基于matlab的图像识别与匹配
Matlab中的图像配准算法解析

Matlab中的图像配准算法解析图像配准是计算机视觉和图像处理领域中一项重要的任务,它可以将多幅图像进行对齐,使它们在几何和视觉上更加一致。
在Matlab中,有多种图像配准算法可以使用,包括基于特征匹配的方法、基于区域的方法以及基于相位相关的方法。
本文将对这些算法进行解析,并探讨它们的原理和应用。
一、基于特征匹配的图像配准算法1.1 SIFT算法尺度不变特征转换(Scale-Invariant Feature Transform,SIFT)是一种常用的特征提取算法,它通过检测图像中的稳定特征点,并计算这些特征点的描述子来实现图像匹配。
在Matlab中,可以使用vl_feat工具包实现SIFT算法。
1.2 SURF算法加速稳健特征(Speeded-Up Robust Features,SURF)是一种基于尺度空间的特征提取算法,它可以在不同尺度下检测图像中的稳定特征点,并计算这些特征点的描述子。
在Matlab中,可以使用图像拼接工具箱中的SURF函数实现SURF算法。
二、基于区域的图像配准算法2.1 形态学图像配准形态学图像配准是一种基于区域的图像配准算法,它通过对图像进行分割和形态学变换,在不同尺度下提取图像的结构信息,并将其对齐。
在Matlab中,可以使用图像处理工具箱中的形态学变换函数实现形态学图像配准。
2.2 相关性图像配准相关性图像配准是一种基于相似度测量的图像配准算法,它通过计算图像之间的相似性来实现图像对齐。
在Matlab中,可以使用imregister函数实现相关性图像配准。
三、基于相位相关的图像配准算法相位相关图像配准是一种基于相位信息的图像配准算法,它通过计算图像频率域中的相位相关性来实现图像对齐。
在Matlab中,可以使用图像处理工具箱中的相位相关函数实现相位相关图像配准。
四、图像配准算法的应用图像配准在很多领域都有广泛的应用,例如医学影像配准、遥感图像配准和计算机视觉中的对象追踪等。
在Matlab中进行图像配准和形变分析

在Matlab中进行图像配准和形变分析图像配准是计算机视觉和医学影像处理中的一个重要技术,它用于对多个图像进行比较、分析和匹配。
图像形变分析则是对配准后的图像进行进一步分析,得到图像中的形变信息。
在Matlab中,有多种方法可以实现图像配准和形变分析,下面将介绍一些常用的方法及其应用。
一、基础知识在进行图像配准和形变分析之前,需要了解图像的基本概念和表示方式。
在Matlab中,图像通常表示为一个矩阵,每个元素代表图像中某个像素的灰度值或颜色值。
图像配准的目标是将两幅或多幅图像进行对齐,使它们在空间上完全或部分重叠。
为了实现配准,需要找到两个图像之间的几何变换关系。
常见的几何变换包括平移、旋转、缩放和仿射变换。
形变分析是对配准后的图像进行进一步分析,得到图像中的形变信息。
形变可以分为刚体形变和非刚体形变。
刚体形变是指图像中的物体保持形状和大小不变,只发生位置上的改变;非刚体形变是指图像中的物体发生形状和大小的改变。
二、图像配准方法1. 特征点匹配法特征点匹配是一种常用的图像配准方法。
它通过在图像中提取出一些显著的特征点,如角点和边缘点,然后在不同图像之间进行特征点的匹配,从而得到两个图像之间的几何变换关系。
在Matlab中,可以使用SURF算法(加速稳健特征)来提取特征点,并使用RANSAC算法(随机抽样一致性)来进行特征点的匹配。
通过这种方法,可以实现较好的图像配准效果。
2. 互信息法互信息是一种在图像配准中常用的相似性度量方法。
它通过计算两个图像间的信息增益来评估它们的相似性。
在Matlab中,可以使用imregister函数来实现基于互信息的图像配准。
3. 形状上下文法形状上下文是一种用于描述和匹配不同形状的方法。
在图像配准中,可以使用形状上下文来描述图像中的特征点,并基于形状上下文的距离度量来进行特征点的匹配。
在Matlab中,可以使用shape_context函数来实现形状上下文法。
三、图像形变分析方法1. 网格形变法网格形变是一种常用的图像形变分析方法。
基于matlab毕业设计题目

基于Matlab的毕业设计题目:基于Matlab的图像处理与识别系统设计一、题目背景图像处理与识别是计算机视觉领域的重要应用,Matlab作为一种强大的数学软件,提供了丰富的图像处理工具箱,使得图像处理与识别变得更加容易。
本毕业设计旨在利用Matlab 实现一个基于图像处理的毕业设计项目,通过对图像进行预处理、特征提取和分类识别,实现对图像的自动识别。
二、设计目标1. 对输入的图像进行预处理,包括去噪、增强等操作,提高图像质量。
2. 利用Matlab提供的图像特征提取方法,提取出图像中的关键特征,如边缘、纹理等。
3. 实现基于分类器的图像识别系统,能够根据特征分类并识别出不同的图像。
4. 评估系统性能,通过对比实验和分析,验证系统的准确性和稳定性。
三、设计思路1. 采集不同类型和背景的图像数据集,包括待识别图像和参考图像。
2. 对采集到的图像进行预处理,包括去噪、增强等操作,提取出有用的特征。
3. 利用Matlab提供的图像特征提取方法,如边缘检测、纹理分析等,提取出关键特征。
4. 根据提取的特征,设计分类器,实现图像的自动识别。
5. 对系统性能进行评估,包括准确率、召回率、F1得分等指标。
四、技术实现1. 使用Matlab的图像处理工具箱对图像进行预处理,包括灰度化、去噪、增强等操作。
2. 利用Matlab的滤波器对图像进行边缘检测,如Sobel滤波器、Canny滤波器等。
3. 使用纹理分析方法对图像进行纹理特征提取,如灰度共生矩阵等方法。
4. 根据提取的特征,设计分类器,如支持向量机(SVM)、神经网络等。
5. 使用Matlab的优化工具箱对分类器进行训练和优化,提高分类器的准确率和稳定性。
五、实验结果与分析1. 实验数据集:采集不同类型和背景的图像数据集,包括待识别图像和参考图像。
实验数据集需要涵盖多种场景和类别,如人脸识别、手势识别、交通标志识别等。
2. 实验结果:对不同类型和背景的图像进行测试,验证系统的准确性和稳定性。
MATLAB中的图像配准与匹配方法

MATLAB中的图像配准与匹配方法图像配准与匹配是计算机视觉领域的重要研究方向。
配准指的是将多幅图像在空间上对齐,使得它们之间的特定特征点或特征区域对应一致。
匹配则是在已经配准的图像中寻找相似的图像区域。
在实际应用中,图像配准与匹配常用于医学图像分析、遥感影像处理、计算机视觉等领域,具有广泛的应用前景。
MATLAB作为一种强大的数值计算与数据可视化软件,提供了丰富的图像处理和计算机视觉函数,使得图像配准与匹配任务变得更加简便和快捷。
下面将介绍几种常用的MATLAB图像配准与匹配方法。
一、基于特征点的图像配准特征点是图像中具有鲁棒性和独特性的点,常常用于图像配准任务。
在MATLAB中,可以使用SURF(Speeded-Up Robust Features)或SIFT(Scale-Invariant Feature Transform)等函数来检测图像中的特征点。
然后可以通过计算特征点间的相似度或使用一致性约束等方法来对图像进行配准。
二、基于图像区域的图像配准除了特征点外,图像的局部区域也可以作为配准的参考。
一种常用的方法是使用归一化互相关(Normalized Cross Correlation)来度量两幅图像之间的匹配度。
在MATLAB中,可以使用normxcorr2函数来实现归一化互相关操作。
该函数将两幅图像进行归一化,并计算它们之间的互相关系数,从而确定最佳的配准位置。
三、基于形态学的图像配准形态学图像处理是一种基于形态学运算的图像处理方法。
它利用图像中的形状、结构和拓扑信息来进行图像处理和分析。
在图像配准中,形态学操作可以用来提取图像区域的形状信息,并进行形状匹配。
在MATLAB中,可以使用bwmorph函数进行形态学操作,例如腐蚀、膨胀、开运算、闭运算等,从而实现图像的配准与匹配。
四、基于变换模型的图像配准图像配准中常常涉及到图像的几何变换,例如平移、旋转、缩放、投影变换等。
在MATLAB中,可以使用imwarp函数来对图像进行几何变换和配准。
如何使用MATLAB进行图像匹配与检索

如何使用MATLAB进行图像匹配与检索引言图像匹配与检索是图像处理和计算机视觉领域中的重要任务,其应用涵盖了人脸识别、图像搜索、智能监控等众多领域。
而MATLAB作为一款强大的数学计算和图像处理软件,提供了丰富的工具和函数,便于进行图像匹配与检索的研究与实践。
本文将介绍如何使用MATLAB进行图像匹配与检索的基本原理、方法以及示例应用。
一、图像匹配与检索的基本原理1.1 图像匹配图像匹配指的是在给定图像数据库中,找出与查询图像最相似的图像。
其基本原理是通过衡量图像间的相似度来进行匹配。
常用的相似度度量方法包括结构相似性指数(SSIM)、均方误差(MSE)、归一化互相关系数(NCC)等。
在MATLAB中,可以使用imfilter函数对图像进行滤波操作,并使用相关函数计算图像的相似度。
1.2 图像检索图像检索指的是根据查询图像的特征,从图像数据库中检索出相似的图像。
其基本原理是提取图像的特征,并根据特征之间的相似度进行检索。
常用的图像特征包括颜色直方图、边缘特征、纹理特征等。
在MATLAB中,可以使用histogram 函数对图像进行直方图特征提取,并使用特征匹配算法(如最近邻算法)进行图像检索。
二、图像匹配与检索的方法和实现2.1 图像匹配方法图像匹配方法包括基于特征点的匹配和基于全局特征的匹配。
前者是通过检测图像中的关键点,提取关键点的局部特征,然后通过寻找匹配点来实现图像匹配。
后者是通过提取图像的全局特征,比如颜色、纹理等信息,然后计算图像之间的相似度进行匹配。
在MATLAB中,可以使用SURF算法提取图像的特征点,或者使用Bag of Words(BoW)模型提取图像的全局特征,并通过最近邻算法进行匹配。
2.2 图像检索方法图像检索方法主要包括基于内容的检索和基于语义的检索。
前者是通过提取图像的低级视觉特征,比如颜色、形状等,然后根据相似度进行检索。
后者是通过利用机器学习和自然语言处理技术,将图像关联到语义标签,然后根据语义标签进行检索。
如何在Matlab中进行图像处理与图像识别的实用技巧

如何在Matlab中进行图像处理与图像识别的实用技巧Matlab是一款强大的科学计算软件,广泛应用于图像处理和图像识别领域。
在这篇文章中,我们将探讨一些在Matlab中进行图像处理和图像识别的实用技巧。
一、图像预处理在进行图像处理前,我们通常需要对原始图像进行预处理,以提高后续处理的效果。
图像预处理的目标包括去噪、增强和归一化等。
1.1 去噪图像中常常存在各种噪声,如高斯噪声、椒盐噪声等,这些噪声会影响后续处理的准确性。
Matlab提供了多种去噪方法,其中最常用的是使用统计滤波器,如均值滤波器、中值滤波器和高斯滤波器等。
这些滤波器能够有效地减少图像中的噪声,并保持图像的细节。
1.2 增强图像增强可以使图像更加清晰、对比度更强、细节更明显。
在Matlab中,可以使用直方图均衡化、灰度拉伸等方法进行图像增强。
直方图均衡化通过对图像的灰度级进行重新映射,使得图像的直方图分布更加均匀,从而提高图像的对比度和细节。
而灰度拉伸则通过调整图像的灰度级范围,使得图像的亮度更加均衡。
1.3 归一化当我们需要对不同尺寸、不同亮度、不同对比度的图像进行处理时,通常需要将它们归一化到相同的尺寸、亮度和对比度。
在Matlab中,可以使用像素重采样和直方图匹配等方法进行图像归一化。
像素重采样通过重新排列图像的像素来改变图像的尺寸,而直方图匹配则通过调整图像的直方图分布来改变图像的亮度和对比度。
二、图像特征提取图像特征提取是图像识别的关键步骤,它可以将图像中的信息抽象成一组用于表示图像的特征。
在Matlab中,常用的图像特征包括颜色特征、纹理特征和形状特征等。
2.1 颜色特征颜色是图像中最直观的特征之一,它可以用于区分不同目标或者图像的不同部分。
在Matlab中,可以使用颜色直方图、颜色矩和颜色共生矩阵等方法来提取图像的颜色特征。
颜色直方图统计了图像中每个颜色的像素数目,而颜色矩则描述了图像的颜色分布情况。
颜色共生矩阵则反映了不同颜色之间的相对分布情况,从而提取出图像的纹理特征。
基于MATLAB的智能图像识别算法优化与实现

基于MATLAB的智能图像识别算法优化与实现在当今数字化时代,图像识别技术已经成为人工智能领域的热门研究方向之一。
随着深度学习和神经网络的发展,图像识别在各个领域都有着广泛的应用,如人脸识别、医学影像分析、自动驾驶等。
而MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数,为图像处理和机器学习提供了便利的环境。
本文将探讨基于MATLAB的智能图像识别算法优化与实现的相关内容。
1. 图像识别算法概述图像识别算法是指通过对图像进行分析和处理,从中提取出有用信息并做出相应判断的技术。
常见的图像识别算法包括传统的特征提取方法(如SIFT、SURF)以及基于深度学习的卷积神经网络(CNN)。
在实际应用中,选择合适的算法对于图像识别的准确性和效率至关重要。
2. MATLAB在图像处理中的应用MATLAB提供了丰富的图像处理工具箱,包括图像读取、显示、处理、分析等功能。
通过MATLAB可以轻松实现对图像的各种操作,如滤波、边缘检测、特征提取等。
同时,MATLAB还支持深度学习工具箱,可以方便地构建和训练神经网络模型。
3. 智能图像识别算法优化在实际应用中,智能图像识别算法需要不断优化以提高准确性和效率。
优化算法可以从以下几个方面展开:3.1 数据预处理数据预处理是图像识别中至关重要的一步,包括去噪、尺度归一化、亮度调整等操作。
通过合理的数据预处理可以提高模型对输入数据的适应性。
3.2 特征提取与选择特征提取是将原始数据转换为可供机器学习算法使用的特征表示的过程。
在特征选择时,需要考虑到特征之间的相关性以及对分类任务的贡献度,避免过多或过少的特征对模型性能造成影响。
3.3 算法调参在使用深度学习算法时,网络结构和超参数的选择对于模型性能至关重要。
通过合理地调整网络结构和超参数,可以提高模型在训练集和测试集上的表现。
3.4 模型融合模型融合是将多个基础模型集成为一个更强大模型的技术。
通过模型融合可以降低过拟合风险,并提高整体预测准确性。
Matlab中的图像识别算法

Matlab中的图像识别算法一、引言图像识别是人工智能领域中的一个重要方向,它是通过计算机来识别和理解图像中的内容。
而在实际的图像识别应用中,Matlab作为一种常用的计算工具,提供了强大的图像处理和计算机视觉的功能,使得图像识别算法的开发变得更加高效和便捷。
本文将介绍在Matlab环境下的图像识别算法及其应用。
二、图像特征提取在图像识别的过程中,首先需要对图像进行特征提取,以便向算法提供可区分的信息。
Matlab提供了多种图像特征提取的工具,如颜色直方图、纹理特征和形状特征等。
1. 颜色直方图颜色直方图是一种描述图像颜色分布的统计方法,可以用来表示图像的颜色特征。
在Matlab中,可以使用`imhist`函数计算图像的颜色直方图。
通过对比不同图像的颜色直方图,我们可以判断它们是否属于同一类别。
例如,在车牌识别中,可以通过对比图像的颜色直方图来识别车牌的颜色。
2. 纹理特征纹理特征是用来描述图像的纹理信息的特征,常用的方法包括灰度共生矩阵(GLCM)和局部二值模式(LBP)等。
在Matlab中,可以使用`graycoprops`函数计算GLCM特征,使用`extractLBPFeatures`函数计算LBP特征。
通过提取图像的纹理特征,我们可以识别不同纹理的图像。
3. 形状特征形状特征是用来描述图像物体形状的特征,常用的方法包括轮廓特征和区域特征等。
在Matlab中,可以使用`bwboundaries`函数计算图像的边界轮廓,使用`regionprops`函数计算图像的区域特征。
通过提取图像的形状特征,我们可以识别不同形状的物体。
三、图像识别算法在进行特征提取后,接下来需要使用分类算法来进行图像识别。
Matlab提供了丰富的分类算法,包括支持向量机(SVM)、人工神经网络(ANN)和深度学习等。
1. 支持向量机支持向量机是一种常用的分类算法,它通过构建一个高维空间的超平面来实现对不同类别的图像进行分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于matlab的图像识别与匹配
摘要
图像的识别与匹配是立体视觉的一个重要分支,该项技术被广泛应用在航空测绘,星球探测机器人导航以及三维重建等领域。
本文意在熟练运用图像的识别与匹配的方法,为此本文使用一个包装袋并对上面的数字进行识别与匹配。
首先在包装袋上提取出来要用的数字,然后提取出该数字与包装袋上的特征点,用SIFT方法对两幅图进行识别与匹配,最终得到对应匹配数字的匹配点。
仿真结果表明,该方法能够把给定数字与包装袋上的相同数字进行识别与匹配,得到了良好的实验结果,基本完成了识别与匹配的任务。
1 研究内容
图像识别中的模式识别是一种从大量信息和数据出发,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别、评价的过程。
图形辨别是图像识别技术的一个重要分支,图形辨别指通过对图形的图像采用特定算法,从而辨别图形或者数字,通过特征点检测,精确定位特征点,通过将模板与图形或数字匹配,根据匹配结果进行辨别。
2 研究意义
数字图像处理在各个领域都有着非常重要的应用,随着数字时代的到来,视频领域的数字化也必将到来,视频图像处理技术也将会发生日新月异的变化。
在多媒体技术的各个领域中,视频处理技术占有非常重要的地位,被广泛的使用于农业,智能交通,汽车电子,网络多媒体通信,实时监控系统等诸多方面。
因此,现今对技术领域的研究已日趋活跃和繁荣。
而图像识别也同样有着更重要的作用。
3 设计原理
3.1 算法选择
Harris 角点检测器对于图像尺度变化非常敏感,这在很大程度上限制了它的应用范围。
对于仅存在平移、旋转以及很小尺度变换的图像,基于Harris 特征点的方法都可以得到准确的配准结果,但是对于存在大尺度变换的图像,这一类方法将无法保证正确的配准和拼接。
后来,研究人员相继提出了具有尺度不变性的特征点检测方法,具有仿射不变性的特征点检测方法,局部不变性的特征检测方法等大量的基于不变量技术的特征检测方法。
David.Lowe 于2004年在上述算法的基础上,总结了现有的基于不变量技术的特征检测方法,正式提出了一种基于尺度空间的,对图像平移、旋转、缩放、甚至仿射变换保持不变性的图像局部特征,以及基于该特征的描述符。
并将这种方法命名为尺度不变特征变换(Scale Invariant Feature Transform),以下简称SIFT 算法。
SIFT 算法首先在尺度空间进行特征检测,并确定特征点的位置和特征点所处的尺度,然后使用特征点邻域梯度的主方向作为该特征点的方向特征,以实现算子对尺度和方向的无关性。
利用SIFT 算法从图像中提取出的特征可用于同一个物体或场景的可靠匹配,对图像尺度和旋转具有不变性,对光照变化、
噪声以及仿射变换都具有很好的鲁棒性。
此外,这种图像的局部特征有很高的独特性,因此可以以一个很高的概率正确匹配。
SIFT 算法具有以下特性:
a) SIFT 特征是图像的局部特征,对平移、旋转、尺度变化均具有不变性,对光照变化、噪声、视角变化具有较强的鲁棒性。
b) 独特性(Distinctiveness)好,在特征匹配时可以以一个很高的概率正确匹配。
c) 数量多,即使很小的物体也可以产生大量SIFT 特征点,这对于目标识别非常重要。
d) 可扩展性好,可以很容易的与其他形式的特征向量进行结合。
加速稳健特征(Speeded Up Robust Features, SURF)算法(简称surf 算法)是尺度不变特征变换(SIFT )算法的加速版。
因本实验可能存在角度偏转情况,切被测对象比较简单,因此选择第二种方法:SIFT 算法。
3.2 SIFT 特征匹配算法简介
SIFT 算法的实质上是提取局部特征的算法,该算法在尺度空间寻找极值点,然后根据极值点来获得尺度、旋转不变量和位置等特征。
SIFT 算法思想是提取的稳定特征点向量之间的相似性度量问题,它由参考图和待匹配图间的像素点匹配问题转化而来。
第一步是将在尺度空间上提取出原图像的特征点;第二步,对提取出的待匹配特征进行特征描述,最后匹配第一步生成的特征向量。
3.3 SIFT 特征匹配算法的实现
3.3.1 特征点检测
这一步分两个阶段:第一阶段是初步定位特征点,即检测空间极值,初步确定特征点的位置和尺度;首先需要对输入图像),(y x I 进行高斯滤波,然后进行尺度变换,变换的主要思路是利用高斯核函数与不同尺度的原始图像进行卷积,由此可以获取图像在多尺度空间下的表示序列,然后对它们进行特征提取,用高斯算子与图像的卷积来表示图像的尺度空间。
其次是构造高斯差分空间,Lowe 提出SIFT 算子,其主要思想即是用高斯差分函数提取图像稳定特征,该特征是利用相邻层的卷积结果作差获得的。
第二阶段是精确定位特征点,由于在第一阶段检测极值的过程中,会产生低
对比度的极值点和对噪声非常敏感的不稳定边缘极值点,所以要对极值点做精炼处理。
低对比度点是指给定阈值大于响应值的点;不稳定边缘点即为大曲率的边缘点。
通过Taylor展开式计算特征点的偏移量获得亚像素定位精度,并利用Hessian矩阵剔除边缘的不稳定点。
图1是对包装袋检测出来的特征点,本图找到1129个特征点。
图1 包装袋的特征点
3.3.2 关键点的主方向的确定
经过上述步骤,余下的点即为关键点。
给每个关键点添加一个方向来保证关键点描述子的旋转不变性。
需将关键点邻域像素的梯度分布特性以及邻域像素的高斯权重考虑进来,从而确定该关键点的主方向。
3.3.3 关键点描述子的生成
先将坐标轴旋转到关键点的主方向,再取以关键点为中心的1616
的邻域窗口,并计算该区域内所有像素点的梯度模值和梯度方向,最终形成128维的关键
点描述子。
下图2为经过特征描述后的特征点。
图2 特征描述后的特征点
3.3.4 特征描述子之间的匹配
当参考图与待配准图像生成SIFT 特征向量后,用欧式距离的方法进行特征向量间的匹配,用该距离的最小值作为是否匹配成功的依据。
为了能够使特征点进行匹配,一般采用最近邻法。
最邻近法的目的是寻求两个匹配点的描述子向量之间欧式距离最短的点。
最近邻法即是通过设置一个安全门限的方法来剔除无匹配点。
3.4 对包装袋上的数字进行识别与匹配
3.4.1 识别与匹配步骤
1 选取图像
我们选取一个包装袋作为匹配素材,如图3。
然后我们假设要检测数字5,
那么先从图中提取出来数字5,如图4。
图3 包装袋图4 数字5
2 识别与匹配
为了找到包装袋上对应的数字5,分别对两幅图像进行特征提取,得到相应的特征点后,进行特征匹配。
得到的匹配点和识别结果分别如图5和6
5 两图对应匹配点
图6识别结果
由上图可见,提取出来的数字5能够通过计算识别出包装袋上的数字5,实验结果匹配成功。
3.4.2 一般性验证
上述实验不具有一般性,为了能够验证实验结果,这里再做两次实验:(1)选取数字9来进行识别与匹配
数字9识别与匹配结果如图7。
从图中我们可以看到。
有两条线匹配错误,
但是大部分匹配位置还是数字9附近,所以我们还是可以认为识别数字9成功。
图6 数字9识别与匹配结果
这里如果加入极限约束限制,可以剔除这两条误匹配线,使实验结果更加精确。
加入极限约束后的结果如图8。
图8进行极限约束后的识别与匹配结果
(2)包装袋旋转后用数字9进行识别与匹配
图9 包装袋旋转后的识别与匹配结果
不失一般性,我们把包装袋进行旋转处理后,用数字9与其进行识别与匹配,仿真结果如上图9所示。
4 实验结论
通过上述三次仿真实验,我们可以得出:本实验对包装袋上的数字进行识别并匹配,包装袋上数字的改变和包装袋的旋转都不影响识别结果。
因此本实验成功完成了图像中数字的识别与匹配的任务。
5 参考文献
[1] 李云霞,曾毅,钟瑞艳,郭涛. 基于SIFT特征匹配的图像拼接算法[J]. 计算机技术与发展. 2009(01)
[2] 刘立,彭复员,赵坤,万亚平. 采用简化SIFT算法实现快速图像匹配[J]. 红外与激光工程. 2008(01)
[3] 骞森,朱剑英. 基于改进的SIFT特征的图像双向匹配算法[J]. 机械科学与技术. 2007(09)
[4] 冈萨雷斯.数字图像处理[M].3版.北京:电子工业出版社,2011.199-201。