2017年考研数学所有知识点合集(概率论-高数-线代)(打印版)
考研数学线性代数必考的知识点

考研数学线性代数必考的知识点考研数学线性代数必考的知识点漫长的学习生涯中,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。
还在苦恼没有知识点总结吗?以下是店铺帮大家整理的考研数学线性代数必考的知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
考研数学线性代数必考的知识点篇1考研数学线性代数必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。
行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。
相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。
复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。
其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。
四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。
考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。
概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。
其它知识点考小题,如随机事件与概率,数字特征等。
从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。
第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。
2017考研数学 概率论必考考点大全

2017考研已经拉开序幕,很多考生不知道如何选择适合自己的考研复习资料。
中公考研辅导老师为考生准备了考研数学方面的建议,希望可以助考生一臂之力。
同时中公考研特为广大学子推出考研集训营、专业课辅导、精品网课、vip1对1等课程,针对每一个科目要点进行深入的指导分析,欢迎各位考生了解咨询。
中公考研小编建议2017考研的同学,在复习备考的初期阶段总结整理考研数学概率论部分的重要知识点,这样将有助于考生快速提高复习效率,下面就是小编整理的相关内容,供考生参考。
1、随机事件和概率它的重点内容主要是事件的关系和运算,古典概型和几何概型,加法公式、减法公式、乘法公式、全概公式和贝叶斯公式。
主要是以客观题的形式考查。
今年的考研数学中,数一和数三的一个选择题就考到了事件的关系和概率的问题。
2、一维随机变量及其分布这是每年必考的,有单独直接考查,也经常与二维随机变量相结合去考查。
重点内容是常见分布,主要是以客观题的形式考查。
而今年数一和数三都是以大题的形式考到了常见分布——二项分布和n 重伯努利试验的问题。
3、二维随机变量重点内容是二维随机变量的概率分布(概率密度)、边缘概率、条件概率和独立性及二维正态分布的性质。
二维离散型随机变量的概率分布的建立,主要是结合古典概率进行考查。
二维连续型随机变量的边缘概率密度和条件概率密度的计算,很多考生计算存在误区,一定要注意。
而今年数一和数三只考到了二维正态分布的一个性质,还是一个填空题。
4、随机变量的数字特征每年必考,主要和其他知识点相结合来考查,一般是一道客观题和一道解答题中的一问,所以要重点复习。
我们要掌握相应的公式进行计算即可,今年数一和数三的一个大题的第二小问考到了随机变量的数字特征,而且还是结合高等数学的无穷级数求和函数来考的,难度稍大。
5、数理统计的基本概念此部分主要考两个题型,第一个是判定统计量的分布,第二个常考题型是求统计量的数字特征。
常以客观题的形式进行考查。
2017考研数学复习知识点汇总

2017考研数学复习知识点汇总一、高数高等数学是考研数学的重中之重,所占分值较大,需要复习的内容也比较多。
主要包括八方面内容:1.函数、极限与连续。
主要考查分段函数极限或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2.一元函数微分学。
主要考查导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛比达法则求不定式极限;函数极值;方程的根;证明函数不等式;罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及辅助函数的构造;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。
3.一元函数积分学。
主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4.向量代数和空间解析几何。
主要考查求向量的数量积、向量积及混合积;求直线方程和平面方程;平面与直线间关系及夹角的判定;旋转面方程。
5.多元函数微分学。
主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;二元、三元函数的方向导数和梯度;曲面和空间曲线的切平面和法线;多元函数极值或条件极值在几何、物理与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。
6.多元函数的积分学。
这部分是数学一的内容,主要包括二、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线和曲面积分计算;第二型(对坐标)曲线积分计算、格林公式、斯托克斯公式;第二型(对坐标)曲面积分计算、高斯公式;梯度、散度、旋度的综合计算;重积分和线面积分应用;求面积,体积,重量,重心,引力,变力作功等。
7.无穷级数。
主要考查级数的收敛、发散、绝对收敛和条件收敛;幂级数的收敛半径和收敛域;幂级数的和函数或数项级数的和;函数展开为幂级数(包括写出收敛域)或傅立叶级数;由傅立叶级数确定其在某点的和(通常要用狄里克雷定理)。
(完整word版)考研数学一概率论知识点概要

本人考研整理的数学概率论知识点,word 版,可编辑、添加、打印。
祝大家学有所得。
第一章随机事件概率随机试验:满足以下三个条件的试验:(1)可重复;(2)知道所有可能;(3)结果不可预知。
样本点:每一个可能的结果叫做一个样本点。
样本空间:全体样本点的集合,记为Ω。
随机事件:随机试验中每一个可能出现的结果,叫做随机事件。
基本事件:试验中不可再分的事件。
不可能事件:不可能发生的事件。
必然事件:必定要发生的事件。
复合事件:由两个或两个以上的事件构成的事件。
事件的关系与运算:事件的关系定义文氏图A B⊂:包含关系:事件B发生必然导致事件A发生,则称事件A包含事件B。
事件相等:A=B 事件A,B 相互包含,就称事件A,B相等。
互斥事件:AB=∅不可能同时发生的事件对立事件:若AB=∅且=0A B,称事件A,B对立事件。
两者之一必然发生,但又不可能同时发生的事件。
事件的并:A B事件A,B中至少有一个发生,称事件A B发生。
事件的差:A-B 事件A发生且B不发生,事件的交:A B AB=事件A,B同时发生,称事件AB发生。
概率:事件发生可能性大小的描述。
条件概率:设A,B 是两个基本事件,且P(A)>0,则:()()()P AB P B A P A =称为事件A 发生的条件下事件B 发生的条件概率。
事件的独立性:如果两事件A,B 满足:()()()P AB P A P B =,则称A 与B 独立。
A,B 独立 ⇔ ()()P A B P A =⇔()()P B A P B A =独立和互斥的关系:()0,()0P A P B >>时,独立一定不互斥,互斥一定不独立。
对于三个以上的事件:相互独立 ⇒ 两两独立, 两两独立退不出相互独立。
取反运算不改变事件的独立性:,A B 相互独立⇔,A B 相互独立⇔,A B 相互独立。
概率的基本性质: 非零性:0()1P A ≤≤ 归一性:()1iP A =∑:()1()1()P A B P A B P AB =-=-古典概率满足: (1),试验的样本空间的元素只有有限个; (2),每个样本点出现的可能性相等: 古典概型事件A 的计算公式:()k P A n=n---样本点数,k---事件A 包含的样本点数。
2017考研数学一之高等数学复习重点

2017考研数学一之高等数学复习重点来源:智阅网高等数学是考研数学一中,必考的内容。
所以,我们在复习的时候,一定要重视高等数学部分的复习。
下面,就让我们熟悉一下高等数学的复习重点有哪些。
高数第一章不定式的极限,考生要充分掌握求不定式极限的各种方法,比如利用极限的四则运算、两个重要极限、洛必达法则等等,还要总结求极限过程中常用到的转化、化简的方法。
对函数的连续性的探讨也是考试的重点,这要求考生要充分理解函数连续的定义和掌握判断连续性的方法。
对于导数和微分,其实重点不是给一个函数求导数,而是导数的定义,也就是抽象函数的可导性,理清连续、可导、可微之间的关系,分清一元与多元的异同。
对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,在求积分的过程中,一定要注意积分的对称性,利用分段积分去掉绝对值把积分求出来。
中值定理一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。
对于微分部分,隐函数的求导,复合函数的偏导数等是考试的重点。
二重积分的计算,当然数学一里面还包括了三重积分,掌握积分区域具有可加性、二重积分对称性的应用、二重积分直角坐标和极坐标的变换、二重积分转换成累次积分计算这些知识点。
另外还有曲线和曲面积分,这是数一必考的重点内容。
一阶微分方程,掌握几个教材中的几种类型的求解就可以了。
还有无穷级数,要掌握判别敛散性、幂级数的展开和求和常用的方法和技巧。
于是,我们再做做汤家风老师的2017《考研数学绝对考场最后八套题》(数学一),巩固我们对于高等数学等内容的掌握。
想买这本书的同学,还可以去智阅网上看看,最近智阅网上,有很多购书优惠,买得越多,折扣越多。
考研大学的数学知识点总结

考研大学的数学知识点总结
一、数学分析
1. 函数的极限与连续
2. 函数的导数与微分
3. 不定积分与定积分
4. 微分方程
5. 级数
6. 多元函数微分学
二、线性代数
1. 行列式与矩阵
2. 线性方程组
3. 矩阵的特征值与特征向量
4. 空间解析几何
5. 线性空间
三、概率统计
1. 随机变量与概率分布
2. 多个随机变量的概率分布
3. 统计推断
4. 假设检验
5. 相关与回归分析
四、离散数学
1. 集合与逻辑
2. 图论
3. 树与树的应用
4. 排列组合
5. 代数系统
五、常微分方程
1. 一阶常微分方程的基础理论
2. 高阶常微分方程与常系数齐次线性微分方程
3. 变系数线性微分方程
4. 高阶线性常系数齐次线性微分方程
5. 常微分方程的应用
六、数学建模
1. 数学建模的基本概念
2. 数学建模的基本方法
3. 实际问题的数学建模
4. 建立模型的思路与方法
5. 数学建模的应用
七、复变函数
1. 复数的基本概念
2. 复变函数的基本概念
3. 复变函数的解析性
4. 几何意义与应用
5. 复变函数的应用
以上是考研大学数学知识点的总结。
希望能对大家的学习有所帮助。
数学考研常用知识点归纳

数学考研常用知识点归纳数学是考研中非常重要的科目之一,涵盖了高等数学、线性代数、概率论与数理统计等多个领域。
以下是一些数学考研中常用的知识点归纳:1. 高等数学:- 极限:数列极限、函数极限、无穷小量阶的比较。
- 导数与微分:基本导数公式、高阶导数、隐函数与参数方程的导数。
- 微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。
- 积分:不定积分、定积分、换元积分法、分部积分法、反常积分。
- 级数:正项级数的收敛性、幂级数、泰勒级数展开。
- 多元函数微分:偏导数、全微分、多元函数的极值问题。
- 重积分与曲线积分、曲面积分:二重积分、三重积分、第一类曲线积分、第二类曲线积分、第一类曲面积分、第二类曲面积分。
2. 线性代数:- 矩阵:矩阵的运算、矩阵的秩、矩阵的特征值与特征向量。
- 线性空间:向量空间的概念、基与维数、线性相关与线性无关。
- 线性变换:线性变换的定义、矩阵表示、核与像。
- 特征值问题:特征多项式、特征值与特征向量的求解。
- 正交性:正交矩阵、正交变换、正交投影。
- 二次型:二次型的矩阵表示、标准形、惯性指数。
3. 概率论与数理统计:- 随机事件与概率:事件的概率、条件概率、全概率公式、贝叶斯公式。
- 随机变量及其分布:离散型随机变量、连续型随机变量、分布函数、概率密度函数。
- 多维随机变量:联合分布、边缘分布、条件分布、独立性。
- 数理统计:样本与总体、样本均值、样本方差、大数定律、中心极限定理。
- 参数估计:点估计、区间估计、最小二乘估计。
- 假设检验:假设检验的基本原理、常见检验方法、p值。
4. 常考题型与解题技巧:- 选择题:注意选项之间的逻辑关系,利用排除法。
- 填空题:注意题目要求的格式,合理猜测可能的数值。
- 计算题:注意计算过程的准确性,避免粗心大意。
- 证明题:理解定理的证明过程,掌握证明题的常见思路。
结束语:数学考研的知识点繁多,但只要系统地复习,掌握基本概念、基本原理和基本方法,通过大量的练习来提高解题能力,就能够在考试中取得好成绩。
考研数学每章总结知识点

考研数学每章总结知识点一、集合与函数1. 集合的基本概念1)集合的含义:集合是由一定的确定的对象组成的总体。
2)元素:属于集合的对象。
3)集合的表示法:列举法、描述法。
4)集合间的关系:包含关系、相等关系、互斥关系。
2. 集合的运算1)并集、交集、差集、补集的概念及运算法则。
2)集合运算律:分配律、结合律、交换律、对偶律。
3. 函数的概念1)函数的含义:每个自变量对应唯一的因变量。
2)定义域、值域、映射关系。
3)函数的表示法:解析式表示、图形表示、映射图表示。
4. 函数的性质1)奇偶性、周期性、单调性、有界性、分段性。
2)反函数的存在与性质。
3)初等函数:幂函数、指数函数、对数函数、三角函数。
二、极限1. 数列极限1)定义:当数列中的项”无限走”时,就引出了极限的概念。
2)数列收敛与发散的判定。
3)数列极限的性质:保号性、夹逼定理、介值性。
2. 函数极限1)定义:当自变量趋于某一点时,函数值的”极限”。
2)函数极限存在与无穷极限。
3)无穷小量与无穷大量。
3. 极限运算法则1)函数极限的四则运算法则。
2)复合函数、柯西收敛准则。
4. 极限存在的条件1)夹逼准则:当函数夹在两个趋于同一个极限的函数中间时,可以得到极限。
2)子数列性质。
3)介值性:利用介值性证明函数的极限。
三、连续1. 连续的概念1)点连续:在函数定义域内任一点处的连续性。
2)间断点:函数在某点处不连续。
3)连续函数的性质:介值定理、零点定理。
2. 连续函数的运算1)和、差、积、商的连续性。
2)复合函数的连续性。
3. 函数的限制1)边界点、左极限、右极限的概念。
2)函数的间断点的分类。
4. 连续函数的应用1)罗尔中值定理、拉格朗日中值定理。
2)柯西中值定理、费马引理。
四、导数1. 导数的概念1)导数的定义:函数在某点处的”无穷小增量与自变量增量”的比值。
2)导数的几何意义。
2. 导数的计算1)基本导数公式。
2)常用的一些导数运算法则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 随机事件和概率 1、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞=⎟=⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P Υ常称为可列(完全)可加性。
则称P(A)为事件A 的概率。
(2)古典概型(等可能概型)1° {}n ωωωΛ21,=Ω,2° nP P P n 1)()()(21===ωωωΛ。
设任一事件A ,它是由m ωωωΛ21,组成的,则有P(A)={})()()(21m ωωωΥΛΥΥ=)()()(21m P P P ωωω+++Λn m =基本事件总数所包含的基本事件数A = 2、五大公式(加法、减法、乘法、全概、贝叶斯)(1)加法公式P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)(2)减法公式 P(A-B)=P(A)-P(AB)当B ⊂A 时,P(A-B)=P(A)-P(B) 当A=Ω时,P(B )=1- P(B)(3)条件概率和乘法公式定义 设A、B 是两个事件,且P(A)>0,则称)()(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )()(A P AB P 。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
(4)全概公式设事件n B B B ,,1,2Λ满足 1°nB B B ,,1,2Λ两两互不相容,),,2,1(0)(n i B P i Λ=>,2°Υni iB A 1=⊂,则有)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++=Λ。
此公式即为全概率公式。
(5)贝叶斯公式设事件1B ,2B ,…,n B 及A 满足1° 1B ,2B ,…,n B 两两互不相容,)(Bi P >0,=i 1,2,…,n ,2° Υni iB A 1=⊂,0)(>A P ,则∑==nj j ji i i B A P BP B A P B P A B P 1)/()()/()()/(,i=1,2,…n。
此公式即为贝叶斯公式。
)(i B P ,(1=i ,2,…,n ),通常叫先验概率。
)/(A B P i ,(1=i ,2,…,n ),通常称为后验概率。
如果我们把A 当作观察的“结果”,而1B ,2B ,…,n B 理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。
3、事件的独立性和伯努利试验(1)两个事件的独立性设事件A 、B 满足)()()(B P A P AB P =,则称事件A 、B 是相互独立的(这个性质不是想当然成立的)。
若事件A 、B 相互独立,且0)(>A P ,则有)()()()()()()|(B P A P B P A P A P AB P A B P ===所以这与我们所理解的独立性是一致的。
若事件A 、B 相互独立,则可得到A 与B 、A 与B 、A 与B 也都相互独立。
(证明)由定义,我们可知必然事件Ω和不可能事件Ø与任何事件都相互独立。
(证明)同时,Ø与任何事件都互斥。
(2)多个事件的独立性 设ABC 是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足P(ABC)=P(A)P(B)P(C) 那么A、B、C 相互独立。
对于n 个事件类似。
两两互斥→互相互斥。
两两独立→互相独立?(3)伯努利试验定义 我们作了n 次试验,且满足每次试验只有两种可能结果,A 发生或A 不发生; n 次试验是重复进行的,即A 发生的概率每次均一样; 每次试验是独立的,即每次试验A 发生与否与其他次试验A 发生与否是互不影响的。
这种试验称为伯努利概型,或称为n 重伯努利试验。
用p 表示每次试验A 发生的概率,则A 发生的概率为q p =−1,用)(k P n 表示n 重伯努利试验中A 出现)0(n k k ≤≤次的概率,二. 随机变量及其分布 1、随机变量的分布函数(1)离散型随机变量的分布率设离散型随机变量X 的可能取值为X k (k=1,2,…)且取各个值的概率,即事件(X=X k )的概率为P(X=x k )=p k ,k=1,2,…, 则称上式为离散型随机变量X 的概率分布或分布律。
有时也用分布列的形式给出:ΛΛΛΛ,,,,,,,,|)(2121k k k p p p x x x x X P X =。
显然分布律应满足下列条件: (1)0≥k p ,Λ,2,1=k ,(2)∑∞==11k kp。
(2)分布函数对于非离散型随机变量,通常有0)(==x X P ,不可能用分布率表达。
例如日光灯管的寿命X ,0)(0==x X P 。
所以我们考虑用X 落在某个区间],(b a 内的概率表示。
定义 设X 为随机变量,x 是任意实数,则函数)()(x X P x F ≤=称为随机变量X 的分布函数。
)()()(a F b F b X a P −=≤< 可以得到X 落入区间],(b a 的概率。
也就是说,分布函数完整地描述了随机变量X 随机取值的统计规律性。
分布函数)(x F 是一个普通的函数,它表示随机变量落入区间(– ∞,x]内的概率。
)(x F 的图形是阶梯图形,Λ,,21x x 是第一类间断点,随机变量X 在k x 处的概率就是)(x F 在k x 处的跃度。
分布函数具有如下性质:1° ,1)(0≤≤x F +∞<<∞−x ;2° )(x F 是单调不减的函数,即21x x <时,有≤)(1x F )(2x F ;3°)(lim )(==−∞−∞→x F F x ,1)(lim )(==+∞+∞→x F F x ;4° )()0(x F x F =+,即)(x F 是右连续的; 5° )0()()(−−==x F x F x X P 。
(3)连续型随机变量的密度函数定义 设)(x F 是随机变量X 的分布函数,若存在非负函数)(x f ,对任意实数x ,有∫∞−=xdxx f x F )()(,则称X 为连续型随机变量。
)(x f 称为X 的概率密度函数或密度函数,简称概率密度。
)(x f 的图形是一条曲线,称为密度(分布)曲线。
由上式可知,连续型随机变量的分布函数)(x F 是连续函数。
所以,)()()()()()(1221212121x F x F x X x P x X x P x X x P x X x P −=<<=<≤=≤<=≤≤密度函数具有下面4个性质:1° 0)(≥x f 。
2°∫+∞∞−=1)(dx x f 。
1)()(==+∞∫+∞∞−dx x f F 的几何意义;在横轴上面、密度曲线下面的全部面积等于1。
如果一个函数)(x f 满足1°、2°,则它一定是某个随机变量的密度函数。
3° )(21x X x P ≤<=)()(12x F x F −=∫21)(x x dx x f 。
4° 若)(x f 在x 处连续,则有)()(x f x F =′。
dxx f dx x X x P )()(≈+≤<它在连续型随机变量理论中所起的作用与k k p x X P ==)(在离散型随机变量理论中所起的作用相类似。
)(),(,独立性古典概型,五大公式,A P A E →→Ω→ω )()()()(x X P x F x X X ≤=→≤→ωω对于连续型随机变量X ,虽然有0)(==x X P ,但事件)(x X =并非是不可能事件Ø。
∫+=+≤<≤=hx xdxx f h x X x P x X P )()()(令0→h ,则右端为零,而概率0)(≥=x X P ,故得0)(==x X P 。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
2、常见分布①0-1分布P(X=1)=p, P(X=0)=q②二项分布在n 重贝努里试验中,设事件A 发生的概率为p 。
事件A 发生的次数是随机变量,设为X ,则X 可能取值为n ,,2,1,0Λ。
kn k kn n q p k P k X P C −===)()(, 其中n k p p q ,,2,1,0,10,1Λ=<<−=,则称随机变量X 服从参数为n ,p 的二项分布。
记为),(~p n B X 。
nk n k k nn n n n p q p q p npq q k X P XC C ,,,,,,|)(2221ΛΛ−−−=容易验证,满足离散型分布率的条件。
当1=n 时,kkqp k X P −==1)(,1.0=k ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
③泊松分布设随机变量X 的分布律为λλ−==e k k X P k!)(,0>λ,Λ2,1,0=k ,则称随机变量X 服从参数为λ的泊松分布,记为)(~λπX 或者P(λ)。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
④超几何分布),min(,2,1,0,)(n M l l k C C C k X P nNkn MN k M ==•==−−Λ 随机变量X 服从参数为n,N,M 的超几何分布。
⑤几何分布Λ,3,2,1,)(1===−k p q k X P k ,其中p≥0,q=1-p。
随机变量X 服从参数为p 的几何分布。
⑥均匀分布设随机变量X 的值只落在[a,b]内,其密度函数)(x f 在[a,b]上为常数k,即⎩⎨⎧=,0,)(k x f 其他,其中k=ab −1, 则称随机变量X 在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为0, x<a ,,a b a x −− a ≤x≤b a ≤x≤b∫∞−==xdx x f x F )()(当a≤x 1<x 2≤b 时,X 落在区间(21,x x )内的概率为P(∫∫−==<<21211)()21x x x x ab dx x f x X x a b x x dx −−=12。
⑦指数分布设随机变量X 的密度函数为其中0>λ,则称随机变量X 服从参数为λ的指数分布。