测向技术
无线电测向在地理勘探中的应用

无线电测向在地理勘探中的应用无线电测向技术作为一种重要的地理勘探手段,广泛应用于各个领域。
它通过利用无线电信号的传播和反射等特性,确定信号源的位置和方向,为地理勘探提供了有效的方法。
本文将介绍无线电测向在地理勘探中的应用,并详细讨论其原理、技术特点以及未来的发展前景。
一、无线电测向技术原理无线电测向技术主要基于电磁波传播和反射的原理。
当无线电信号遇到障碍物或介质变化时,会发生传播路径的改变和信号的衰减。
利用接收端的多个天线,可以测量到同一信号源的不同接收信号强度,并通过信号处理和计算,确定信号源的位置和方向。
二、无线电测向技术在地理勘探中的应用1.矿产资源勘探在矿产资源勘探中,无线电测向技术可以帮助确定矿体的位置和走向。
通过在地面或航空平台上设置接收系统,可以接收到地下矿体反射的无线电信号,并通过信号处理,确定矿体的边界和深度信息,为矿产资源的开发提供指导。
2.地下管线探测在城市建设和维护中,地下管线的准确定位至关重要。
无线电测向技术可以通过天线阵列接收地下管线发送的无线电信号,并通过信号处理和测向算法,确定管线的位置和方向,避免施工过程中对管线的损坏,提高工作效率。
3.地震勘探地震勘探是地质灾害预测和资源勘探的重要手段。
无线电测向技术可以结合地震勘探中的震源定位和地震波传播分析,提供更准确的地质信息。
通过接收地震波产生的电磁信号,可以确定震源的位置和方向,为地质构造的研究和地质灾害的预测提供支持。
4.导航与定位无线电测向技术在导航与定位领域有着广泛的应用。
通过接收卫星发射的导航信号,并结合无线电测向技术,可以确定接收器的位置和速度。
在航空、航海和车辆导航等领域,无线电测向技术可以提供高精度的定位和导航服务。
三、无线电测向技术的特点1.非接触性无线电测向技术无需接触被测物体,通过接收信号来确定其位置和方向。
这一特点使得其在特殊环境下的应用更加方便和安全。
2.可远程测量无线电信号的传播距离较远,无线电测向技术可以实现对远距离信号源的测量。
如何利用无线电测向技术进行方位测量和导航定位

如何利用无线电测向技术进行方位测量和导航定位无线电测向技术在方位测量和导航定位领域发挥着重要的作用。
它是一种利用无线电信号的传播特性来确定物体位置和方向的技术手段。
本文将从无线电测向技术的原理、应用领域和未来发展方向等角度来论述如何利用无线电测向技术进行方位测量和导航定位。
首先,我们要了解无线电测向技术的原理。
这种技术利用无线电信号的传播特性,通过对信号到达接收器的时间、信号强度或相位等参数的测量来确定信号源的位置和方向。
无线电测向技术有许多不同的实现方式,如信号强度测量、相位差测量和多普勒频移测量等。
其中,信号强度测量是最常用的一种方法,通过比较信号在不同接收器上的接收强度来确定信号源的位置。
相位差测量则利用信号在不同接收器间的相位差来确定信号源的方向。
多普勒频移测量则是通过测量信号源引起的频率变化来确定信号源的运动方向和速度。
其次,无线电测向技术在方位测量和导航定位领域有着广泛的应用。
在方位测量方面,无线电测向技术可以用于定位无线电干扰源,如无线电通信设备、无线电干扰器等,帮助监测和防范无线电干扰。
在导航定位方面,无线电测向技术可以用于定位和导航系统的建设和维护,如航空导航、水下定位、车辆定位等。
此外,无线电测向技术还可以用于搜寻失踪人员、追踪目标物体等应用场景。
在实际应用中,无线电测向技术还面临着一些挑战和限制。
一是信号传播的时延效应和多路径效应会影响定位和导航的准确性。
二是目标物体的电磁特性和环境的影响也会对测向结果产生干扰。
三是目前的测向设备和算法还存在一定的局限性,需要不断提升和改进。
随着科技的进步和无线通信技术的发展,无线电测向技术在方位测量和导航定位领域的应用将会越来越广泛。
未来,随着物联网、5G通信等技术的普及,无线电测向技术将更加精准和可靠。
同时,无线电测向技术也可以与其他定位技术相结合,如GPS、惯性导航等,提高定位和导航的稳定性和精度。
总的来说,无线电测向技术是一种重要的方位测量和导航定位技术,具有广泛的应用前景。
联合时差相位差旋转长基线干涉仪测向方法

联合时差相位差旋转长基线干涉仪测向方法随着科技的不断发展和进步,测向方法在各种领域中得到了广泛的应用。
其中,联合时差相位差旋转长基线干涉仪测向方法是一种非常有效的测向技术。
本文将对该方法进行深入探讨,介绍其原理、实现步骤和应用前景。
1. 联合时差相位差旋转长基线干涉仪测向方法的原理联合时差相位差旋转长基线干涉仪是一种基于干涉技术进行测向的仪器。
它的原理是利用干涉仪测量出来的物体上的物理参数,然后通过计算得出物体的方位角和仰角,从而实现对物体位置的测定。
时差相位差旋转长基线干涉仪的原理是基于两个或多个干涉仪的相位差测量,通过测量两个或多个干涉仪的输出信号之间的相位差,再经过一系列复杂的数学运算,可以得到物体的方位角和仰角。
2. 联合时差相位差旋转长基线干涉仪测向方法的实现步骤实现该测向方法的关键步骤包括:干涉仪的安装、信号采集和处理、相位差的计算和数据分析等。
(1)干涉仪的安装:在实际测向过程中,首先需要将干涉仪安装在合适的位置,以保证干涉仪能够准确地接收到目标物体的信号。
(2)信号采集和处理:干涉仪在接收到目标物体的信号后,需要将信号进行采集和处理。
这一步骤需要使用高精度的信号采集设备,并对采集到的信号进行数字化处理。
(3)相位差的计算:通过对采集到的信号进行数学运算和处理,可以得到两个或多个干涉仪的输出信号之间的相位差。
(4)数据分析:需要对计算得到的相位差进行数据分析,得到目标物体的方位角和仰角。
3. 联合时差相位差旋转长基线干涉仪测向方法的应用前景联合时差相位差旋转长基线干涉仪测向方法具有很高的精度和准确度,因此在许多领域中得到了广泛的应用。
它在卫星通信、导航、地震监测、航空航天等领域中有着重要的应用价值。
在卫星通信领域,该方法可以用于精确定位卫星和地面站之间的相对位置,从而提高通信的可靠性和稳定性。
在导航领域,该方法可以用于飞行器和航空器的定位和导航,提高导航系统的精度和可靠性。
在地震监测领域,该方法可以用于对地震震源进行精确定位,为地震监测和预警提供重要的技术支持。
无线电测向原理

无线电测向原理无线电测向是一种利用无线电波进行信号测向的技术,它可以用于确定信号的方向和位置。
无线电测向技术在军事、民用通信、天文学等领域都有着重要的应用。
本文将介绍无线电测向的原理及其在实际中的应用。
首先,我们来了解一下无线电测向的基本原理。
无线电测向的基本原理是利用天线接收信号,并通过对接收到的信号进行分析,确定信号的方向和位置。
在实际的应用中,通常会使用多个天线来接收信号,通过对比不同天线接收到的信号强度和相位差异,可以计算出信号的方向和位置。
无线电测向技术主要包括两种方法,一种是方位测向,另一种是距离测向。
方位测向是通过对接收到的信号进行方位角的测量,确定信号的方向;而距离测向则是通过对接收到的信号进行距离的测量,确定信号的位置。
这两种方法可以单独应用,也可以结合起来进行综合测向。
在实际的无线电测向系统中,通常会采用多种测向技术相结合的方式,以提高测向的准确度和可靠性。
例如,可以通过使用多个天线阵列来实现高精度的方位测向;同时结合多普勒效应来实现距离测向。
这样可以在不同的环境和条件下,实现更加灵活和精准的测向。
无线电测向技术在军事领域有着广泛的应用。
在军事侦察、雷达导航、通信干扰监测等方面,都需要使用无线电测向技术来获取目标的方向和位置信息。
同时,在民用通信领域,无线电测向技术也可以用于无线电定位、无线电导航等应用。
此外,无线电测向技术还可以应用于天文学领域,用于天体信号的测向和观测。
总的来说,无线电测向技术是一种重要的信号测向技术,它可以通过对接收到的无线电信号进行分析,确定信号的方向和位置。
在实际的应用中,无线电测向技术可以应用于军事、民用通信、天文学等多个领域,具有着重要的意义和价值。
随着无线电技术的不断发展,无线电测向技术也将会得到进一步的完善和应用。
无线电测向原理

无线电测向原理无线电测向是利用无线电波的传播特性,通过对信号的接收和处理,确定信号的方向的一种技术。
无线电测向原理是基于电磁波传播的基本原理和天线接收信号的特性,通过对接收到的信号进行分析,确定信号的来向。
下面将从无线电测向的基本原理、测向系统的组成和测向方法等方面进行介绍。
首先,无线电测向的基本原理是基于电磁波的传播特性。
当电磁波在空间中传播时,会受到地形、建筑物等物体的影响而产生衍射、反射等现象,这些现象会使信号在接收端产生多径效应,从而导致信号的强度和相位发生变化。
利用这些变化,可以通过信号处理技术确定信号的方向。
其次,测向系统通常由天线、接收机、信号处理器和显示器等组成。
天线是接收信号的装置,不同类型的天线适用于不同频率的信号接收。
接收机是用于接收信号的设备,它可以将接收到的信号转换成电信号,并将其传送给信号处理器。
信号处理器是用于对接收到的信号进行处理和分析的设备,它可以提取信号的特征参数,并通过计算确定信号的方向。
显示器则用于显示测向结果,通常以图形或数字的形式呈现。
最后,无线电测向的方法主要包括干扰测向、方位测向和跟踪测向等。
干扰测向是指利用干扰信号的特征参数确定干扰源的位置,通常用于无线电干扰的监测和定位。
方位测向是指确定信号来向的方向,通常用于通信情报收集和无线电定位。
跟踪测向是指对移动目标进行实时跟踪,通常用于雷达导航和目标追踪等应用。
综上所述,无线电测向是一种利用无线电波的传播特性,通过对信号的接收和处理,确定信号方向的技术。
它的原理是基于电磁波的传播特性,测向系统由天线、接收机、信号处理器和显示器等组成,测向方法主要包括干扰测向、方位测向和跟踪测向等。
无线电测向技术在通信情报、无线电干扰监测和雷达导航等领域有着重要的应用价值。
无线电测向与人工智能的结合

无线电测向与人工智能的结合无线电测向技术是指通过接收到的无线电信号的参数进行分析,确定信号的方向来源。
而人工智能则是一项以模拟、延伸和拓展人类智能的技术,并被广泛应用于各个领域。
本文将探讨无线电测向与人工智能的结合,这一结合将为无线电测向技术带来更大的发展潜力,同时也将为人工智能技术提供新的应用场景。
1、无线电测向技术的概述无线电测向技术是一门研究无线电波方向、位置及其相关参数的技术。
它利用多个接收信号的传感器,通过测量信号在不同接收点的到达时间、到达角度等参数,来计算信号的来源方向。
无线电测向技术广泛应用于通信、导航、定位等领域。
2、人工智能在无线电测向中的应用随着人工智能技术的发展,其在无线电测向领域的应用也日益增多。
通过使用人工智能技术,可以对测向系统进行智能化的优化和改进,提高测向的精度和效率。
具体包括以下几个方面:(1)信号处理:利用人工智能技术对接收到的信号进行智能化的预处理和滤波,去除噪音和干扰,提取有效的信号特征。
(2)参数计算:利用人工智能算法对接收到的信号参数进行智能化的计算和分析,包括到达时间、到达角度等参数的估计和优化。
(3)方向估计:通过使用人工智能算法,可以对信号的来源方向进行更精确的估计和预测,提高无线电测向的准确度。
(4)自适应调整:利用人工智能技术,可以对测向系统进行自适应调整,提高系统的适应性和鲁棒性,适应不同环境和复杂场景下的测向需求。
3、无线电测向与人工智能的结合带来的优势(1)提高测向准确度:人工智能算法可以通过对大量数据的学习和分析,优化信号参数计算和方向估计的算法,从而提高测向的准确度。
(2)提高测向效率:人工智能技术可以使测向系统实现自动化和智能化,从而提高测向的效率和自动化程度,减少人工干预和操作成本。
(3)扩展应用场景:无线电测向与人工智能的结合还可以拓展测向技术的应用场景。
例如,在无线通信领域,可以利用人工智能技术对通信信号进行测向,提供智能化的信号定位服务。
无线电测向技术的发展历程

无线电测向技术的发展历程无线电测向技术(Radio Direction Finding,RDF)是一种通过接收无线电信号进行定位的技术。
它可以帮助我们确定无线电信号的发射位置,并在无线电通信、导航、安全监测等领域中发挥重要作用。
本文将介绍无线电测向技术的发展历程,展示它在不同领域的应用和对其未来的展望。
1. 早期无线电测向技术在无线电测向技术的早期阶段,主要采用的方法是基于测向天线的信号强度差异来确定信号的来向。
这种方法被称为信号强度测向法。
其原理是通过比较不同方向上接收到的信号强度,来确定信号的发射方位。
然而,由于信号传播受到多径效应和地形等因素的影响,信号的强度分布往往不够稳定,导致信号测向的准确性有限。
2. 无线电测向技术的改进随着技术的不断发展,无线电测向技术逐渐得到改进和优化。
一种常用的改进方法是采用多接收天线阵列,利用波束形成技术来提高信号测向的准确性。
这种方法通过调整接收天线之间的相位差,形成波束,可以有效地抑制多径效应,提高信号测向的精度。
此外,还出现了采用自适应信号处理的测向技术,如自适应波束形成(Adaptive Beamforming)和自适应最小方差无源测向(Adaptive Minimum Variance-based Passive Direction Finding)。
这些技术通过实时调整参数,自动适应环境变化,进一步提高了信号测向的准确性和稳定性。
3. 无线电测向技术的应用无线电测向技术在许多领域都有广泛的应用。
在军事领域,它被用于无线电侦察和电子对抗,用于确定敌方无线电设备的位置和通信信号的来源,为军事行动提供情报支持。
在民用领域,无线电测向技术被广泛应用于定位和导航系统。
例如,全球定位系统(GPS)就是一种基于卫星信号测向的导航系统,可用于车辆导航、航空导航等。
此外,无线电测向技术还可以应用于无线电通信系统的建设和监测,以及搜索和救援等应急服务中。
4. 无线电测向技术的展望随着无线电技术的不断发展和应用需求的增加,无线电测向技术也在不断进步和创新。
无线电测向技术的发展历程

无线电测向技术的发展历程无线电测向技术是一种通过测量和分析无线电信号的传播方向和强度的技术。
它具有广泛的应用领域,包括无线通信、雷达、定位导航等。
本文将介绍无线电测向技术的发展历程,从早期的方位信标到现代的智能天线阵列,带领读者了解这一技术的进化过程。
1. 早期的方位信标技术方位信标是无线电测向技术的最早形式之一。
这种技术利用固定的信标发射信号,接收器通过测量信号到达时间差来确定信号来源的方向。
早期的方位信标主要用于航海导航,帮助船只和飞机确定自身位置。
2. 对消技术的引入随着无线电技术的进步,出现了对消技术,即通过比较接收到的信号相位差来测量信号方向。
这种技术使用多个接收天线,通过调整相位差实现信号的消除,从而确定信号的方向。
对消技术的出现提高了方位测量的准确性和可靠性。
3. 天线阵列技术的应用天线阵列技术是无线电测向技术发展的重要里程碑。
它利用多个天线组成的阵列来接收信号,并通过调整天线之间的间距和相位来实现对信号的测量。
天线阵列技术不仅可以准确测量信号的方向,还可以实现波束形成和空间滤波等功能,提高了测向系统的性能。
4. 现代化的测向系统随着信息技术的进步,现代化的测向系统实现了更高的精度和可靠性。
这些系统利用数字信号处理和计算机算法,通过分析多个接收信号的相位、幅度和时间等信息,实现对信号的测向和定位。
现代化的测向系统在军事、通信和导航等领域有着广泛的应用。
5. 无线电测向技术的未来发展随着无线通信和雷达等技术的不断发展,无线电测向技术也面临着新的挑战和机遇。
未来的发展方向包括更高的精度和分辨率、更广的频率范围、更大的测量距离以及更多的应用领域。
同时,无线电测向技术还将与人工智能和大数据等技术结合,实现更智能化和自动化的测向系统。
总结:无线电测向技术经历了从早期的方位信标到现代的智能天线阵列的发展历程。
随着技术的不断进步和创新,无线电测向技术在精度、可靠性和应用范围上都得到了极大的提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当天线数量较大时,天线函数的高次展开系数很小 再次简化后:
C ( ) N a1 cos 2 N S ( ) a1 sin 2
利用C(θ),S(θ)可无模糊地进行全方位测向
arctan[
S ( ) ] C ( )
(a) 高斯、半余弦两 种天线方向图函数 (b) 6元高斯天线比 幅测向的误差曲线 (c) 6元半余弦天线 比幅测向误差曲线
测向需要在几个因素之间折中:精度、灵敏度和 速度。 采用相位干涉仪的方法,既可以是单脉冲的,也 可以实现一定程度的积累。测向要确保全方位, 天线很可能是全向的,于是灵敏度不是很高,可 以用高灵敏度的监视接收机引导。 需要记住的一个原则是,测向精度往往是需要用 速度或时间来‘换取’的。
一个测向设备的界面
振幅法测向
根据测向天线系统侦收信号的相对幅度大小确定信 号的到达角(DOA)。
相位法测向
根据测向天线系统侦收同一信号的相对相位差确定 信号到达角。
振幅法测向
最大Biblioteka 号法采用波束扫描体制或多波束体制,以侦收到信号最 强方向作为信号所在方向。
等信号法
主要用于对辐射源的跟踪,测向精度高,但测向范 围小。
sinφ1,cosφ1, sin φ2,cosφ2, sin φ3,cosφ3,
在忽略三信道相位不平衡误差的条件下,
1 sin 2 l1 2 sin 41 2 l3 3 sin 42 =161
2 l1
全向振幅单脉冲测向技术采用 N个相同方向图函数的 F(θ) 天 线 , 均 匀 布 设 在 360° 方 位 内 。 相 邻 天 线 的 张 角 θS=360°/N,各天线的方位指向分别为
Fi(θ)=F(θ-iθS)
i=0,…,N-1
(3―15)
每个天线接收的信号经过各自振幅响应为 Ki的接收通道, 输出脉冲的对数包络信号 si(t)=lg[KiF(θ-iθS)A(t)] i=0,…,N-1 (3―16)
k 0
, N 1
用权值cos(iθS),sin(iθS),i=0,…,N-1,对各天线输 出信号取加权和:
C ( )
i 0 N 1
S ( )
i 0
N 1
Fi ( ) cos(i S ) Fi ( )sin(i S )
d为相邻天线的间距。
连接各天线阵元到聚焦区的可变长度馈线等效电长度为 Li,对应的相移量为
i
2
2
Li
i 0,
, N 1
由聚焦区口i到输出口j的等效路径长度为di,j,相移量为
ij
di, j
i, j 0,
, N 1
(3―34)
1 N 1 {Li }iN 、 { d } 罗特曼透镜通过对测向系统参数 d、N、 0 i , j i , j 0
测向技术
搜索式超外差接收机 频域顺序取样 射频调谐晶体视放接收机 频域取样 多波道晶体视放接收机 频域同时取样 信道化接收机 测频方法
频率—相位变化
比相法瞬时接收机(瞬时测频接收机)
频率—时间变化 频域变换 频率—空间变化
压缩接收机
声光接收机
频率—幅度变化
多波段比幅接收机
最大振幅法测向 空域顺序取样 等信号法测向 空域取样 透镜馈电的多波束线阵测向 空域同时取样 透镜馈电的多波束圆阵测向 测向方法 相位干涉仪测向 方位—相位变化 线性相位多模圆阵测向 空域变换 方位—幅度变化 全向振幅比较法测向
比较信号法
采用多个不同波束指向的天线,覆盖一定空域,根 据各天线侦收同一信号的相对幅度大小确定信号所 在方向。
振幅法测向
图3―1 波束搜索法测向的原理
搜索速度
慢速可靠搜索
1、在雷达天线扫描一周的时间内,侦察天线只扫描一个 波束宽度。 2、在雷达天线指向侦察天线的时间内,至少接收到Z个 连续的雷达发射脉冲。
简化后得: N N C ( ) aiN 1 cos(iN 1) 2 i 0 2
N S ( ) 2
i 0
aiN 1 cos(iN 1) i 1 N aiN 1 sin(iN 1) aiN 1 sin(iN 1) 2 i 1
具有辅助天线对消的搜索法测向系统 (a) 系统组成; (b)A、B天线方向图
FR(t)、FA(t)分别为侦察天线和雷达天线的扫描函数, A(t)为脉冲包络函数
A、B两支路收到的信号
S A (t ) FA (t ) FR (t ) A(t ) cos t S B (t ) FA (t ) A(t ) cos t
由于高斯函数的周期展开式收敛较快,在同样波束宽度下, 高斯函数的测向误差小于半余弦函数; 由于宽波束的展开式收敛较快,所以宽波束时的测向误差 小于窄波束时的测向误差。 NABD测向时也应适当地选择天线方向图函数和波束宽度
多波束测向
F ( )
···
F0 ( )
F1 ( )
FN 1 ( )
子空间拟合类( 20世纪80年代后期)
子空间拟合类算法可归结为多维参数的优化问题。
最大似然(ML)
方向估计的似然函数式非线性的,求解其最优解需要举行 多维搜索,运算量巨大。
加权空间拟合(WSF)
多维MUSIC(MD-MUSIC)
虽然子空间拟合算法有计算量大的缺点,但与子 空间分解类算法相比,估计性能优良,尤其在低信 噪比、小快拍数据情况下,比子空间分解类算法估 计性能好很多。另外ML、 WSF在相干源情况下仍 能有效估计。
测向的主要技术指标
测角精度和角度分辨率
测角范围、瞬时视野
角度搜索概率和搜索时间
测向系统灵敏度
测向系统灵敏度是指测向系统天线口面上能够正常测向的 最小输入信号功率密度D(单位为dBm/m2)
测向的基本方法
测向原理分类
振幅法测向、相位法测向
波束扫描分类
顺序波束、同时波束
测向的基本方法
(3―44)
比幅法测向主要问题:
各信道幅度匹配问题 各信道放大器、检波器之间的幅度平衡问题。
相位干涉仪测向主要问题:
不能同时对多信号测向
阵列测向技术
阵列信号处理最主要的两个研究方向:
自适应空域滤波(自适应阵列处理)
数字波束形成(DBF)
空间谱估计
利用阵列对信号空域参数估计,重点到达角(DOA)估计
当K1=K2时,可得
1.3863(
2 ) r
θr为F(θ)的半功率波束宽度
R
12 S
2 r
(dB)
r2 R 12 S
对θr、θS和R求全微分,可以得到角度测量时的系统误差dφ
r r2 r2 d Rd r Rd S dR 2 6 S 12 S 12 S
四天线全向振幅单脉冲测向原理图 (a) 系统组成(b)四天线方向图
相邻比幅法
假设天线方向图对称,F(θ)=F(-θ),当雷达方向位于任意 两天线之间,且偏离两天线等信号方向的夹角φ时,对应 通道输出信号S1(t),S2(t)分别为
S1(t)=lg[K1F(θS/2-φ)A(t)] S2(t)=lg[K2F(θS/2+φ)A(t)]
空间谱估计
子空间分解类算法(20世纪70年代末)
通过对阵列接收数据的数学分解(特征分解等),将接收数 据分为两个相互正交的子空间(信号子空间和噪声子空间)。 利用子空间的正交特性构造出“针状”空间谱,提高算法的 分辨率。
多重信号分类(MUSIC)算法(噪声子空间类算法) 旋转不变子空间(ESPRIT)算法(信号子空间类算法)
快速可靠搜索
1、在雷达天线扫描一个波束宽度时间内,侦察天线至少 扫描一周。 2、在侦察天线指向雷达的时间内,至少接收到Z个连续 的雷达发射脉冲。
消除雷达天线扫描影响的 搜索法测向系统
定向天线 A 混频器 对数中放 至处理机 本振 全向天线 B 混频器 (a) 对数中放 (b) 减法器 全向天线 B 方向图 定向天线 A 方向图
多波束测向的原理示意图
罗特曼透镜馈电多波束原理图
l0 l1 l2
...
F0 ( )
F1 ( )
F2 ( )
FN 1 ( )
...
测向 接收机
lN 1
天线阵 变长馈线 聚焦区
输出口
罗特曼透镜馈电多波束原理图
当平面电磁波由θ方向到达天线阵时,各天线阵 元的输出信号为 2 ji ( ) Si (t ) S (t )e , ( ) d sin i 0, , N 1
测向设备可以是很小的,下图是1~1300兆 的整个设备的一个照片,该设备的天线阵 直径为1.2米,所使用的接收机为EB200, 图形终端是一个商用的笔记本计算机。把 设备移到另一辆车上去,大约需要15分钟。
测向设备一例
测向的一种界面
相位法测向
2 L
sin
测角范围——短基线
测角精度——长基线
2 L
sin
d
2 L
cos
解决的方法:多基线相位干涉仪
图3―11 一维三基线相位干涉仪测向的原理
四天线接收的信号经过各信道接收机 ( 混频、 中放、限幅器 ), 送给三路鉴相器。其中“ 0” 信 道为鉴相基准。三路鉴相器的 6 路输出信号分 别为