发电机蓄电池的充电原理

发电机蓄电池的充电原理
发电机蓄电池的充电原理

发电机蓄电池充电原理

蓄电池在市面上会有很多种类型,但是发电机蓄电池使用最多的大致就只有三种方式:酸铅蓄电池、镍氢电池、锂离子电池。当然还一些还不普及锌银蓄电池、金属氧化物电池,只是很少用在发电机这一块。

1、酸铅蓄电池

正极板上有一层棕褐色PbO2,负极板是海绵状金属铅,两极均浸在27%~39%的硫酸溶液中,且两极间用微孔橡胶或微孔塑料隔开。

蓄电池进行充电时:

阳极:PbSO4+2H2O-2e-=PbO2+4H++SO42-

阴极:PbSO4+2e-=Pb+SO42-

放电时,电极反应为:

负极:Pb+SO42--2e-=PbSO4

正极:PbO2+4H++SO42-+2e-=PbSO4+2H2O

总的充放电反应:

PbO2+Pb+2H2SO4←→2PbSO4+2H2O

2、镍氢电池

吸氢合金制成的电极称吸氢电极以(以M.H表示)。吸氢电极和合适的烧结式镍电极一起,以一般镍镉电池相同的结构组装成镍氢电池。其充放电反应可用下式表示:

M+xNi(OH)2←→MHx+xNiOOH式中M表示吸氢合金

3、锂离子电池

锂离子电池采用渗有钴、镍、锰等金属的锂合金氧化物作正极,石墨或碳黑作负极的全新电池类型。充电时,Li+从正极脱嵌经过电解质嵌入负极,负极处于富锂态,正极处于贫锂态,同时电子的补偿电荷从外电路供给到碳负极,保证负极的电荷平衡。放电时则相反,Li+从负极脱嵌,经电解质嵌入正极(这种循环被形象的称为摇椅式机制)。

正极反应:xLiMO2=xLi++x(MO2)-=xLi++xe-

负极反应:nC+xLi++xe-=LixCn

蓄电池充电原理

原理简介 蓄电池放电后,用直流电按与放电电流相反的方向通过蓄电池,使它恢复工作能力,这个过程称为蓄电池充电。蓄电池充电时,电池正极与电源正极相联,电池负极与电源负极相联,充电电源电压必须高于电池的总电动势。充电方式有恒电流充电和恒电压充电两种。 充电方法的研究: 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 1、恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 2、阶段充电法 此方法包括二阶段充电法和三阶段充电法

①二阶段法采用恒电流和恒电压相结合的快速充电方法,首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。 ②三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。 3、恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初期蓄电池电动势较低,充电电流很大,随着充电的进行,电流将逐渐减少,因此,只需简易控制系统。 这种充电方法电解水很少,避免了蓄电池过充。但在充电初期电流过大,对蓄电池寿命造成很大影响,且容易使蓄电池极板弯曲,造成电池报废。鉴于这种缺点,恒压充电很少使用,只有在充电电源电压低而电流大时采用。例如,汽车运行过程中,蓄电池就是以恒压充电法充电的。 4、快速充电法 ①脉冲式充电法,这种充电法不仅遵循蓄电池固有的充电接受率,而且能够提高蓄电池充电接受率,从而打破了蓄电池指数充电接受曲线的限制,这也是蓄电池充电理论的新发展。

蓄电池修复技术原理与方法

蓄电池修复技术原理与方法 蓄电池修复技术原理与方法 电池又称化学电源,是能为用电器提供直流电源的装置,化学电源是通过氧化--还原的电化学反应,将化学能转化为电能.一次电池是一次性应用的电池,二次电池是可多次反复使用的电池,因此这里的二次实际上是多次的意思.二次电池又称为可充电电池或蓄电池. 相对于零电平或某一基准电平幅值为正的脉冲叫正极性脉冲,简称正脉冲,反之,则为负脉冲.正负脉冲按一定占空比出现的称组合脉冲.二十世纪以来,随着人们对负脉冲的认识的不断提高,负脉冲的应用范围不断扩大,在许多领域都得到了广泛的应用,如:能源.医疗.勘探.等. 我公司经过多年努力研制出微电脑语音系列修复机.微电脑快系列速充电站.对各种废旧蓄电池的修复与维护具有良好的效果.下面以铅酸蓄电池和锂离子电池为例.介绍一下微电脑语音系列修复机.微电脑快系列速充电站对蓄电池的维护与修复原理: 基础部分 一. 铅酸蓄电池 铅酸蓄电池是蓄电池的一种.以其低廉的价格(镉镍电池的六分之一~~`~~五分之一), 良好的高倍率放电性能,应用非常广泛,如汽车、摩托车、火车、轮船、通信以及UPS等均需运用.铅酸蓄电池主要由正极板、负极板、电解液、容器、极柱、隔膜、可导电的物质等组成. (一) 正极板(正极活性物质) 正极板活性物质的主要成分是二氧化铅.具有较强的氧化性,放电时,与硫酸发生反应生成硫酸铅,并吸收电子,二氧化铅有两种类型晶格,一种是α—Pb02 另一种是β—Pb02.这两种二氧化铅活性物质差别很大,它们在正极板所起的作用也不相同.?—Pb02 给出的容量是α—PbO2 的1.5~~~3倍.而α—Pb02具有较好的机械强度,它的存在,正极板活性物质不宜软化脱落,只有α—Pb02 和 βα—PbO2 的比例达到0.8时,铅蓄电池会表现出良好的性能 . 正极活性物质在放电状态下,与电解质硫酸发生反应生成硫酸铅与水.其反应式如下:Pb02+3H++HSO4-+2e==PbSO4+2H2O 充电时,在外线路的作用下转化为ρbO2与H2SO4放电时,二氧化铅的ρb4+接受了负极送来的电子形成ρb+2与溶液中的硫酸根离子结合生成ρbSO4 .当硫酸铅达到一定量时,变成沉淀物附着在极板上.充电时硫酸铅中的铅离子 的电子被外线路带走转化为 二氧化铅.将水中 氢离子留在溶液中.氧离子与铅离子结合生成二氧化铅进入晶格,形成正极活性物质. (二)负极板(负极活性物质) 在铅酸蓄电池里,为了供负极活性物质充分与电解液发生反应,故将铅制成多孔海棉状,又称为海绵铅,在放电时,铅给出外线路电子形成 Pb+2 与溶液的硫酸根 结合生成硫酸铅,充电时,部分PbSO4首先溶解成Pb2+与SO4.Pb+2接受电子还原成铅进入负极活性物质晶格. ( 三)电解液

汽车发电机&蓄电池设计规范谈

1:点火开关开启/发动机工作:车辆处于典型电力负载设备的正常工作和怠速状态下,在蓄电池测得的系统电压应在12V到15V左右。发动机熄火(只有蓄电池供电)在蓄电池充电的正常范围且带典型电力负载的情况下:,在蓄电池测得的系统电压应该在12V到13V 左右。 2:.在任何工作条件下电压调节器“I”端子的电压值必须不小于1.0V,在正常工作条件下在调节器“IGN”端的电压值应不小于8V。 3:所有整车都拥有一个蓄电池低压时的增压功能以在电池电压小于12.1伏特时提供一个从最少每分50转的转速增加到发动机怠速的转速的这么个功能。该增压装置保持工作直到蓄电池电压达到13.1伏特 4:电能输出的电路结构必须提供以下功能特性:A)在点火钥匙处于off或者ACC位置时充电指示灯熄灭。B)在点火钥匙处于ON档并且发动机处于关闭状态充电指示灯打开。C)在点火钥匙处于ON档且发动机都处于工作状态时充电指示灯熄灭。 5:交流发电机输出接口(B+)被认为是装配工艺的一个关键点,在装配工艺中需要用到下列的硬件/装配工具:*用直流数显式扭矩扳手或者带扭矩显示的标准气动工具把十字螺母安装好并互锁到总装配线上,单个的操作方法-把螺母放入电动工具的槽里并安装相关配件,最后再安装保护帽盖。*用带扭矩显示的标准气动工具通过十字螺母来安装。两个操作工的安装方法:第一个操作工:把螺母放入电动工具的槽里并安装相关配件。第二个操作工:通过检测工具来核对力矩,并做好标记。最后再安装保护帽盖。 6:不允许出现皮带滑动,这可能造成交流发动机的速度降到每分1100转以下。 7 :电压必须不超过调整器设计所定义的指定曲线,而且在低负荷和高负荷之间的电压差值必须0.25 V. 8:为了防止交流发电机因为腐蚀,电刷损坏和轴承润滑剂飞溅接触交流发电机等原因过早失效。 (1).交流发电机滑轮中心线与曲轴滑轮中心线间的垂直距离大于或等于200mm,在交流发电机通过了腐蚀性和耐久性实验的条件下,安装在底部或者零件部上的防护罩就不做要求。如果交流发电机在没有防护罩条件下未通过腐蚀性和耐久性实验,那么底部或者零部件上的保护罩就必须安装。 (2)交流发电机滑轮中心线与曲轴滑轮中心线间的垂直距离小于200mm,做一个防水实验以决定底部和零部件上的保护罩安装是否是在腐蚀和耐久性的测试之前。如果交流发电机通过腐蚀性和耐久性实验,那么底部或者零件上的保护罩不需要安装。 9:交流发电机不能直接放置在任何管的开口或者充满液体的装置(比如柴油机泵)下,必须与任何管口间留有至少100mm的水平间隙,如果在实验或者分析中出现污染物可能接

铅酸蓄电池的结构和工作原理

铅酸蓄电池的结构和工作原理 (一)铅酸蓄电池的结构 铅酸蓄电池主要由正极板组?负极板组?隔板?容器和电解液等构成,其结构如下图所示: 1.极板 铅酸蓄电池的正?负极极板由纯铅制成,上面直接形成有效物质,有些极板用铅镍合金制成栅架,上面涂以有效物质?正极(阳极)的有效物质为褐色的二氧化铅,这层二氧化铅由结合氧化的铅细粒构成,在这些细粒之间能够自由地通过电解液,将正极材料磨成细粒的原因是可以增大其与电解液的接触面积,这样可以增加反应面积,从而减小蓄电池的内阻?负极(阴极)的有效物质为深灰色的海绵状铅?在同一个电池内,同极性的极板片数超过两片者,用金属条连接起来,称为极板组

或极板群?至于极板组内的极板数的多少,随其容量(蓄电能力)的大小而异?为了获得较大的蓄电池容量,常将多片正?负极板分别并联,组成正?负极板组,如下图所示: 安装时,将正?负极板组相互嵌合,中间插入隔板,就形成了单格电池?在每个单格电池中,负极板的片数总要比正极板的片数多一片,从而使每片正极板都处于两片负极板之间,使正极板两侧放电均匀,避免因放电不均匀造成极板拱曲? 2.隔板 在各种类型的铅酸蓄电池中,除少数特殊组合的极板间留有宽大的空隙外,在两极板间均需插入隔板,以防止正?负极板相互接触而发生短路?这种隔板上密布着细小的孔,既可以保证电解液的通过,又可

以阻隔正?负极板之间的接触,控制反应速度,保护电池?隔板有木质?橡胶?微孔橡胶?微孔塑料?玻璃等数种,可根据蓄电池的类型适当选定?吸附式密封蓄电池的隔板是由超细玻璃丝绵制作的,这种隔板可以把电解液吸附在隔板内,吸附式密封蓄电池的名称也是由此而来的? 3.容器 容器是用来盛装电解液和支撑极板的,通常有玻璃容器?衬铅木质容器?硬橡胶容器和塑料容器四种?容器用于盛放电解液和极板组,应该耐酸?耐热?耐震?容器多采用硬橡胶或聚丙烯塑料制成,为整体式结构,底部有凸起的肋条以搁置极板组?壳内由间壁分成3个或6个互不相通的单格,各单格之间用铅质联条串联起来?容器上部使用相同材料的电池盖密封,电池盖上设有对应于每个单格电池的加液孔,用于添加电解液和蒸馏水以及测量电解液密度?温度和液面高度? 4.电解液 铅酸蓄电池的电解液是用蒸馏水稀释高纯浓硫酸而成的?它的密度高低视铅蓄电池类型和所用极板而定,一般在15℃时为1.200~1.300g/cm3?蓄电池用的电解液(稀硫酸)必须保持纯净,不能含有危害铅酸蓄电池的任何杂质?电解液的作用是给正?负电极之间流动的离子创造一个液体环境,或者说充当离子流动的介质?电解液的相对密度对蓄电池的工作有重要影响,相对密度大,可减少结冰的危险并提

镍镉镍氢电池的原理及充电方法

镍镉/镍氢电池的原理及充电方法 镍镉/镍氢电池的发展 1899年,Waldmar Jungner在开口型镍镉电池中,首先使用了镍极板,几乎与此同时,Thomas Edison 发 明了用于电动车的镍铁电池。遗憾的是,由 于当时这些碱性蓄电池的极板材料比其它蓄电池的村料贵得多,因此实际应用受到了极大的限制。 后来,Jungner的镍镉电池经过几次重要改进,性能明显改善。其中最重要的改进是在1932年,科学家在 镍电池中开始使用了活性物质。他们将活性 物质放入多孔的镍极板中,然后再将镍极板装入金属壳内。镍镉电池发展史上另一个重要的里程碑是1947 年密封型镍镉电池研制成功。在这种电池中 ,化学反应产生的各种气体不用排出,可以在电池内部化合。密封镍镉电池的研制成功,使镍镉电池的应 用范围大大增加。 密封镍镉电池效率高、循环寿命长、能量密度大、体积小、重量轻、结构紧凑,并且不需要维护,因此在 工业和消费产品中得到了广泛应用。 随着空间技术的发展,人们对电源的要求越来越高。70年代中期,美国研制成功了功率大、重量轻、寿命 长、成本低的镍氢电池,并且于1978年成功 地将这种电池应用在导航卫星上,镍氢电池与同体积镍镉电池相比,容量可提高一倍,而且没有重金属镉 带来的污染问题。它的工作电压与镍镉电池 完全相同,工作寿命也大体相当,但它具有良好的过充电和过放电性能。近年来,镍氢电池受到世界各国 的重视,各种新技术层出不穷。镍氢电池刚 问世时,要使用高压容器储存氢气,后来人们采用金属氢化物来储存氢气,从而制成了低压甚至常压镍氢 电池。1992年,日本三洋公司每月可生产 200万只镍氢电池。目前国内已有20多个单位研制生产镍氢电池,国产镍氢电池的综合性能已经达到国际 先进水平。 蓄电池参数 蓄电池的五个主要参数为:电池的容量、标称电压、内阻、放电终止电压和充电终止电压。电池的容量通 常用Ah(安时)表示,1Ah就是能在1A的电流 下放电1小时。单元电池内活性物质的数量决定单元电池含有的电荷量,而活性物质的含量则由电池使用 的材料和体积决定,因此,通常电池体积越

锂电池充电的原理解析

锂电池充电的原理解析 锂离子电池的充电过程可以分为四个阶段:涓流充电(低压预充)、恒流充电、恒压充电以及充电终止。 锂电池充电器的基本要求是特定的充电电流和充电电压,从而保证电池安全充电。增加其它充电辅助 功能是为了改善电池寿命,简化充电器的操作,其中包括给过放电的电池使用涓流充电、电池电压检测、 输入电流限制、充电完成后关断充电器、电池部分放电后自动启动充电等。 锂电池的充电方式是限压恒流,都是由IC芯片控制的,典型的充电方式是:先检测待充电电池的电压,如果电压低于3V,要先进行预充电,充电电流为设定电流的1/10,电压升到3V后,进入标准充电过程。标准充电过程为:以设定电流进行恒流充电,电池电压升到4.20V时,改为恒压充电,保持充电电压为4.20V。此时,充电电流逐渐下降,当电流下降至设定充电电流的1/10时,充电结束。下图为充电曲线。

阶段1:涓流充电——涓流充电用来先对完全放电的电池单元进行预充(恢复性充电)。在电池电压低于3V左右时采用涓流充电,涓流充电电流是恒流充电电流的十分之一即0.1c(以恒定充电电流为1A举例,则涓流充电电流为100mA), 阶段2:恒流充电——当电池电压上升到涓流充电阈值以上时,提高充电电流进行恒流充电。恒流充电的电流在0.2C至1.0C之间。电池电压随着恒流充电过程逐步升高,一般单节电池设定的此电压为3.0-4.2V. 阶段3:恒压充电——当电池电压上升到4.2V时,恒流充电结束,开始恒压充电阶段。电流根据电芯的饱和程度,随着充电过程的继续充电电流由最大值慢慢减少,当减小到0.01C时,认为充电终止。(C 是以电池标称容量对照电流的一种表示方法,如电池是1000mAh的容量,1C就是充电电流1000mA。)阶段4:充电终止——有两种典型的充电终止方法:采用最小充电电流判断或采用定时器(或者两者的结合)。最小电流法监视恒压充电阶段的充电电流,并在充电电流减小到0.02C至0.07C范围时终止充电。第二种方法从恒压充电阶段开始时计时,持续充电两个小时后终止充电过程。 上述四阶段的充电法完成对完全放电电池的充电约需要2.5至3小时。高级充电器还采用了更多安全措施。例如如果电池温度超出指定窗口(通常为0℃至45℃),那么充电会暂停. 充电结束后,如检测到电池电压低于3.89V将重新充电。 图3是可以对短路的电池激活的充电方法。 手机充电器的工作流程一般为:1. 检测电池的电压,如果低于一个阈值电压,就要进行涓流充电;2. 电池充到一定电压(一般设置为2.9V)时,进行全电流充电;3. 当电池电压达到预置电压(锂离子电池一般为4.2V)时,开始恒压充电,同时充电电流降低;4. 当电流逐渐减小到规定的值时,充电过程结束。 电池电压低于2.5V(Vshort)时,锂离子电池充电器用25mA的电流预充,防止深度放电的锂离子电池在快充时被损坏甚至发生危险。

最全面铅酸蓄电池常见故障和机理分析快点动力

最全面铅酸蓄电池常见故障和机理分析 快点动力新能源 1、反极的现象及原因 铅酸蓄电池的反极系指蓄电池的正负极发生了改变,反极现象反映在两个方面,一是由于铅蓄电池在装配组装时某单格电池极群组接反或整个电池极群组接反。这种情况下会出现铅酸蓄电池灌完酸用电压表测量端电压时其端电压值小于各单体蓄电池额定电压之和的现象或出现端电压为负的现象。另一方面是铅蓄电池在容量放电时在多个串联使用中,由于某个蓄电池(或某单体蓄电池)容量较低或完全丧失容量。在放电时这个电池很快被放完电被其它电池进行反充电,使原来的负极变成正极,原来的正极变成负极,端电压出现负值的现象。 对于前一种反极故障,在测量蓄电池端电压时(多个单体电池组成的蓄电池)都可发现,若有一个单体电池反极,不仅失去该电池的2 V电压,而且还要增加2 V反电压,端电压要降低4V左右。例如,对于额定电压为12 V的电池,如测量其端电压为8 V左右,说明有1个单格电池反极。如测量其端电压为4 V左右说明有2个单格反极,如测量其端电压为-4 V左右说明有4个单格反极,如测量其端电压为-12 V说明6个单格均反极。 对于后一种反极故障,其端电压值(负值)随放电情况而不同。一般在检测时,对于这种情况要及时将蓄电池从放电线路中摘除下来,以免对蓄电池有所损坏。 2、短路现象及原因 铅酸蓄电池的短路是指铅酸蓄电池内部正负极群相连。铅酸蓄电池短路现象主要表现在以下几个方面: (1)开路电压低,闭路电压(放电)很快达到终止电压。 (2)大电流放电时,端电压迅速下降到零。 (3)开路时,电解液密度很低,在低温环境中电解液会出现结冰现象。 (4)充电时,电压上升很慢,始终保持低值(有时降为零)。 (5)充电时,电解液温度上升很高很快。 (6)充电时,电解液密度上升很慢或几乎无变化。 (7)充电时不冒气泡或冒气出现很晚。 造成铅酸蓄电池内部短路的原因主要有以下几个方面: (1)隔板质量不好或缺损,使极板活性物质穿过,致使正、负极板虚接触或直接接触。 (2)隔板窜位致使正负极板相连。 (3)极板上活性物质膨胀脱落,因脱落的活性物质沉积过多,致使正、负极板下部边缘或侧面边缘与沉积物相互接触而造成正负极板相连。 (4)导电物体落入电池内造成正、负极板相连。 (5)焊接极群时形成的“铅流”未除尽,或装配时有“铅豆”在正负极板间存在,在充放电过程中损坏隔板造成正负极板相连。 3、极板硫酸化现象及原因 极板硫酸化系是在极板上生成白色坚硬的硫酸铅结晶,充电时又非常难于转化为活性物质的硫酸铅。铅酸酸蓄电池极板硫酸化后主要有以下几种现象。

发电机蓄电池保养

发电机蓄电池保养 1 目的: 规范发电机蓄电池保养,保证其正常工作 2 适用范围: 适用于柴油发电机组启动用铅酸蓄电池的保养。 3 引用标准: 《电气装置安装工程蓄电池施工及验收规范》GB50172-92。 4 电解液的灌注: 4.1 选用的电解液应符合国家标准GB50172-92 及产品技术条件的要求;电解液的密度必须符合产品技术条件的规定。 4.2 灌注电解液时,必须采用耐酸的干净器皿。 4.3 注入蓄电池的电解液,其温度不宜高于30℃;当室温高于30℃时,不得高于室温。 4.4 注入电解液的液面高度应接近上液面线;全组蓄电池应一次注入。 4.5 蓄电池的防酸栓、催化栓及液孔塞应在注液完毕后立即回装。电解液注入蓄电池后,应静置3—5 小时,待液温冷却到30℃以下方可充电。 5 蓄电池的充放电: 5.1 蓄电池的初充电及首次放电,应按产品技术条件的规定进行,不得过充过放,以免影响其使用寿命。 5.1.1 蓄电池的初充电应符合以下要求:

4.1.1.1 初充电前应对蓄电池组及其连接条的连接情况进行检查。 5.1.1.2 初充前,应检查充电电源,保证电源可靠,中充电期间不得随意中断。 5.1.1.3 充电过程中,电解液温度应控制在不高于45℃。 5.1.1.4 充电过程中,严禁明火。 5.1.1.5 采用恒流充电法充电时,其最大电流不得超过制造厂规定的允许最大电流值。采用恒压充电法充电时,其充电的起始电流不行超过允许最大电流值;单体电池的端电压不得超过2.4V。 5.1.1.6 催化栓的蓄电池,当充电电流大于允许最大电流值充电时,应将催化栓取下,换上防酸栓;充电过程中,催化栓的温升应无异常。 5.1.1.7 电池充电结束后,应达到产品技术条件的规定。 ·恒流充电法:电池的电压、电解液的密度应连续3 小时以上稳定不变;电解液产生大量汽泡。 ·恒压充电法:充电电流应连续10 小时以上不变,电解液的密度应连续3 小时以上不变,且符合产品技术条件规定的数值。 5.1.1.8 初充电结束后,电解液的密度及液面高度需调整到规定值,并应再进行0.5 小时的充电,使电解液混合均匀。 5.2 蓄电池的首次放电应符合以下要求: 5.2.1 电池的最终电压及密度应符合技术条件的规定。 5.2.2 温度为25℃时的放电容量应达到其额定容量的85%以上。 5.2.3 首次放电完毕后,按产品技术要求进行充电,间隔时间不宜超过10 小时。

蓄电池的充电原理

综合监测单元模块说明V4.0 一、概述 综合监测单元模块是对系统交、直流检测及对整流模块进行控制的一种设备,内部采用CPU控制,高精度的模数转换,采用RS485数字口与上位机通讯,采样回路与数字口光耦隔离,因此该模块采样速度快,可靠性高。同时给彩屏提供DC24V电源。 二、功能方框图 三、使用方法 模块为板后安装,外形尺寸和面板示意分别如下图所示: 图一:外形尺寸

图二:丝印图 接线端口定义: 综合监测单元 复位 电源0 112 通讯 J4合母电压正485 - B 485 - A 控母电压正大 地母线电压负路交流电压 J61路交流A相1路交流B相1路交流C相路交流电压 J7交流电流 J8G N D + 12 V A G N D - 12 V C A N L C A N H 温 度J10 G N D 温 度电源 J11PC: 0 V PC:+ 24 V 电 源J1大 地电 源 正电 源 负J2开关量输入J3 DI 9直流电压检测J52路交流A相2路交流B相2路交流C相直流电流检测J91212流电流交流电池电1234567891011121212345123451234 1234567 1212J0通讯 B 2 A 2线母光闪正组池电负 组池电123 12345678910111213141516 12345 678910 11 12131415 16 1718192021 22232425 继电器输出 DI 1 DI 2 DI 3 DI 4 DI 5 DI 6 DI 7 DI 8 DI 10COM DI 11 DI 12 DI 13 DI 15 DI 14 DI 16 DI 17 DI 18 DI 19 DI 20 DI 21 DI 22 DI 23 DI 24 DO 1 DO 2 DO 3 DO 4 DO 5 DO 6 DO 7 DO 8 + 12 V - 12 V 流电母控3+ 5 V 通讯

BQ2057锂电池充电器原理

摘要:本文介绍美国TI 公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池 充电器 BQ2057 1 引言 BQ2057系列是美国TI 公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V 或4.2V)或双节(8.2V 或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP 、TSSOP 和SOIC 的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED 指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP 、TSSOP 和SOIC 三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C 、BQ2057T 和BQ2057W 四种信号,分别适合4.1V 、4.2V 、8.2V 和8.4V 的充电需要。 BQ2057的引脚功能描述如下: VCC (引脚1):工作电源输入; TS (引脚2):温度感测输入,用于检测电池组的温度; STA T(引脚3):充电状态输出,包括:充电中、充电完成和温度故障三个状态; VSS (引脚4):工作电源地输入; CC (引脚5):充电控制输出; COMP(引脚6):充电速率补偿输入; SNS (引脚7):充电电流感测输入; BAT (引脚8):锂电池电压输入; 2.2 充电状态流程 BQ2057的充电状态流程如图2-3所示,其充电曲线如图2-2所示,BQ2057的充电分为三个阶段:预充状态、恒流充电和恒压充电阶段。 元件型号 充电电压 BQ2057 4.1V BQ2057C 4.2V BQ2057T 8.2V BQ2057W 8.4V

铅酸蓄电池的工作原理

铅酸蓄电池的工作原理 1、铅酸蓄电池电动势的产生: A)铅酸蓄电池充电后,正极板是二氧化铅(PbO2),在硫酸溶液中水分子的作用下,少量二氧化铅与水生成可离解的不稳定物质——氢氧化铅(Pb(OH)2),氢氧根离子在溶液中,铅离子(Pb)留在正极板上,故正极板上缺少电子。 B)铅酸蓄电池充电后,负极板是铅(Pb),与电解液中的硫酸(H2SO2)发生反应,变成铅离子(Pb+2),铅离子转移到电解液中,负极板上留下多余的两个电子(2e)。可见,在未接通外电路时(电池开路),由于化学作用,正极板上缺少电子,负极板上多余电子,两极板间就产生了一定的电位差,这就是电池的电动势。 2、铅酸蓄电池放电过程的电化反应: A)铅酸蓄电池放电时,在蓄电池的电位差作用下,负极板上的电子经负载进入正极板形成电流I ,同时在电池内部进行化学反应。 B)负极板上每个铅原子放出两个电子后,生成的铅离子(Pb+2)与电解液中的硫酸根离子(SO4-2)反应,在极板上生成难溶的硫酸铅(PbSO4)。 C)正极板的铅离子(Pb+4)得到来自负极的两个电子(2e)后,变成二价铅离子(Pb+2)与电解液中的硫酸根离子(SO4-2)反应,在极板上生成难溶的硫酸铅(PbSO4)。正极板水解出的氧离子(O2)与电解液中的氢离子(H+)反应,生成稳定物质水. D)电解液中存在的硫酸根离子和氢离子在电力场的作用下分别移向电池的正负极,在电池内部形成电流,整个回路形成,蓄电池向外持续放电。 E)放电时H2SO4浓度不断下降,正负极上的硫酸铅(PbSO2)增加,电池内阻增大(硫酸铅不导电),电解液浓度下降,电池电动势降低。 F)化学反应式为: 正极活性物质电解液负极活性物质正极生成物电解液生成物负极生成物↓ ↓ ↓ ↓ ↓ ↓ PbO2 + H2SO4 + Pb → PbSO4 + 2H2O + PbSO4 氧化铅稀硫酸铅硫酸铅水硫酸铅 3、铅酸蓄电池充电过程的电化反应 A)充电时,应在外接一直流电源(充电极或整流器),使正、负极板在放电后生成的物质恢复成原来的活性物质,并把外界的电能转变为化学能储存起来。 B)在正极板上,在外界电流的作用下,硫酸铅被离解为二价铅离子(Pb )和硫酸根负离子(SO4 ̄2)由于外电源不断从正极吸取电子,则正极板附近游离的二价铅离子(Pb )不断放出两个电子来补充,变成四价铅离子(Pb ),并与水继续反应,最终在正极极板上生成二氧化铅(PbO )。 C)在负极板上,在外界电流的作用下,硫酸铅被离解为二价铅离子(Pb )和硫酸根负离子(SO4 ̄2),由于负

电池充电器原理图详解

电池充电器原理图详解(附图) 时间:2012-06-27 11:49:27 来源:中国装备制造网点击量:42 锂电池充电器原理图就是什么呢?在充电时,手机与电动车使用得充电器多为锂电池充电器,那么您知道锂电池充电器原理图就是什么呢?下面世界工厂网小编就与大家聊聊锂电池充电器原理图,也长长见识。 锂离子电池具有单只端电压高、比容量大等优点,但其充电必须使用专用充电器,因为它在过充电时极易损坏。锂离子电池充电器之所以称“新创意”,就是因为它除监视电池得充电状态外,还能分阶段控制电池得最大充电电流。用本充电器充电开始时,充电电流从10mA依次递增至270mA,当电量充至70%左右时,自动改用最大220mA充电,然后依次改为最大170mA、120mA与70mA,最后以10mA左右得涓流结束充电。这种充电方法可以较大限度地将锂离子电池充足。 本装置电路如附图所示。IC1构成频率约1Hz1得多谐振荡器,IC2构成脉冲频率6分配器,IC3构成充电执行电路。通电后IC2复位,Q0输出高电平,这时IC3输出电压仅1、25V,电路由+15V经R1给电池提供约10mA得充电电流。通电后IC1起振,其③脚输出得脉冲触发IC2工作,使输出端Q1~Q5依次出现高电平,经不同得分压电阻分压后,IC3得输出电压按6V、7V、8V、9V、10V依次递增,充电电流也因此在70mA至270mA之间依次递增。当Q6输出高电平时IC2被复位,此后电路在IC1输出脉冲得作用下重复上述过程。 锂电池得标称电压为3、6V,通常放电至3V即需充电,终止充电电压最高为4、2V。IC4构成电池端电压检测电路,其门限电压即电池充电终止电压可通过RP在4~4、2V范围

发电机与蓄电池匹配

Volvo Bus Corporation Gothenburg, Sweden Bodybuilding Instruction Buses and coaches Sect. Group No Date 3019060518 Electrical power consumption Applies to all models General Current drain must be limited during idling and when the engine is switched off,to increase the service life of the batteries. For this reason, the body builder must dimension the body electrical system using the tables below for guidance. Action Idling Chassis current drain is shown in the table below 1. The values apply to idling at 600rpm unless otherwise specified. If the outdoor temperature is greater than -5°C, it is possible to ignore the current needed to heat the AdBlue hoses.Chassis current requirements 3-0-19 R01 Max current consumption at idle ? At idle, the total current consumption for the body and chassis together must not be greater than the charge received by the batteries, please refer to the table 2. NOTE! The charge values in the table must therefore be reduced by the current requirement in table 1. In exceptional cases, short term loading on the batteries can be permitted, however. NOTE! At low idling speed, the charging capacity falls dramatically. Bus model Current required for heating the AdBlue hoses at temperatures below -5°C (Euro 4 engines)Current required for pump sensors etc. when the SCR system is used (Euro 4 engines)Current required for battery charging, control units, instrument lighting etc.B7R B7LE 10A 10A 20A B9L B9TL B9S 20A 10A 20A B12B 6x228A 10A 20A B12B 4x225A 10A 20A B12M B12MA 19A 10A 20A Table 1. Chassis current requirements

铅酸电池工作原理

铅酸电池工作原理 (1)阀控式密封铅酸蓄电池在充放电过程中的化学反应如下: 放电 PbO 2 + 2H 2SO 4 + PbSO 4 + 2H 2O + PbSO 4 充电 (二氧化铅) (硫酸) (海绵状铅) (硫酸铅) (水) (硫酸铅) 解决方案 防止因过充电导致水分解而引起电解液的减少 实现电池的密封 (3)活性物质 设计正、负极板活物质在充电过程中的异步复原反应,即当正极板活物质完全充电恢复后,负极板活物质还未完全转变为海绵状铅,这样,充电末期当正极开始产生氧气时,负极板还未变成完全充电状态,可以最大限度抑制氢气的产生。 (4)隔板:设计隔板达到以下4个主要目的 ① 保持正、负极板绝缘; ② 吸附电解液,保持电解液不流动及负极板处于湿润状态; ③ 高孔隙度,使正极产生的氧气容易通过到达负极板; ④ 隔板中加入适量粗纤维,保持隔板长时间具备良好的弹性。 (5)充电末期电极反应 正极产生的氧气,与负极活物质和稀硫酸进行反应,使负极板的一部分处于去极化状态,从吸收正极产生的氧气而消耗的海绵状铅的量 负极板充电生成海绵状铅的量 二者达到平衡状态时,便实现了电池的密封 当 与? ?

而抑制了氢气的产生。 充电末期的电极反应如下: A、正极板的反应(产生氧气) ①2H2O →O2+ 4H++ 4e- (通过隔板移向负极板表面) B、负极板的反应 ②2Pb + O2→2PbO (海绵状铅与氧气发生反应) ③2PbO + 2H2SO4→2PbSO4+ 2H2O (PbO与电解液发生反应) ④2PbSO4 + 4H+ + 4e-→2Pb + 2H2SO4(PbSO4的还原) (参与②的反应)(参与③的反应) C、负极板的总反应:O2+ 4H++ 4e-→2H2O 总之,充电过程产生的氧气能够迅速与负极板上充电状态下的活物质发生反应变成水,结果基本没有水份的损失,密封成为可能。 2、电池生产流程

笔记本电池充放电原理

笔记本电池充放电原理 (1) NB 电池: 目前电池皆以锂电池(Li-Ion) 为主, 锂离子电池除了轻巧,电容量又大,而且也没有记忆特性。当一颗电池被反覆的充到一特定的电量时,它会产生出一种化学记忆特性,日後任你再怎样充电,都没法超过那个特地的电量额度了,这就是电池的记忆性。锂离子电池没有这种问题,但它唯一的缺点是怕冷。而锂电池是以持续等电压方式来充电的, 我们以下图来加以说明锂电池的充电原理: 在上图中, 横轴是充电时间, 纵轴为电压, 在充电过程中,电池的电压数缓缓的升高,到达一个顶点(在我们图上是 4.2 伏特) 然後保持恒定,一直以4.2v 来充电, 所以为定电压充电(固定在4.2v, 但并非所有锂电池都是固定在 4.2 v, 要看各厂商的规格), 同时,充电电流则是缓缓下降。一旦电流低到一个设定的阈值(我们图上的例子是80 mA (毫安培)),充电器则自动停止充电, 这里的所设定的阀值, 也必须是各厂商而定. 而锂电池有六个对外的接脚连接至Notebook, Pins: 1. 接地(GND) 2. TS (侦测电池插入) 3. HDQ BUS (主要在存取电池的各项叁数) 4. BAT_BC 5. No connection 6. 电池输入/ 输出电压 (2) Gauge IC: Gauge IC 一般称为"电池管理晶片", 而华硕Notebook 常用的电池当中皆含有

此Gauge IC, 以M2A 为例, 其电池中所包含的Gauge IC 就是采用美国Bechmar q 公司的锂电池管理晶片"BQ2050H". 而Gauge IC 中包含了电池容量暂存器,温度暂存器, 电池识别(ID) 暂存器, 电池状态暂存器, 锂电池充电状态暂存器, 放电计数暂存器, 这些暂存器中的值, 会因为使用的时间或使用不当而产生变化, 导致电池充不满, 或使用时间变短等情形, 而这些暂存器中的值是可以利用特殊的方式来更改的, 大家常听到的电池学习, 其实就是更改电池容量暂存器以及电池状态暂存器中的值, 将原本暂存器中错误或误差的值加以修正, 使电池的充电时间及充电容量能恢复正常. (3) Charge IC: Charge IC 顾名思义就是用来控制电池充电的IC, 华硕常用的Charge IC 为M B3877 系列, 但Charge IC 并无法单独工作, 必须搭配一颗可程式化的IC (如: PIC 16C54) 才能正常工作, 而此PIC 16C54 是一颗可程式化的IC, 里面记载着电池充电时所需要的数据, 例如: 要用多大的电压电流来充电, 必须符合 哪些条件, 电池才会被充电, 电池充饱时要切断哪些电源以及电池的充电指示灯该如何变化(闪烁或改变颜色) 等等, 而这些"值" 或"条件" 都是RD 预先设定好的, 下图以A1B 的充电简易方块图为各位说明NOTEBOOK 的充电流程: 在上图中, 只有AC_IN (外加电源) 有讯号进来时, 才会进行电池的充电动作,而Battery 中的Gauge IC 会告知MB3877(Charge IC) 目前的电池状态(例如: 是否需要充电, 电量多少等等), 而PIC16C54 亦会侦测目前是否符合充电的条件(例如: AC_IN 是否有讯号, Battery 是否有插好等等), 如果目前Battery 是符合需要充电的条件, 其充电过程如下: Step 1: AC_IN 有讯号, 而且也已侦测到Battery in. Step 2: PIC 16C54 会发出CHG_EN 的讯号, 告知MB 3877 可以对Battery 进行充电.

镍氢可充电电池以及充电电路

镍氢可充电电池以及充电电路 Ni-HM Rechargeable Battery and Charger 上个星期,充电器莫名其妙地坏了,折腾了几天终于修复好了,从中了解到了不少的知识,所以写下来与大家分享。 那可是当年一千多买的外语通9188原装充电器,用了至少五年了吧,效果感觉很好,可是怎么就不明不白的挂了呢?于是自己拆开检修,里面一块电路板,上面电阻、电感、电容和二极管、三极管都还挺多,还有一个核心IC(AZ339比较器),果真不赖。大致一看,并没有发现任何异常现象,且用万用表测变压器的220V输入端貌似开路。然后初步判定是变压器坏了,当买回来新变压器的时候才想起来不是变压器的问题,因为在接通和断开电源的瞬间,指示灯会闪一下,而且再用万用表一测,变压器的220V输入端阻抗很大,但并未开路。没搞清楚状况就下结论,真2。 再看了看充电电路板,崭新的,没有任何元件有损坏的迹象。花了半天的时间把电路画了出来,又测量、分析了半天,越是糊涂了。觉得整个充电电路的设计好奇怪,不知道是什么原理,真纳闷以前她是怎么正常充电的,而且效果也不错。 这两天在网上看到了一些关于可充电电池,充电电路之类的资料。觉得原理挺清晰,也不是很麻烦,于是决定要拯救我的充电器。 下面是一个镍氢电池的典型充电电路。 1.基准电压Vref形成 外接电源经插座X、二极管VD1后由电容C1滤波。VD1起保护作用,防止外接电源极性反接时损坏TL431。R3、R4、R5和TL431组成基准电压Vref,根据图中参数Vref= 2.5×(100+820)/820=2.80(v),这个数据主要是针对镍氢充电电池而设计(单节镍氢充电电池充满后电压约为1.40V)。

铅酸蓄电池原理

密封阀控式铅酸蓄电池原理简介 要想很好的对密封阀控式铅酸蓄电池进行维护,首先要了解它的原理,以便于有的放矢。1860年法国人普兰特(G.Plante)将中间用橡胶条隔开的两块铅皮浸在稀硫酸中经过正向反向地反复充电,所得的产品能以比当时任何一次电池更大的电流放电,这就是世界上第1个铅酸蓄电池。铅酸蓄电池经过100多年的发展,已有各种类型和各种用途的专用电池,但不论何种铅酸 蓄电池,其原理都是一致的。 在正极上: PbO2+4H++SO42-+2e → PbSO4+2H2O ……. ① 在负极上: Pb+ SO42- → PbSO4 +2e ….......② 从整体上看,蓄电池放电反应方程式为: PbO2+ Pb + 2H2SO4 → 2 PbSO4 + 2H2O ……..③ 此反应为放出能量的过程,只要条件具备,可快速自发地进行。二氧化铅和铅作为活性物 质分别存在于正负极上,其放电反应后分别在正负极上生成了硫酸铅,所以称此为双极硫酸盐 化理论。反应过程中释放出能量(电能和热能)。蓄电池充电反应方程式即①~③的逆反应。 上世纪70年代,创制出了第1个贫液式结构的密封阀控式铅酸蓄电池。密封阀控式铅酸蓄电池以其少维护、安全、清洁等特点迅速在各个领域被使用。在我国从上世纪90年代初开始,密封阀控式铅酸蓄电池迅速代替开口式蓄电池占领绝大部分市场。密封阀控式铅酸蓄电池实现其密封的原理是,当电池充电开始产生气体后,从正极析出的氧气到达负极,在负极上发生化合反应,方程式如下: 在正极上: H2O →1/2O2 +2H+ + 2e ….. ….④ 在负极上: PbSO4 +2e → Pb+SO42- …..….⑤ 在负极上: Pb+ 1/2O2 +2H++ SO42- → PbSO4+H2O …..….⑥ 从以上反应原理可以看出,蓄电池在正常充放电时,内部电解液会发生分解-化合循环反应,这样可以保证电解液不会损失。但要想实现这个原理,还要注意一点,电池在充入电解液板要保

铅酸蓄电池基本知识

一.铅酸蓄电池的基本知识 1.1什么是铅酸蓄电池? 以铅和酸作为化学反应物质制成的蓄电池叫做铅酸蓄电池。它是一种直流电源,充电时将电能转变成化学能,放电时将储存的化学能转变成电能的一种装置。 1.2铅酸蓄电池的优缺点 铅酸蓄电池在常用体系的蓄电池中电压最高为2.0V。其二是它的廉价性,其三是高倍率放电性能良好,高低温性能良好可在-40—60°C的条件下工作。易于浮充使用没有“记忆”效应等。当然铅蓄电池也具有某些难以克服的缺点,首先是它的寿命比较短,在放电状态下长期保存会导致电极的不可逆硫酸盐化。在某些结构的电池中由于氢的析出有爆炸的危险等。 1.3 铅酸蓄电池的分类 铅酸电池具有广泛的用途按照极板的结构可分为涂膏式、管式和形成式。按荷电状态可分为干荷电态和湿荷电态几种。(我们公司代理的GS电池为湿荷电态,VHB为干荷电态)按电池盖和排气栓结构可分为排气式、防酸隔爆式、防酸消氢式和阀控密封式。 1.4铅酸蓄电池的一般结构 构成蓄电池的主要部件是负极板、正极板、隔板、电解液、电池槽此外还有一些零件如端子、连接条、排气栓等。 1.5牵引用铅酸蓄电池的结构设计 ●负极板构造 牵引用蓄电池的负极板比正极板多一块,一般采用格栅型设计并涂上海绵状的Pb膏即涂膏式,这样能满足电池的大负荷工作。其板栅像铁丝网原则上与汽车蓄电池相同,但常使用厚极板,高度较高。所以活性物质的利用率较低一般在35%左右。 ●正极板构造 正极板有两种类型,即管式和涂膏式。(我司代理的GS和VHB牵引蓄电池其正极板均采用管式结构)管式正极板的结构是用一导电骨架与一模仿极平的顶部集流条和许多圆柱骨芯焊在一起构成的。骨芯数目由极板尺寸决定,骨芯外边套有惰性玻璃纤维管套,其内部填充pbo2(pbo2在填充之前已经和H2SO4充分反应过) ●管式正极板的优越性 1.)在使用寿命期间活性物质保持在管中,不发生脱落。 2.)极板孔率提高,有利于活性物质利用率的提高。 3.)铅合金的骨架由于被活性物质包围,其腐蚀速率降低。使得充放电循环达1500次以上。而相同厚度的 板栅涂膏式极板在腐蚀作用下只有800次。 ●隔板 作用是防止电池的正负极板接触造成短路。我们采用聚丙烯PE材料,其韧性好,又有很好的渗透性,保证电池内部离子的有效传递。 ●电解液 电解液为稀硫酸,我们使用的是符合德国DIN标准的酸液,其杂质含量很小,能有效防止电池的自放电,增强电池的使用效率,延长电池使用寿命。 ●单体壳体 采用抗冲性能好,难以产生裂痕和破损的合成树脂制成。 ●注液塞 电池充电时无需打开盖子就能将气体排出(充电时产生的H2和O2),同时也防止在工作过程中电解液剧烈翻腾溅出而产生危险。打开注液塞就可以测量电解液的比重和温度。 ●电池单体间的联结 电池单体之间的联结分为铅片焊接式、螺接式和插接式。铅片焊接式技术保证电池单体间的良好联结,铅联结片外面盖有塑料盖加以保护,防止短路。螺接式电池单体间的联结采用可绕曲的电缆连接,电缆中间是铜

相关文档
最新文档