67°,∠C ′=69°,∠A ′教学反思=44°,且AC=A′C′,那么这两个三角形________________.2.如图1,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=________.图1 图23.如图2,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若BD=2cm,CF=4cm,则AB的长为( )A.2cmB.4cmC.6cmD.8cm4.如图3,∠1=∠2,∠3=∠4.求证:△ABC≌△ABD.5.已知:如图4,AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.图3 图4参考答案1.全等2.33.C4.证明:∵∠3=∠4,∴∠ABC=∠ABD.在△ABC和△ABD中,12,,, AB ABABC ABD ⎧⎪⎨⎪⎩∠=∠=∠=∠∴△ABC≌△ABD(ASA). 5.证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90 °.在△ABC和△ADC中,12B DAC AC⎧⎪⎨⎪⎩∠=∠,∠=∠,=(公共边),∴△ABC≌△ADC(AAS),∴AB=AD.课堂小结1.角边角、角角边的内容;2.利用角边角、角角边解决问题.布置作业完成教材第47页习题.教学反思板书设计13.3全等三角形的判定第3课时角边角、角角边教学反思角边角角角边内容应用如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等(简写成“ASA”)如果两个三角形的两角及其中一个角的对边对应相等,那么这两个三角形全等(简写成“AAS”)注意“AAS”“ASA”中两角与边的区别第十三章 全等三角形13.3 全等三角形的判定第4课时 具有特殊位置关系的三角形全等教学目标1.会从图形变换的角度,认识两个可能全等的三角形的位置关系;2.会综合运用本节学过的基本事实及相关定理证明两个三角形全等.教学重难点重点:会从图形变换的角度,认识两个可能全等的三角形的位置关系;难点:会综合运用本节学过的基本事实及相关定理证明两个三角形全等. 教学过程 导入新课1.图形的变换---平移、旋转;2.三角形全等的几个基本事实. 探究新知 问题:如图,每组图形中的两个三角形都是全等三角形.观察每组中的两个三角形,请你说出其中一个三角形经过怎样的变换(平移或旋转)后,能够与另一个三角形重合.学生讨论会发现: (1)、(2)图通过平移重合;(3)、(4)、(5)、(6)通过旋转重合. 归纳:实际上,在我们遇到的两个全等三角形中,有些图形具有特殊的位置关系,即其中一个三角形是由另一个三角形经过平移或旋转(有时是两种变换) 得到的.发现两个三角形间的这种特殊关系,能够帮助我们找到命题证明的途径,较快地解决问题.例1 已知:如图,在△ABC 中, D 是BC 的中点,DE ∥AB,交AC 于点 E ,DF ∥AC ,交AB 于点F .求证:△BDF≌△DCE .教师引导,学生分析:将△BDF 沿BC 方向向右平移可使△BDF △DCE 重合. 证明:∵ D 是BC 的中点(已知),∴ BD =DC (线段中点定义∵ DE ∥AB ,DF ∥AC ,(已知)∴ ∠B =∠EDC ,∠BDF =∠C ,(两直线平行,同位角相等)在△BDF 和△DCE 中,B EDC BD DC BDF C ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BDF ≌△DCE (ASA ).例2 已知:如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,CF ∥AB ,交DE 的延长线于点F . 求证:DE =FE .教师引导,学生分析:将△ADE 绕点E 旋转,可与△CFE 重合.证明:∵CF ∥AB (已知),∴∠A =∠ECF (两直线平行,内错角相等). 在△EAD 和△ECF 中, 教学反思,A ECF AE CE AED CEF ⎧⎪⎨⎪⎩∠=∠,=,∠=∠ ∴△EAD ≌△ECF (ASA ).∴DE =FE (全等三角形的对应边相等). 练习: 1.如图1,由∠1=∠2,BC =DC ,AC =EC ,得△ABC ≌△EDC 的根据是( ) A .SAS B .ASA C .AAS D .SSS图1 图2 2.已知:如图2,AB ∥CD ,AD ∥BC . 求证:AB =CD ,AD =BC .学生独立完成,教师评价.答案:1.A2.证明:连接AC (图略),∵ AD ∥BC ,∴ ∠DAC =∠ACB.∵ AB ∥CD ,∴ ∠BAC =∠DCA. 在△BAC 和△DCA 中,BAC DCA AC CA BCA DAC ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BAC ≌△DCA , ∴ AB =CD ,AD =BC . 课堂练习 1. 如图1,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为________.2.如图2,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则这两个滑梯与地面夹角∠ABC 与∠DFE 的度数和是( )A.60°B.90°C.120°D.150° 图1 图2 图3 图4 3.如图3,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC .将仪器上的点A与∠PR Q 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C画一条射线AE ,AE 就是∠PR Q 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠Q A E =∠P AE .则说明这两个三角形全等的依据是( )A .SASB .ASAC .AASD .SSS4.如图4,AE =AC ,AB =AD ,∠EAB =∠CAD ,试说明:∠B =∠D.参考答案 1.120° 2.B 3.D 4.证明:∵ ∠ EAB =∠ CAD ,∴ ∠ EAB +∠ BAD =∠ CAD +∠ BAD , 即∠ EAD =∠ CAB .教学反思。

冀教版初中八年级数学上册17-4直角三角形全等的判定课件

冀教版初中八年级数学上册17-4直角三角形全等的判定课件

4.如图,在正方形网格中,点A,B,C,D均在格点上,则∠ACD+ ∠BDC= 90 °.
解析 如图,取格点E,连接AE,EC,AD,设AC,BD交于点F.
在Rt△AEC和Rt△DAB中,
AC∴RBt△D, AEC≌Rt△DAB
AE AD,
(HL),∴∠ACE=∠ABD.∵∠EAC+∠ACE=90°,∴∠EAC+
DE AD
EC, BE,
∴Rt△ADE≌Rt△BEC(HL),∴AE=BC,
∵AD+BC=7,∴AB=AE+BE=BC+AD=7.
9.(2023河北邯郸大名月考,19,★★☆)如图,点D在BC上,DE ⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD= 145°,则∠EDF= 55° .
B.12 cm
C.12 cm或6 cm
D.以上答案都不对
解析 由题意可知∠C=∠QAP=90°.①当AP=CB时,在Rt△APQ
与Rt△CBA中, PAQP∴RCBt△BA,, APQ≌Rt△CBA(HL),此时AP= BC=6 cm;②当P运动到C点时,AP=AC,在Rt△QAP与Rt△BCA
中, QAPP∴RAAt△CB,,QAP≌Rt△BCA(HL),此时AP=AC=12 cm. 综上所述,AP=6 cm或12 cm.故选C.
3.如图,在△ABC和△DEF中,∠A=∠D=90°,AB=DF,若要用 “斜边、直角边(HL)”直接证明Rt△ABC≌Rt△DFE,还需 补充一个条件,这个条件可以是 BC=EF(或BE=CF) .
解析
补充条件BC=EF,在Rt△ABC和Rt△DFE中,
BC
AB
EF , DF ,

八年级上册冀教版数学

八年级上册冀教版数学

八年级上册冀教版数学
1、三角形定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

,
2、三角形两边的和大于第三边;三角形的两边的差小于第边边。

3、判定三条线段
能否围成三角形的简易方法:较小两边之和大于第三边(最大边)。

4、三角形四心: (1)重心:三条中线交点; (2)垂心:三条高的交点; (3)内心:三个角
平分线的交点; (4)外心:三边垂直平分线的交点。

5、三角形内角和定理:三角形三个内角
的和等于"6、直角三角形的性质:直角三角形的两个锐角互余。

7、直角三角形的判定定理:有两个角互余的三角形是直角三角形。

8、三角形的一边与另一边延长线组成的角,叫做三
角形的外角。

9、三角形的外角等于和它不相邻的两个内角的和。

10、由一些线段首尾顺
次相接组成的封闭图形叫做多边形。

11、多边形的对角线:连接多边形不相邻的两个顶点
的线段,叫做多边形的对角线。

多边形一个顶点对角线为: (n-3)条多边形对角线总条数为: n(n-3):2条。

冀教版八年级数学上册目录

冀教版八年级数学上册目录

冀教版八年级数学上册目录第十三章一元一次不等式和一元一次不等式组13.1不等式13.2不等式的基本性质13.3一元一次不等式13.4一元一次不等式组第十四章分式14.1分式14.2分式的乘除14.3分式的加减第十五章轴对称15.1生活中的对称轴15.2简单的轴对称图形15.3轴对称的性质15.4利用轴对称设计图案15.5等腰三角形第十六章勾股定理16.1勾股定理16.2由边的数量关系识别直角三角形16.3勾股定理的应用第十七章实数17.1平方根17.2立方根17.3实数17.4用计算器开平(立)方17.5实数的运算第十八章平面直角坐标系18.1确定平面上物体的位置18.2平面直角坐标系18.3图形与坐标18.4二元一次方程(组)的解和点的坐标第十九章随机事件与概率19.1确定事件和随机事件19.2可能性大小19.3频率与概率的关系实数(1)一个整数有__________个平方根,它们互为__________,负数没有平方根,一个正数有__________个__________的立方根,一个负数有__________个__________的立方根.0的平方根、立方根都是__________.(2)实数与数轴上的点__________.aa2(3))=__________(a≥0)=__________(a≥0,b≥0)).bb(4)二次根式加减运算的步骤是:先把每个二次根式化成__________,并把能合并的二次根式进行合并.平面直角坐标系(1)平面直角坐标系内,点和它的坐标(有序实数对)之间的关系是__________.平面直角坐标系内一点P(a,b),当a>0,b>0时,P在第__________象限;当a<0,b>0时,P在第__________象限;当a__________,b__________时,P在第三象限;当a__________,b__________时,P在第四象限;当a=0时,P在__________上;当__________时,P在x轴上,反之亦然.(2)二元一次方程有无数个解,每一个解都是一个实数对,对应着坐标系中的一个点,这些点构成了一条__________,二元一次方程组的解就是每个方程对应的直线的__________的坐标.随机事件与概率(1)我们用一个数P(A)表示随机事件A发生的可能性__________,称P(A)为事件A发生的概率,一般地,如果一个实验有n个等可能的结果,而事件A包含其中k个结果,我们定义P(A)=__________=__________.(2)对任何一个事件A,它的概率P(A)满足__________,必然事件的概率是__________,不可能事件的概率是__________.(3)有的事件可以通过合理的计算来求它的概率,有些事件需要通过实验,由__________估计它们的概率;当实验次数足够多时,事件A的频率稳定到它的__________,所以我们常用频率估计事件发生的__________,实验次数越多,越有可能得到较准确的估计值.。

冀教版八年级上册数学13.2全等图形

冀教版八年级上册数学13.2全等图形

13.2 全等图形一、教学目标理解全等图形的概念,识别全等图形的对应点、对应边和对应角。

二、知识点梳理1、全等图形我们把能够完全重合的两个图形叫做全等图形。

两个全等图形重合时,互相重合的点叫做对应点,互相重合的线段叫做对应线段,互相重合的角叫做对应角。

(1)全等图形的形状相同,大小相等。

(2)两个图形是否全等与它们的位置和方向无关。

2、全等三角形及其性质(1)①定义:能够完全重合的两个三角形叫做全等三角形。

②表示方法:如图所示,△ABC和△A´B´C´完全重合,因此它们是全等的,我们用符号“≌”来表示全等,记作“△ABC≌△A´B´C´”,读作“三角形ABC全等于三角形A´B´C´”注意:在写两个三角形全等时,应该把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角。

如△ABC与△A´B´C´,点A与点A´,点B与点B´,点C与点C´是对应颠倒,记作△ABC≌△A´B´C´,而不要写成△ABC≌△B´C´A´。

(2)全等三角形的性质:全等三角形的对应边相等,对应角相等。

如图所示,△ABC≌△A´B´C´,则有对应角相等:∠A=∠A´,∠B=∠B´,∠C=∠C´;对应边相等:AB=A´B´,AC=A´C´,BC=B´C´。

拓展:全等三角形对应中线;对应高;对应角平分线;对应周长;对应面积都相等。

三、典型例题讲解例1 观察图13-2-1中的各个图形,指出其中的全等图形。

例2如图13-2-2,△ABC与△ADE全等,写出其对应顶点、对应边和对应角。

例3如果△ABC≌△DEF,△DEF的周长是32 cm,DE=9 cm,EF=12 cm。

冀教版初中八年级数学上册17-3勾股定理第一课时勾股定理课件

冀教版初中八年级数学上册17-3勾股定理第一课时勾股定理课件

11.(2024江苏扬州邗江期末,16,★★☆)如图,在Rt△ABC中,
AC=4,AB=5,∠C=90°,BD平分∠ABC交AC于点D,则DC的长
3
是2.
解析 在Rt△ABC中,AC=4,AB=5,∠C=90°,∴BC=
A=B2 =3A,C如2图,过52 D 作42 DE⊥AB于点E,∵BD平
分∠ABC,DC⊥BC,∴DC=DE,设DC=DE=x,∵S△BCD+S△ABD=S△ABC,
2
2ab+b2-2ab=a2+b2,∵中间小正方形的边长为c,∴小正方形的
面积为c2,∴a2+b2=c2,∴甲能利用面积验证勾股定理.乙中直
角梯形的面积为 (a =b)(aa2+b) b12+ab1,两个直角三角形
2
22
的面积和为2× 1 ab=ab,则中间等腰直角三角形的面积为1 a2+
2
2
1 b2+ab-ab=1 a12+ b2,∵中间等腰直角三角形的两条直角边
7.(2024四川成都龙泉驿期末)如图,△ABC中,AB=AC,BD⊥AC于 点D,∠BDF=∠BAF=∠C,BD=3,CD=1. (1)求证:∠CBD=∠EDA. (2)求AB的长.
解析 (1)证明:∵BD⊥AC, ∴∠C+∠CBD=∠EDA+∠BDF=90°, ∵∠BDF=∠C,∴∠CBD=∠EDA. (2)设AD=x,则AB=AC=AD+CD=x+1, ∵BD=3,AD2+BD2=AB2,∴x2+32=(x+1)2, 解得x=4,∴AB=x+1=5.
∴1 BC·DC+1 AB·DE1=222解33

冀教版八年级数学上册第十六章16.3角的平分线优秀教学案例

冀教版八年级数学上册第十六章16.3角的平分线优秀教学案例
2.问题导向:设计具有启发性的问题,引导学生积极思考,激发学生的好奇心,培养学生的思维能力。
3.小组合作:组织学生进行小组讨论,鼓励学生相互交流、分享成果,培养学生的团队协作能力和沟通能力。
4.反思与评价:让学生进行自我评价和同伴评价,教师对学生的学习过程和结果进行评价,给予肯定和鼓励,提出改进建议,促进学生的持续发展。
2.同伴评价:鼓励学生相互评价,发现他人的优点,学习他人的长处。
3.教师评价:教师对学生的学习过程和结果进行评价,给予肯定和鼓励,提出改进建议。
4.设计具有针对性的练习题:让学生在课后进行巩固练习,提高学生的知识运用能力。
四、教学内容与过程
(一)导入新课
1.利用生活实例导入:展示一把剪刀,引导学生观察剪刀的两个剪切面,提问:“你们能发现剪刀剪切面之间的特殊关系吗?”
5.针对性的练习题:设计具有针对性的练习题,让学生在课后进行巩固练习,提高学生的知识运用能力,确保学生能够将所学知识灵活运用到实际问题中。
3.能够理解并应用角的平分线的性质定理,如角的平分线上的点到角的两边的距离相等。
4.能够熟练地使用直尺和圆规作角的平分线,提高空间想象能力和动手能力。
(二)过程与方法
1.通过观察、思考、讨论,引导学生自主发现和总结角的平分线的性质,培养学生的观察能力和思维能力。
2.利用几何画板或实物模型,让学生直观地感受角的平分线性质,提高学生的空间想象能力。
3.设计具有梯度的练习题,让学生在解决实际问题的过程中,学会运用角的平分线的性质,提高学生的应用能力。
4.引导学生进行小组合作学习,培养学生的团队协作能力和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冀教版数学八年级上册
§平面直角坐标系
(第二课时)
§平面直角坐标系
一、教材说明及学情分析:
《平面直角坐标系》是冀教版八年级第18章第2节的内容,本节课是在学生学习了数轴与有关几何知识的基础上,引入平面直角坐标系,使学生的认识实现了从一维到二维的过渡,它是后面学习函数知识的重要基础.通过对这一部分内容的学习,可以让学生学习平面内的点(形)与坐标(数)的一一对应关系,让学生进一步感受到数形结合的思想,可以说平面直角坐标系的引入,架起了数与形的桥梁,而这座桥梁将伴随学生以后学习的全过程,从这个意义上讲,本节内容的学习意义深远.
本节内容需2课时,本设计为第二课时,是在学生会根据坐标描出点的位置、由点的位置写出它的坐标之后,对点的坐标特征进行初步探究,而对于特殊点的坐标特征的深入研究是本节课的难点.
二、教学目标:
(一)【知识目标】
1、认识平面直角坐标系及其相关概念;
2、能在给定的直角坐标系中根据点的坐标描出点的位置,由点的位置写出点的坐标;
3、探索各象限内点与坐标轴上点的坐标特征;
4、掌握关于坐标轴对称点的横、纵坐标的特征.
(二)【技能目标】
1、通过在给定的直角坐标系中,由坐标描点和由点确定坐标,发展学生的数形结合意识;
2、通过观察特殊位置点的坐标特征,探索各象限内、坐标轴上以及关于坐标轴对称点的坐
标特征,培养学生的探索能力,体会由特殊到一般的认知规律.
(三)【情感目标】
1、能使学生感受到数学与现实世界的联系,增强学生“用数学”的意识,感受数学之用;
2、培养学生严谨朴实的科学态度和勤奋自强的探索精神,以及独立思考与合作交流的学习
习惯,感受数学之实;
3、让学生尝试成功的情感体验,感受数学之美.
三、教学重点与难点:
1、教学重点:能在给定的平面直角坐标系中,由坐标描出点,由点求出坐标.
2、教学难点:探索各象限内点和坐标轴上点的坐标特征,以及它们特征的简单运用.
四、教学方法:
学生独立思考,配以小组交流的探究式教学方法.
五、教学过程:
教学活动师生行为设计意图
创设情境
引入新课
秋天是收获的季节,也是菊花盛
开的季节。

看!开满菊花的坐标平面
是多么漂亮,还引来了美丽的蝴蝶!
今天让我们在蝴蝶的带领下,继续探
究平面直角坐标系。

请观察蝴蝶飞过
的各个部分。

师给出平面直角坐标系各象限定义。

学生观看多媒体演示蝴蝶
飞舞.
教师给出平面直角坐标系
各象限定义,并板书.
通过的优美
情境,激发学生
的学习兴趣.
快速抢答
学生回答问题的过程当
中,感悟象限的概念.
深化学生对
象限概念的理
解.
我动手我快乐
师:美丽的蝴蝶和我们玩起了捉
迷藏,我们该如何找到它呢
同学们,请你在坐标平面中描出
下列各点,并观察这些点在坐标平面
的什么位置.
(0,0)、(-3,3)、(-2,1)、(-2,0)、
(-1,0)、(-2,-1)、(-1,-3)、(0,-1)、
(3,3)、(2,1)、(2,0)、(1,0)、
(2,-1)、(1,-3)
展示学生作品后,教师利用多媒体演
示.
学生在给定的坐标纸上独
立完成,用实物投影展示学生
的作品.
学生可能给出的答案:
①各点分别在第一、二、三、
四象限;②各点分别在第一、
二、三、四象限及坐标轴.
通过全班辨析,再次深化
学生对象限概念的理解.
通过学生自
己动手描点,体
会根据坐标描出
点的位置的方
法,进一步体验
直角坐标系是沟
通“数”与“形”
的桥梁.
我观察
我快乐
师:观察坐标平面中描出的下列
各点,你能回答下列问题吗
问题一:
各象限内点的坐标的符号有什么
特征、
问题二:
各坐标轴上的点的坐标有什么特征
教师展示问题,让学生带
着问题思考答案.
问题一:
学生通过观察与对比,寻找共
性与个性而总结出答案:
各象限内点的坐标特征:
问题二:
各坐标轴上点的坐标特征:
如果点T在x轴上,那么它的
纵坐标为0.
如果点T在y轴上,那么它的
横坐标为0.
学生充分感
受、体验点的坐
标与点的位置的
对应关系即“数”
与“形”的对应,
感受数形结合思
想.
智慧大比拼
1.指出下列各点分别在坐标平面
的哪个位置.
A(-3,2)
B(0,)
C(m,n),其中mn=0
D(a,b),其中ab<0
2.点G在x轴上,它到y轴的距离
是5,则G点的坐标是.
1题中的点A、B学生能够迅速
回答出答案,点C、D则需要学
生经过短暂的思考才能得到答
案。

2题需要学生经过短暂的思考
才能得到答案。

学生通过运
用刚学会的知识
解决问题,深化
对知识的掌握,
沉淀知识,体会
学习的快乐。

3
1






今天我进一步学习了平面直角坐
标系:
学生把收获整理到学习日
志中.
通过完成学
习日志,使学生
在知识上有更进
一步的理解和体
会,同时培养学
生自我反思的能
力,引导学生由
“学会”到“会
学”.


作业1:
课本P138 练习和习题2、4.
作业2:
在平面直角坐标系内设计美丽的轴对
称图案.
作业1目的是学生通过运
用刚学会的知识解决问题,深
化对知识的掌握,沉淀知识,
体会学习的快乐。

作业2目的
是培养学生的发
散思维和创新能
力,以及用轴对
称知识作图和用
坐标作图的不同
之处.
六、板书设计:
§平面直角坐标系(二)
1、象限和坐标轴
学生作品展示区
2、各象限内的点的坐标特征
3、各坐标轴上的点的坐标特征
4、关于坐标轴对称的点的坐标特征
七、教学反思
新课程强调转变学生的学习方式,改变以往单一的、被动的接受式的学习,倡导构建具有“自主、合作、探究”特征的学习方式。

因此,我在这节课教学设计中,充分挖掘实际素材,探索点在直角坐标系中的特征,加强数学与现实的联系,让学生体会数学的广泛应用,激起学生学习兴趣。

积极尝试小组合作学习,鼓励学生的自主探索和合作交流。

培养学生在自主学习中发现问题、提出问题的能力,启发学生养成与同学合作学习、在合作学习中陈述自己意见的习惯。

这样,不仅激发了学生学习的兴趣,调动起学生学习积极性,而且增强了学生的集体荣誉感。

通过这节课学习,发现学生特别积极活跃,生生之间相互交流,使每一位学生都有均等的参与交流展示的机会。

我感到非常振奋,运用“自主、合作、探究”学习方式,为学生自主发展拓展了空间。

在今后的教学中我将采取一些措施:
(1)教学要尽量激发学生参与的热情,引导学生从交往中体验合作的快乐。

(2)积极引导学生掌握一些基本的交往技能,比如,“说明白一些”,让每个学生都有机会说,引导小组成员互相评价。

(3)根据学生的实际和教材的特点,尽量创设交往机会,加强小组同学之间的互动,培养学生的交往情感和合作意识。

相关文档
最新文档