2019年数学第二次模拟考试试题(答案及评分标准)

合集下载

2019年徐州市高三考前模拟数学试题含答案

2019年徐州市高三考前模拟数学试题含答案

高考数学精品复习资料2019.5徐州市20xx 年高考考前信息卷数学Ⅰ卷参考公式:样本数据12,,,n x x x 的标准差s =11n i i x x n ==∑. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1.若集合{}1,0,1A =-,{}21,B x x m m ==+∈R ,则B A = ▲ .2.设i 是虚数单位,复数1i3ia +-为纯虚数,则实数a 的值为 ▲ . 3.已知样本7,8,9,,x y 的平均数是8,且60xy =,则此样本的标准差是 ▲ .4.在集合{|,1,2,,10}6n M x x n π===中任取一个元素,所取元素恰好满足方程1cos 2x = 的概率是 ▲ . 5.已知双曲线与椭圆2212xy +=有相同的焦点,且它们的 离心率互为倒数,则该双曲线的方程为 ▲ . 6.已知某算法的伪代码如右,根据伪代码,若函数7.()()g x f x m =-在R 上有且只有两个零点,则实数m 的取值范围是 ▲ .7.已知32cos()23απ+=-,则cos2α= ▲ .Read xIf x ≤1- Thenf (x )←x +2Else If 1-<x ≤1 Then f (x )←x 2Elsef (x )←x -+2End If End IfPrint f (x )(第6题图)注 意 事 项考生在答题前认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本试卷满分160分,考试时间为120分钟。

考试结束后,请将本试卷和答题纸一并交回。

2.答题前,请您务必将自己的姓名、考试号用的0.5毫米黑色墨水的签字笔填写在试卷及答题纸上的规定位置。

3.作答试题,必须用0.5毫米黑色墨水的签字笔在答题纸上的指定位置作答,在其它位置作答一律无效。

4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

2019年深圳市高三年级第二次调研考试数学(理)试题与答案

2019年深圳市高三年级第二次调研考试数学(理)试题与答案

14. (1, 3) .
15. 3 .
三、解答题:本大题共 6 小题,满分 80 分. 解答须写出文字说明、证明过程和 演算步骤 .
16.(本小题满分 12 分)
(本题考查向量的数量积、两角和的正弦公式、三角形的面积公式、三角函数的性质等
知识,考查化归转化的数学思想和运算求角能力
)
解:由已知可知
f x m n cos2 x 3sin x cos x
等知识,考查数形结合、 化归转化的数学思想和方法,以及空间想象能力、
推理论证能力和
运算求解能力 )
解: ( 1) (解法一 ):由题意可知 8 3 解得 AD 2 3 ,
2 2 AD ,
………… 1分
在 AOP 中, AP 22 22 2 2 2 cos120O 2 3 ,
B
DE =

图3
三、解答题:本大题共 6 小题,满分 80 分.解答须写出
文字说明、证明过程和演算步骤.
16.(本小题满分 12 分)
已知 m cosx, 3sin x , n cos x,cos x ,设 f x m n .
( 1)求函数 f x 的最小正周期及其单调递增区间;
( 2)若 b、c 分别是锐角 ABC 的内角 B、 C 的对边,且 b c
3 C. 3
2
B.1 D.2
6.设 a 0 , b 0 ,则以下不等式中,不恒成立的是
A.(a
1 b)(
1 )
4
ab
b2 b B.
a2 a
C. a b
a
1ab 1a
D. aabb abb a
b 1b
俯视图 图1
7.已知 a 是实数,则函数 f( x) sin ax 的导函数的图象可能是

重庆市沙坪坝区2019年中考适应性考试数学试题(二)(含答案)

重庆市沙坪坝区2019年中考适应性考试数学试题(二)(含答案)

重庆市沙坪坝区2019年中考适应性考试数学试题(二)一.选择题(共12小题,满分48分)1.﹣8的倒数是()A.﹣8 B.8 C.﹣D.2.计算(﹣x3)2所得结果是()A.x5B.﹣x5C.x6D.﹣x63.已知两个相似三角形的周长比为4:9,则它们的面积比为()A.4:9 B.2:3 C.8:18 D.16:814.下列调查中,最适合采用普查方式的是()A.对太原市民知晓“中国梦”内涵情况的调查B.对全班同学1分钟仰卧起坐成绩的调查C.对2018年央视春节联欢晚会收视率的调查D.对2017年全国快递包裹产生的包装垃圾数量的调查5.函数y=2﹣中,自变量x的取值范围是()A.x>﹣3 B.x≥﹣3 C.x≠﹣3 D.x≤﹣36.下列命题是假命题的为()A.如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形B.锐角三角形的所有外角都是钝角C.内错角相等D.平行于同一直线的两条直线平行7.计算的结果估计在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间8.如图,将一些形状相同的小五角星按图中所规放,据此规律,第10个图形有()个五角星.A .120B .121C .99D .1009.某班的同学想测量一教楼AB 的高度,如图,大楼前有一段斜坡BC ,已知BC 的长为16米,它的坡度i =1:,在离C 点45米的D 处,测得以教楼顶端A 的仰角为37°,则一教楼AB 的高度约为( )米.(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)A .44.1B .39.8C .36.1D .25.910.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是圆的直径,若∠CAB =25°,则∠P 的度数为( )A .50°B .65°C .25°D .75°11.关于x 的方程的解为非正数,且关于x 的不等式组无解,那么满足条件的所有整数a 的和是( )A .﹣19B .﹣15C .﹣13D .﹣912.已知点A (﹣,y 1),B (﹣1,y 2),C (,y 3)均在函数y =的图象上,y 1、y 2、y 3则的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 3<y 1二.填空题(满分24分,每小题4分)13.将数12000000科学记数法表示为 .14.(2018﹣π)0+(﹣1)2017=15.中秋节是我国四大传统文化节日之一,为每年的农历八月十五,自古以来都有赏月吃月饼的习俗,重庆某大型超市为了了解市民对“云腿”月饼的喜好程度,特意在三峡广场做了试吃及问卷调查活动,将市民对“云腿”月饼的喜好程度分为“A非常喜欢”、“B比较喜欢”、“C感觉一般”、“D不太喜欢”四个等级,并将四个等级分别计分为:A等级10分,B等级8分,C等级5分,D等级2分,根据调查结果绘制出如图所示的条形统计图,请问喜好“云腿”程度的平均分是分.16.如图,点A、B、C在半径为2的⊙O上,四边形OABC是菱形,那么由和弦BC所组成的弓形面积是.17.一辆客车和一辆货车沿着同一条线路以各自的速度匀速从甲地行驶到乙地,货车出发3小时后客车再出发,客车行驶一段时间后追上货车并继续向乙地行驶,客车到达乙地休息1小时后以原速按原路匀速返回甲地,途中与货车相遇.客车和货车之间的距离y(千米)与客车出发的时间x(小时)之间的关系的部分图象如图所示.当客车返回与货车相遇时,客车与甲地相距千米.18.中粮食堂常用1000斤优质大米和200斤优质小米,采购员到米店后发现米店正在促销“大米1元1斤,每购10斤送1斤小米(不足10斤部分不送),小米4.5元1斤”,采购员至少要付元钱才能买够晚饭需用的米.三.解答题(满分16分,每小题8分)19.(8分)如图,直线AB∥CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.20.(8分)为更好的了解中学生课外阅读的情况,学校团委将初一年级学生一学期阅读课外书籍量分为A(3本以内)、B(3﹣﹣6本)、C(6﹣﹣10本)、D(10本以上)四种情况进行了随机调查,并根据调查结果制成了如下两幅不完整的统计图.请结合统计图所给信息解答上列问题:(1)在扇形统计图中C所占的百分比是多少?(2)请将折线统计图补充完整;阅读情况男:女:(3)学校团委欲从课外阅读量在10本以上的同学中随机邀请两位参加学校举办的“书香致远墨卷至恒”主题读书日的形象大使,请你用列表法或画树状图的方法,求所选出的两位同学恰好都是女生的四.解答题(满分50分,每小题10分)21.(10分)化简下列各式:(1)(2a﹣b)2﹣(4a+b)(a﹣b);(2)÷(+x﹣1).22.(10分)如图,在平面直角坐标系中,直线l1与x轴交于点B,与y轴交于点A(0,6),tan∠OBA=,直线OC与直线l1点相交于点C,且S△BOC=6.(1)求直线l1的解析式和点C的坐标;(2)点D是点B关于y轴的对称点,将直线OC沿y轴向下平移,记为直线l2,若直线l 2经过点D,与直线l1交于点E,求△ADE的面积.23.(10分)如图,有一块矩形铁皮(厚度不计),长10分米,宽8分米,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.(1)若无盖方盒的底面积为48平方分米,那么铁皮各角应切去边长是多少分米的正方形?(2)若要求制作的无盖方盒的底面长不大于底面宽的3倍,并将无盖方盒内部进行防锈处理,侧面每平方分米的防锈处理费用为0.5元,底面每平方分米的防锈处理费用为2元,问铁皮各角切去边长是多少分米的正方形时,总费用最低?最低费用为多少元?24.(10分)已知:如图,平行四边形ABCD中,AC,BD交于点O,AE⊥BD于点E,CF⊥BD 于点F.求证:OE=OF.25.(10分)对于一个三位正整数P,满足各个数位上的数字都不为零,它的百位数字减去十位数字的差等于十位数字减去个位数字的差,那么称这个数P为“均衡数”,对于任意一个“均衡数”,将它的前两位数加上后两位数所得的和记为m;将它的百位数字和个位数字构成的两位数加上交换这个两位数所得到的新两位数的和记为n;把m与n的差除以9所得结果记为:F(P).例如P=135,因为1﹣3=3﹣5,所以135是一个“均衡数”,所以m=13+35=48,n=15+51=66,则F(P)==﹣2.(1)计算:F(147),F(852);(2)若s、t都是“均衡数”其中s=10x+y+601,t=10m+n+300,(0≤x≤9,0≤y≤8,0≤m≤9,1≤n≤9,x,y,m,n都是整数),规定k=,当2F(s)+F(t)=﹣1时,求k的最小值.五.解答题(共1小题,满分12分,每小题12分)26.(12分)如图,已知与抛物线C1过A(﹣1,0)、B(3,0)、C(0,﹣3).(1)求抛物线C1的解析式.(2)设抛物线的对称轴与x轴交于点P,D为第四象限内的一点,若△CPD为等腰直角三角形,求出D点坐标.(3)在(2)的前提下将抛物线C1沿x轴上方且平行于x轴的某条直线翻着得抛物线C2,能否存在C2使其过点D,若能,求出满足条件的C2的解析式;若不能,请说出理由.参考答案一.选择题1.解:根据倒数的定义得:﹣8×(﹣)=1,因此﹣8的倒数是﹣.故选:C.2.解:(﹣x3)2=x6,故选:C.3.解:∵两个相似三角形的周长比为4:9,∴两个相似三角形的相似比为4:9,∴两个相似三角形的面积比为16:81,故选:D.4.解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:B.5.解:根据题意得:x+3≥0,解得:x≥﹣3.故选:B.6.解:A.如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形,是真命题;B.锐角三角形的所有外角都是钝角,是真命题;C.内错角相等,是假命题;D.平行于同一直线的两条直线平行,是真命题;故选:C.7.解:原式=4×+2=4+2,2=∵4<<5,∴8<4+2<9.故选:C.8.解:第1个图形中小五角星的个数为3;第2个图形中小五角星的个数为8;第3个图形中小五角星的个数为15;第4个图形中小五角星的个数为24;则知第n个图形中小五角星的个数为n(n+1)+n.故第10个图形中小五角星的个数为10×11+10=120个,故选:A.9.解:延长AB交直线DC于点F.∵在Rt△BCF中,=i=1:,∴设BF=k,则CF=k,BC=2k.又∵BC=16,∴k=8,∴BF=8,CF=8.∵DF=DC+CF,∴DF=45+8.∵在Rt△ADF中,tan∠ADF=,∴AF=tan37°×(45+8)≈44.13(米),∵AB=AF﹣BF,∴AB=44.13﹣8≈36.1米.故选:C.10.解:∵PA、PB是⊙O的切线,A、B为切点,∴PA=PB,CA⊥PA,∴∠PAB=∠PBA,∠CAP=90°,∴∠PAB=90°﹣∠CAB=90°﹣25°=65°,∴∠PBA=65°,∴∠P=180°﹣65°﹣65°=50°.故选:A.11.解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到≤0,且≠﹣1,解得:a<1且a≠﹣2,不等式组整理得:,由不等式组无解,得到<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选:C.12.解:∵﹣2k2﹣9<0,∴图象在第二、四象限,每个象限内y随x的增大而增大,∵﹣>﹣1,则y1>y2>0,∵C点在第四象限,故y3<0,∴y3<y2<y1.故选:B.二.填空题(共6小题,满分24分,每小题4分)13.解:12 000 000=1.2×107,故答案是:1.2×107,14.解:原式=1﹣1=0.故答案为:0.15.解:根据题意知喜好“云腿”程度的平均分是=7.4(分),故答案为:7.4.16.解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2,∴OB =OA =OC =2,又四边形OABC 是菱形,∴OB ⊥AC ,OD =OB =1,在Rt △COD 中利用勾股定理可知:CD ==,AC =2CD =2,∵sin ∠COD ==, ∴∠COD =60°,∠AOC =2∠COD =120°,∴S 菱形ABCO =OB ×AC =×2×2=2,S 扇形AOC ==,则由和弦BC 所组成的弓形面积=(S 扇形AOC ﹣S 菱形ABCO )=(﹣2)=.故答案为:.17.解:设货车的速度为a 千米/小时,客车的速度为b 千米/小时,则3a =270,(3+9)a =9b ,得a =90,b =120,∴甲乙两地的距离为19×120=2280,设客车返回与货车相遇时的时刻为t 小时,则90(t +3)+(t ﹣19﹣1)×120=2280,解得,t =21,∴当客车返回与货车相遇时,客车与甲地的距离为:2280﹣120×(21﹣19﹣1)=2160千米,故答案为:2160.18.解:设采购员要付x 元钱才能买够晚饭需用的米,依题意有≥200﹣1000÷10,解得x≥1450.答:采购员至少要付1450元钱才能买够晚饭需用的米.故答案为:1450.三.解答题(共2小题,满分16分,每小题8分)19.解:∵AB∥CD,∠1=68°,∴∠1=∠QPA=68°.∵PM⊥EF,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.20.解:(1)在扇形统计图中C所占的百分比是1﹣20%﹣52%﹣6%=22%;(2)∵被调查的总人数为(4+6)÷20%=50人,∴C类女生人数为50×22%﹣5=6人、D类女生人数为50×6%﹣1=2人,补全图形如下:(3)列表如下:由树状图或列表法知,随机抽取两名学生做形象大使共有6种可能人,恰好抽到两位女生的有2种,因此恰好抽到的两位都是女生的概率是=.四.解答题(共5小题,满分50分,每小题10分)21.解:(1)(2a﹣b)2﹣(4a+b)(a﹣b)=4a2﹣4ab+b2﹣4a2+3ab+b2=﹣ab+2b2;(2)÷(+x﹣1)=====.22.解:∵tan∠OBA=,且A(0,6),∴OB=4,∴B(4,0)设AB解析式y=kx+b∴,解得:的解析式:y=﹣x+6,∴直线I1设C(a,﹣a+6),=6,∵S△BOC∴×4×[﹣(﹣a+6)]=6,解得:a=2,∴C(6,﹣3);(2)∵点D是点B关于y轴的对称,∴D(﹣4,0),∵C(6,﹣3),∴直线OC的解析式为:y=﹣x,∵将直线OC沿y轴向下平移得到直线DE,∴设直线DE的解析式为:y=﹣x+n,把D(﹣4,0)代入得,0=﹣×(﹣4)+n,∴n=﹣2,∴直线DE的解析式为:y=﹣x﹣2,∴直线DE与y轴的解得为(0,﹣2),解得,∴△ADE的面积=×4×(6+2)+×8×(6+2)=48.23.解:(1)设铁皮各角应切去边长是x分米的正方形,则无盖方盒的底面是长为(10﹣2x)分米、宽为(8﹣2x)分米的矩形,由题意得:(10﹣2x)(8﹣2x)=48,整理得:x2﹣9x+8=0,解得:x1=1,x2=8.∵8﹣2x>0,∴x<4,∴x=1.答:铁皮各角应切去边长是1分米的正方形.(2)设铁皮各角切去边长是m分米的正方形,防锈处理所需总费用为w元,∵制作的无盖方盒的底面长不大于底面宽的3倍,∴10﹣2m≤3(8﹣2m),解得:m≤.根据题意得:w=0.5×2×[m(10﹣2m)+m(8﹣2m)]+2(10﹣2m)(8﹣2m)=4m2﹣54m+160,∴当0<m≤时,w的值随m值的增大而减小,∴当m=时,w取得最小值,最小值为20.答:当铁皮各角切去边长是分米的正方形时,总费用最低,最低费用为20元.24.证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEO=∠CFO=90°,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF.25.解:(1)F(147)=;F(852)=;(2)∵s=10x+y+601,t=10m+n+300,(0≤x≤9,0≤y≤8,0≤m≤9,1≤n≤9,x,y,m,n都是整数),∴F(s)=,F(t)=,∵2F(s)+F(t)=﹣1∴,∴11m﹣10n=26﹣22x+20y,∵k=,∴,∵s是“均衡数”,∴y =2x ﹣7,∴,∵0≤x ≤9,∴当x =9时,k 有最小值为:k =﹣. 五.解答题(共1小题,满分12分,每小题12分)26.解:(1)设抛物线解析式为y =ax 2+bx +c ,将A 、B 、C 三点代入,可得解析式为y =x 2﹣2x ﹣3(2)如图,C (0,﹣3),P (1,0)当点P 为顶点时,CP =PD可证△PED 1≌△OPC ,OP =ED 1=1,OC =PE =3∴D 1(4,﹣1)当点C 为顶点时,CP =CD可证△CFD 2≌△OPC ,OP =CF =1,OC =D 2F =3∴D 2(3,﹣4)当点D 为顶点时,DP =CDD 3为CD 1的中点,D 3(2,﹣2)(3)设直线为y =a ,点C 与顶点关于直线y =a 的对称点坐标为(0,2a +3)和(1,2a +4) 设抛物线解析式为y =﹣(x ﹣1)2+2a +4若抛物线C 2经过D 1(4,﹣1),代入可得a =2 C 2为y =﹣(x ﹣1)2+8 若抛物线C 2经过D 2(3,﹣4),代入可得a =2 C 2为y =﹣(x ﹣1)2+8若抛物线C 2经过D 3(2,﹣2),代入可得a = ∵a >0 ∴舍去∴综上所述,C 2为y =﹣(x ﹣1)2+8。

2019-2020年高三第二次调研考试数学文试题 含答案(可打印修改)

2019-2020年高三第二次调研考试数学文试题 含答案(可打印修改)

2019-2020年高三第二次调研考试数学文试题 含答案本卷分选择题非选择题两部分,共4页,满分150分.考试用时间120分钟.注意事项:1.考生务必将自己的姓名、班级、学校用蓝、黑墨水钢笔签字笔写在答题卷上;2.选择题、填空题每小题得出答案后,请将答案填写在答题卷相应指定位置上。

答在试题卷上不得分;3.考试结束,考生只需将答题卷交回.4. 参考公式:锥体的体积公式,其中是锥体的底面积,是锥体的高.正棱锥的侧面积公式:,是底面周长,是斜高.一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U={0,1,2,3,4,5},集合A={2,4},B=,则集合A .{0,4,5,2}B .{0,4,5}C .{2,4,5}D .{1,3,5}2.已知为虚数单位,则=( )A -B -1CD 13.设,则这四个数的大小关系是( )0.320.30.3log 2,log 3,2,0.3a b c d ====A . B . C. D.4.若方程表示双曲线,则k 的取值范围是()A. B. C. D. 或5.某几何体的三视图如图所示(俯视图是正方形,正视图和左视图是两个全等等腰三角形)根据图中标出的数据,可得这个几何体的表面积为( )A .B .C .D .12 6.已知回归直线斜率的估计值为1.23,样本点的中心为点(4,5),则回归直线的方程为( )A.=1.23x +4B.=1.23x +5C .=1.23x +0.08D .=0.08x +1.237. 设不等式组表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原002x y x y ≥⎧⎪≥⎨⎪+≤⎩点的距离大于的概率是( )A . B . C .D .8. 中,角、、所以的边为、、, 若,,面积,则( )A. B. C. D.9.设{a n }(n ∈N *)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值分.解答应写出文字说明,证明过程或演算步骤.(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中间的矩形的高;(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.18.(本小题满分14分)如图,已知⊙所在的平面,是⊙的直径,,C是⊙上一点,且,.(1) 求证:;(2) 求证:;(3)当时,求三棱锥的体积.19.(本小题满分14分)椭圆的离心率为,两焦点分别为,点M是椭圆C上一点,的周长为16,设线段MO(O为坐标原点)与圆交于点N,且线段MN长度的最小值为.(1)求椭圆C以及圆O的方程;(2)当点在椭圆C上运动时,判断直线与圆O的位置关系.20.(本小题满分14分)已知函数.(1)判断奇偶性, 并求出函数的单调区间;(2)若函数有零点,求实数的取值范围.21.(本小题满分14分)设等差数列的公差,等比数列公比为,且,,(1)求等比数列的公比的值;(2)将数列,中的公共项按由小到大的顺序排列组成一个新的数列,是否存在正整数(其中)使得和都构成等差数列?若存在,求出一组的值;若不存在,请说明理由.韶关市xx高三年级第一次调研(期末)测试数学试题(文科)参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.DCBAB CDDCA二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11. 12.13. (2分),(3分)14.15. 内切三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分12分)函数()的部分图像如右所示.(1)求函数的解析式;(2)设,且,求的值解:(1)∵由图可知:函数的最大值为,………2分且∴,最小正周期………………………………………………………4分∴故函数的解析式为. …………………………………6分(2),………………………………………………………8分∴,∵,∴,…………………………………………………………10分∴ …………………………………………………………………12分17.(本题满分12分)高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中间的矩形的高;(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.解.(1)分数在之间的频数为,频率为,高一(1)班参加校生物竞赛人数为.………2分所以分数在之间的频数为………4分频率分布直方图中间的矩形的高为.………6分(2)设至少有一人分数在之间为事件A将之间的人编号为,之间的人编号为,在之间的任取两人的基本事件为:,,,,,. 共个,,,,,,,………………………………………………………………………………………………..9分其中,至少有一个在之间的基本事件有个……………………………………10分根据古典概型概率计算公式,得………………………………………11分答:至少有一人分数在之间的概率………………………………………12分18.(本小题满分14分)如图,如图,已知⊙所在的平面,是⊙的直径,C是⊙上一点,且,.(1) 求证:;(2) 求证:;(3)当时,求三棱锥的体积.[网]16.如图所示,一个带正电的粒子沿x轴正向射人匀强磁场中,它所受到的洛伦兹力方向.沿Y轴正向,则磁场方向A.一定沿z轴正向B.一定沿z轴负向.C.一定在xOy平面内D.一定在xoz平面内,[来二、双项选题(共9个小题,每题6分,共54分。

2019年数学第二次模拟考试试题(答案及评分标准)

2019年数学第二次模拟考试试题(答案及评分标准)

2018—2019学年第二学期第二次模拟测试数学(学科)试题参考答案及评分标准题号 1 2 3 4 5 6 7 8 9 10 答案 CDCBBABCCA二.填空题 11. _____________ 12. 3 ; 13 .17; 14. x=4 ; 15.10; 16._____三、解答题(一)(本大题3小题,每小题6分,共18分) 17. 解:原式= 1312-+-- L L L 4分 = 1- L L L 6分 18. 解:原式 )1211()1(12-+--÷-+=x x x x x L L L 1分11)1(12-+÷-+=x x x xL L L 2分11)1(12+-•-+=x x x xL L L 3分11-=xL L L 4分2131313131313+=+-+=-==))((时,原式当x L L L 6分19.解:(1)如图所示,DE 即为所求. L L L 2分 (2)证明:∵DE 垂直平分AB∴DA=DB L L L 3分 ∴∠DBA=∠A=30° L L L 4分 ∵∠C=90°∴∠ABC=180°-∠C -∠A =180°- 90° -30°= 60°, ∴∠CBD=∠ABC -∠DBA =60°- 30°=30°∴∠CBD =∠DBA L L L 5分 ∴BD 平分∠ABC , 又∵DE ⊥AB ,DC ⊥BC ,∴DE=DC L L L 6分第一行每个“点”1分,共4分 第二行2分 432-π)3)(3(3-+x x四、解答题(二)(本大题3小题,每小题7分,共21分)20.解:(1)m = 30, n = 20 ;补充条形统计图如图所示;L L L 3分 (2)90° L L L 4分(3)被抽查的人数:15÷15%=100(人)全校不合格的人数:)(450100251510900人=++⨯L L L 6分答:估计这所学校本次听写比赛不合格的学生人数为450人。

上海市2019年中考数学真题与模拟题分类 专题18 图形的变化之解答题(2)(39道题)(解析版)(1)

上海市2019年中考数学真题与模拟题分类 专题18 图形的变化之解答题(2)(39道题)(解析版)(1)

专题18 图形的变化之解答题(2)参考答案与试题解析一.解答题(共39小题)1.(2019•宝山区一模)已知:如图,在△ABC中,AB=AC,点E、F在边BC上,∠EAF=∠B.求证:BF•CE=AB2.【答案】证明:∵∠AEC=∠B+∠BAE=∠EAF+∠BAE=∠BAF,又∵AB=AC,∴∠B=∠C,∴△ABF∽△ECA,∴AB:CE=BF:AC,∴BF•EC=AB•AC=AB2.【点睛】此题考查了相似三角形的判定与性质.注意证得△ABF∽△ECA是解此题的关键.2.(2019•青浦区二模)如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边BC、AB于点D、E,联结AD.(1)如果∠CAD:∠DAB=1:2,求∠CAD的度数;(2)如果AC=1,tan∠B,求∠CAD的正弦值.【答案】解:(1)∵∠CAD:∠DAB=1:2∴∠DAB=2∠CAD在Rt△ABC中,∠CAD+∠DAB+∠DBA=90°∵DE垂直平分AB交边BC、AB于点D、E∴∠DAB=∠DBA∴∠CAD+∠DAB+∠DBA=∠CAD+2∠CAD+2∠CAD=90°解得,∠CAD=18°(2)在Rt△ABC中,AC=1,tan∠B,∴BC=2由勾股定理得,AB∵DE垂直平分AB交边BC、AB于点D、E∴BE=AE∵∠DAE=∠DBE∴在Rt△ADE中tan∠B=tan∠DAE∴DE∴由勾股定理得AD∴cos∠CAD∴sin∠CAD则∠CAD的正弦值为【点睛】本题主要是应用三角函数定义来解直角三角形,关键要运用锐角三角函数的概念及比正弦和余弦的基本关系进行解题.3.(2019•青浦区二模)如图,一座古塔AH的高为33米,AH⊥直线l,某校九年级数学兴趣小组为了测得该古塔塔刹AB的高,在直线l上选取了点D,在D处测得点A的仰角为26.6°,测得点B的仰角为22.8°,求该古塔塔刹AB的高.(精确到0.1米)【参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.5,sin22.8°=0.39,cos22.8°=092,tan22.8°=0.42】【答案】解:∵AH⊥直线l,∴∠AHD=90°,在Rt△ADH中,tan∠ADH,∴DH,在Rt△BDH中,tan∠BDH,∴DH,∴,解得:AB≈5.3m,答:该古塔塔刹AB的高为5.3m.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,正确的解直角三角形是解题的关键.4.(2019•浦东新区二模)如图1,一辆吊车工作时的吊臂AB最长为20米,吊臂与水平线的夹角∠ABC最大为70°,旋转中心点B离地面的距离BD为2米.(1)如图2,求这辆吊车工作时点A离地面的最大距离AH(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75);(2)一天,王师傅接到紧急通知,要求将这辆吊车立即开到40千米远的某工地,因此王师傅以每小时比平时快20千米的速度匀速行驶,结果提前20分钟到达,求这次王师傅所开的吊车速度.【答案】解:(1)根据题意,得AB=20,∠ABC=70°,CH=BD=2,在Rt△ACB中,∵∠ACB=90°,∴AC=AB•sin70°=20×0.94=18.8,∴AH=20.8.答:这辆吊车工作时点A离地面的最大距离AH为20.8米;(2)设这次王师傅所开的吊车的速度为每小时x千米,由题意,得,解得,x1=60,x2=﹣40,经检验:x1=60,x2=﹣40都是原方程的解,但x2=﹣40符合题意,舍去,答:这次王师傅所开的吊车的速度为每小时60千米.【点睛】本题是解直角三角形与分式方程应用的综合题,主要考查了解直角三角形,列分式方程解应用题,(1)题的关键是解直角三角形求出AC,(2)小题的关键是找出等量关系列出分式方程.5.(2019•长宁区二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是边AC的中点,CF ⊥BD,垂足为点F,延长CF与边AB交于点E.求:(1)∠ACE的正切值;(2)线段AE的长.【答案】解:(1)∵∠ACB=90°,∴∠ACE+∠BCE=90°,又∵CF⊥BD,∴∠CFB=90°,∴∠BCE+∠CBD=90°,∴∠ACE=∠CBD,∵AC=4且D是AC的中点,∴CD=2,又∵BC=3,在Rt△BCD中,∠BCD=90°.∴tan∠BCD,∴tan∠ACE=tan∠CBD;(2)过点E作EH⊥AC,垂足为点H,在Rt△EHA中,∠EHA=90°,∴tan A,∵BC=3,AC=4,在Rt△ABC中,∠ACB=90°,∴tan A,∴,设EH=3k,AH=4k,∵AE2=EH2+AH2,∴AE=5k,在Rt△CEH中,∠CHE=90°,∴tan∠ECA,∴CH k,∴AC=AH+CH k=4,解得:k,∴AE.【点睛】此题考查了解直角三角形,涉及的知识有:勾股定理,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.6.(2019•闵行区二模)如图,在△ABC中,AB=AC,BC=10,cos∠,点D是边BC的中点,点E在边AC上,且,AD与BE相交于点F.求:(1)边AB的长;(2)的值.【答案】解:(1)∵AB=AC,点D是边BC的中点,∴AD⊥BC,BD=DC BC=5,在Rt△ABD中,cos∠ABC,∴AB=13;(2)过点E作EH∥BC,交AD与点H,∵EH∥BC,,∴,∵BD=CD,∴,∵EH∥BC,∴.【点睛】本题考查的是等腰三角形的性质、解直角三角形、平行线分线段成比例定理,掌握等腰三角形的三线合一、余弦的定义是解题的关键.7.(2019•金山区二模)已知:如图,在Rt△ABC中,∠ACB=90°,D是边AB的中点,CE=CB,CD=5,sin∠.求:(1)BC的长.(2)tan E的值.【答案】解:(1)∵在Rt△ABC中,∠ACB=90,D是边AB的中点;∴CD AB,∵CD=5,∴AB=10,∵sin∠ABC,∴AC=6∴;(2)作EH⊥BC,垂足为H,∴∠EHC=∠EHB=90°∵D是边AB的中点,∴BD=CD AB,∠DCB=∠ABC,∵∠ACB=90°,∴∠EHC=∠ACB,∴△EHC∽△ACB,∴由BC=8,CE=CB得CE=8,∠CBE=∠CEB,∴解得EH,CH,BH=8∴tan∠CBE3,即tan E=3.【点睛】本题考查了解直角三角形,熟练运用直角三角函以及三角形相似是解题的关键.8.(2019•徐汇区二模)如图,已知⊙O的弦AB长为8,延长AB至C,且BC AB,tan C.求:(1)⊙O的半径;(2)点C到直线AO的距离.【答案】解:(1)过O作OD⊥AB于D,则∠ODC=90°,∵OD过O,∴AD=BD,∵AB=8,∴AD=BD=4,∵BC AB,∴BC=4,∴DC=4+4=8,∵tan C,∴OD=4,在Rt△ODA中,由勾股定理得:OA4,即⊙O的半径是4;(2)过C作CE⊥AO于E,则S△AOC,即,解得:CE=6,即点C到直线AO的距离是6.【点睛】本题考查了垂径定理,三角形的面积公式,勾股定理,解直角三角形等知识点,能求出AD、OD的长度是解此题的关键.9.(2019•包头模拟)如图,已知:Rt△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.【答案】解:(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△F AC,∴,即,解得CF;(2)如图,过点C作CH⊥AB于点H,∵AC=3,BC=4,∴AB=5,则CH,∴AH,EH=AE﹣AH,∴tan D=tan∠ECH.【点睛】本题主要考查解直角三角形与相似三角形的判定和性质,解题的关键是添加辅助线构造与∠D 相等的角,并熟练掌握相似三角形的判定与性质、勾股定理等知识点.10.(2019•黄浦区一模)如图,P点是某海域内的一座灯塔的位置,船A停泊在灯塔P的南偏东53°方向(本题参考数据sin53°≈0.80,cos53°的50海里处,船B位于船A的正西方向且与灯塔P相距海里.≈0.60,tan53°≈1.33.)(1)试问船B在灯塔P的什么方向?(2)求两船相距多少海里?(结果保留根号)【答案】解:(1)过P作PC⊥AB交AB于C,在Rt△APC中,∠C=90°,∠APC=53°,AP=50海里,∴PC=AP•cos53°=50×0.60=30海里,在Rt△PBC中,∵PB=20,PC=30,∴cos∠BPC,∴∠BPC=30°,∴船B在灯塔P的南偏东30°的方向上;(2)∵AC=AP•sin53°=50×0.8=40海里,BC PB=10,∴AB=AC﹣BC=(40﹣10)海里,答:两船相距(40﹣10)海里.【点睛】本题考查了解直角三角形的应用,解答本题的关键是理解方位角的定义,能利用三角函数值计算有关线段,难度一般.11.(2019•东阳市模拟)安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF 所在直线相交于水箱横截面⊙O的圆心O,⊙O的半径为0.2米,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB,垂足为B,OD⊥AD,垂足为D,AB=2米.(1)求支架BF的长;(2)求屋面AB的坡度.(参考数据:tan18°,tan32°,tan40°)【答案】解::(1)∵∠OAC=32°,OB⊥AD,∴tan∠OAB tan32°,∵AB=2m,∴,∴OB=1.24m,∵⊙O的半径为0.2m,∴BF=1.04m;(2)∵∠AOD=40°,OD⊥AD,∴∠OAD=50°,∵∠OAC=32°∴∠CAD=18°,∴AB的坡度为tan18°,【点睛】本题主要考查了解直角三角形的应用,解答本题的关键是求出角的度数,利用三角函数的知识即可求解,难度一般.12.(2019•松江区一模)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.【答案】解:(1)∵P为AC的中点,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=2,∵D是边AB的中点,P为AC的中点,∴点E是△ABC的重心,∴BE BP;(2)如图1,过点B作BF∥CA交CD的延长线于点F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,则CD=5,∴EF=8,∴,∴,∴,设CP=k,则P A=3k,∵PD⊥AB,D是边AB的中点,∴P A=PB=3k∴BC=2k,∴AB=2k,∵AC=4k,∴cos A;(3)∵∠ACB=90°,D是边AB的中点,∴CD=BD AB,∵PB2=2CD2,∴BP2=2CD•CD=BD•AB,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,∴△DPE∽△DCP,∴PD2=DE•DC,∵DE=3,DC=5,∴PD.【点睛】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的作出辅助线是解题的关键.13.(2019•松江区一模)如图,已知△ABC中,AB=AC=5,cos A.求底边BC的长.【答案】解:过点B作BD⊥AC,垂足为点D,在Rt△ABD中,cos A,∵cos A,AB=5,∴AD=AB•cos A=53,∴BD4,∵AC=AB=5,∴DC=2,∴BC2.【点睛】本题考查了解直角三角形,勾股定理,等腰三角形的性质,正确的作出辅助线是解题的关键.14.(2019•靖江市一模)2018年首届“进博会”期间,上海对周边道路进行限速行驶.道路AB段为监测区,C、D为监测点(如图).已知C、D、B在同一条直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°.(1)求道路AB段的长;(精确到1米)(2)如果AB段限速为60千米/时,一辆车通过AB段的时间为90秒,请判断该车是否超速,并说明理由.(参考数据:sin35°≈0.57358,cos35°≈0.8195,tan35°≈0.7)【答案】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB1395 米;(2)∵AB=1395,∴该车的速度55.8km/h<60千米/时,故没有超速.【点睛】此题主要考查了解直角三角形的应用,关键是掌握三角函数定义.15.(2019•松江区一模)某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)【答案】解:在Rt△APN中,∠NAP=45°,∴P A=PN,在Rt△APM中,tan∠MAP,设P A=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP,∵∠MBP=31°,AB=5,∴0.6,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.【点睛】此题主要考查了解直角三角形的应用﹣仰角俯角问题,根据已知直角三角形得出AP的长是解题关键.16.(2019•濉溪县二模)如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.【点睛】此题主要考查了解直角三角形的应用,熟练应用锐角三角函数关系是解题关键.17.(2019•随县模拟)如图是某品牌自行车的最新车型实物图和简化图,它在轻量化设计、刹车、车篮和座位上都做了升级.A为后胎中心,经测量车轮半径AD为30cm,中轴轴心C到地面的距离CF为30cm,座位高度最低刻度为155cm,此时车架中立管BC长为54cm,且∠BCA=71°.(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.88)(1)求车座B到地面的高度(结果精确到1cm);(2)根据经验,当车座B'到地面的距离B'E'为90cm时,身高175cm的人骑车比较舒适,此时车架中立管BC拉长的长度BB'应是多少?(结果精确到1cm)【答案】解:(1)设AC于BE交于H,∵AD⊥l,CF⊥l,HE⊥l,∴AD∥CF∥HE,∵AD=30cm,CF=30cm,∴AD=CF,∴四边形ADFC是平行四边形,∵∠ADF=90°,∴四边形ADFC是矩形,∴HE=AD=30cm,∵BC长为54cm,且∠BCA=71°,∴BH=BC•sin71°=51.3cm,∴BE=BH+EH=BH+AD=51.3+30≈81cm;答:车座B到地面的高度是81cm;(2)如图所示,B'E'=96.8cm,设B'E'与AC交于点H',则有B'H'∥BH,∴△B'H'C∽△BHC,得.即,∴B'C=63cm.故BB'=B'C﹣BC=63﹣54=9(cm).∴车架中立管BC拉长的长度BB'应是9cm.【点睛】本题考查了相似三角形的应用、切线的性质解解直角三角形的应用,解题的难点在于从实际问题中抽象出数学问题,难度较大.18.(2019•徐汇区校级一模)如图,某小区A栋楼在B栋楼的南侧,两楼高度均为90m,楼间距为MN.春分日正午,太阳光线与水平面所成的角为55.7°,A栋楼在B栋楼墙面上的影高为DM;冬至日正午,太阳光线与水平面所成的角为30°,A栋楼在B栋楼墙面上的影高为CM.已知CD=44.5m.(1)求楼间距MN;(2)若B号楼共30层,每层高均为3m,则点C位于第几层?(参考数据:tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)【答案】解:(1)过点P作PE∥MN,交B栋楼与点E,则四边形PEMN为矩形.∴EP=MN由题意知:∠EPD=55.7°∠EPC=30°.在Rt△ECP中,EC=tan∠EPC×EP=tan30°×EP EP≈0.58EP,在Rt△EDP中,ED=tan∠EPD×EP=tan55.7°×EP≈1.47EP,∵CD=ED﹣EC,∴1.47EP﹣0.58EP=44.5∴EP=MN=50(m)答:楼间距MN为50m.(2)∵EC=0.58EP=0.58×50=29(m)∴CM=90﹣29=61(m)∵61÷3≈20.3≈21(层)答:点C位于第21层.【点睛】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.19.(2019•浦东新区一模)“雪龙”号考察船在某海域进行科考活动,在点A处测得小岛C在它的东北方向上,它沿南偏东37°方向航行2海里到达点B处,又测得小岛C在它的北偏东23°方向上(如图所示),求“雪龙”号考察船在点B处与小岛C之间的距离.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40, 1.4, 1.7)【答案】解:过点A作AM⊥BC,垂足为M.由题意知:AB=2海里,∠NAC=∠CAE=45°,∠SAB=37°,∠DBC=23°,∵∠SAB=37°,DB∥AS,∴∠DBA=37°,∠EAB=90°﹣∠SAB=53°.∴∠ABC=∠ABD+∠DBC=37°+23°=60°,∠CAB=∠EAB+∠CAE=53°+45°=98°.∴∠C=180°﹣∠CAB﹣∠ABC=180°﹣98°﹣60°=22°.在Rt△AMB中,∵AB=2海里,∠ABC=60°,∴BM=1海里,AM海里.在Rt△AMC中,tan C,∴CM 4.25(海里)∴CB=CM+BM=4.25+1=5.25(海里)答:“雪龙”号考察船在点B处与小岛C之间的距离为5.25海里.【点睛】本题主要考查了解直角三角形的应用﹣方向角问题.解决本题的关键是作垂线构造直角三角形,利用直角三角形的边角间关系求解.20.(2019•宝山区一模)地铁10号线某站点出口横截面平面图如图所示,电梯AB的两端分别距顶部9.9米和2.4米,在距电梯起点A端6米的P处,用1.5米的测角仪测得电梯终端B处的仰角为14°,求电梯AB的坡度与长度.参考数据:sin14°≈0.24,tan14°≈0.25,cos14°≈0.97.【答案】解:作BC⊥P A交P A的延长线于点C,作QD∥PC交BC于点D,由题意可得,BC=9.9﹣2.4=7.5米,QP=DC=1.5米,∠BQD=14°,则BD=BC﹣DC=7.5﹣1.5=6米,∵tan∠BQD,∴tan14°,即0.25,解得,ED=18,∴AC=ED=18,∵BC=7.5,∴tan∠BAC,即电梯AB的坡度是5:12,∵BC=7.5,AC=18,∠BCA=90°,∴AB.19.5,即电梯AB的坡度是5:12,长度是19.5米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.21.(2019•青浦区一模)如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C处?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin67°,cos67°,tan67°)【答案】解:过点A作AH⊥BC,垂足为点H.由题意,得∠ACH=67°,∠B=37°,AB=20.在Rt△ABH中,∵sin B,∴AH=AB•sin∠B=20×sin37°≈12,∵cos B,∴BH=AB•cos∠B=20×cos37°≈16,在Rt△ACH中,∵tan∠ACH∠,∴CH5,∵BC=BH+CH,∴BC≈16+5=21.∵21÷25<1,所以,巡逻艇能在1小时内到达渔船C处.【点睛】本题考查了解直角三角形的应用,解答本题的关键是将一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(2019•寿光市模拟)某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.【答案】解:由题意可得,∠AEC=30°,∠ADC=60°,∠BDC=45°,CH=DG=EF=1.5米,FG=ED=15米,∵∠ADC=∠AED+∠EAD,∴∠EAD=30°,∴∠EAD=∠AED,∴ED=AD,∴AD=15米,∵∠ADC=60°,∠ACD=90°,∴∠DAC=30°,∴DC米,AC米,∴AH=AC+CH米,∵∠BDC=45°,∠BCD=90°,∴∠DBC=45°,∴∠BDC=∠DBC,∴BC=CD米,∴AB=AC﹣BC米,即AH米,AB米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用特殊角的三角函数和数形结合的思想解答.23.(2019•静安区一模)计算:【答案】解:原式=3﹣2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.(2019•射阳县一模)“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据: 1.41, 1.73,2.45, 2.65)【答案】解:(1)过C作CG⊥AB于G,过D作DH⊥AB于H,∵AC=20,∠CAB=60°,∴AG AC=10,CG AG=10,∵BC=BD﹣CD=30,∵CG⊥AB,DH⊥AB,∴CG∥DH,∴△BCG∽△BDH,∴,∴,∴DH23(厘米);∴支点D到滑轨MN的距离为23厘米;(2)过C′作C′S⊥MN于S,∵A′C′=AC=20,∠C′A′S=45°,∴A′S=C′S=10,∴BS10,∴A′B=1010,∵BG10,∴AB=10+10,∴AA′=A′B﹣AB≈6(厘米),∴滑块A向左侧移动的距离是6厘米.【点睛】本题考查解直角三角形,勾股定理、相似三角形的判定和性质,解题的关键是理解题意,灵活运用所学知识解决问题.25.(2019•闵行区一模)如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249, 1.4142.【答案】解:过点D作DH⊥AB,垂足为点H,由题意,得HB=CD=3,EC=15,HD=BC,∠ABC=∠AHD=90°,∠ADH=32°,设AB=x,则AH=x﹣3,在Rt△ABE中,由∠AEB=45°,得tan∠AEB=tan45°.∴EB=AB=x.∴HD=BC=BE+EC=x+15,在Rt△AHD中,由∠AHD=90°,得tan∠ADH,即得tan32°,解得:x32.99∴塔高AB约为32.99米.【点睛】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.26.(2019•嘉定区一模)计算:2|1﹣sin60°|.【答案】解:2|1﹣sin60°|=2(1)=2=2=2.【点睛】本题考查了特殊角三角函数值、实数的混合运算;熟记特殊角三角函数值是解题关键.27.(2019•无锡一模)某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i=1:2.4,AB⊥BC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC=13°(此时点B、C、D在同一直线上).(1)求这个车库的高度AB;(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).(参考数据:sin13°≈0.225,cos13°≈0.974,tan13°≈0.231,cot13°≈4.331)【答案】解:(1)由题意,得:∠ABC=90°,i=1:2.4,在Rt△ABC中,i,设AB=5x,则BC=12x,∴AB2+BC2=AC2,∴AC=13x,∵AC=13,∴x=1,∴AB=5,答:这个车库的高度AB为5米;(2)由(1)得:BC=12,在Rt△ABD中,cot∠ADC,∵∠ADC=13°,AB=5,∴DB=5cot13°≈21.655(m),∴DC=DB﹣BC=21.655﹣12=9.655≈9.7(米),答:斜坡改进后的起点D与原起点C的距离为9.7米.【点睛】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.28.(2019•虹口区一模)计算:【答案】解:原式=3+2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.29.(2019•金山区一模)计算:cos245°tan260°﹣cot45°•sin30°.【答案】解:原式=()2()2﹣11+3=2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.30.(2019•长宁区一模)计算:60°.【答案】解:原式()2().【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.31.(2019•崇明区一模)计算:cos245°cot30°•sin60°.【答案】解:原式=()2.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.32.(2019•普陀区一模)如图,小山的一个横断面是梯形BCDE,EB∥DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)【答案】解:延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,∵斜坡DE的坡长为13米,坡度i=1:2.4,∴设EH=5x,DH=12x,∵EH2+DH2=DE2,∴(5x)2+(12x)2=132,∴x=1,∴EH=5,DH=12,∵EB∥DC,∴∠ABE=∠AGH=90°,∵∠AEB=45°,∴AB=BE,∴HG=AB,∴FG=5+12+AB,AG=AB+5,∵∠F=31°,∴tan F=tan31°0.6,∴AB=13米,答:铁塔AB的高度是13米.【点睛】本题考查了解直角三角形的应用﹣仰角俯角问题,解直角三角形的应用﹣坡度坡角问题,矩形的性质,掌握的作出辅助线是解题的关键.33.(2019•长宁区一模)如图,小明站在江边某瞭望台DE的顶端D处,测得江面上的渔船A的俯角为40°.若瞭望台DE垂直于江面,它的高度为3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE的顶端D到江面AB的距离;(2)求渔船A到迎水坡BC的底端B的距离.(结果保留一位小数)【答案】解:(1)延长DE交AB于点F,过点C作CG⊥AB,垂足为点G,由题意可知CE=GF=2,CG=EF在Rt△BCG中,∠BGC=90°,∴i,设CG=4k,BG=3k,则BC5k=10,∴k=2,∴BG=6,∴CG=EF=8,∵DE=3,∴DF=DE+EF=3+8=11(米),答:瞭望台DE的顶端D到江面AB的距离为11米;(2)由题意得∠A=40°,在Rt△ADF中,∠DF A=90°,∴cot A,∴ 1.19,∴AF≈11×1.19=13.09(m),∴AB=AF﹣BG﹣GF=5.09≈5.1(米),答:渔船A到迎水坡BC的底端B的距离为5.1米.【点睛】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.34.(2019•黄浦区一模)计算:2cos245°tan45°.【答案】解:原式=2×()21=21=11=46.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.35.(2019•宝山区一模)计算:sin30°tan30°+cos60°cot30°.【答案】解:原式.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.36.(2019•金山区一模)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高24米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:2.求(1)背水坡AB的长度.(2)坝底BC的长度.【答案】解:(1)分别过点A、D作AM⊥BC,DN⊥BC,垂足分别为点M、N,根据题意,可知AM=DN=24(米),MN=AD=6(米),在Rt△ABM中,∵,∴BM=72(米),∵AB2=AM2+BM2,∴AB24(米),答:背水坡AB的长度为24米;(2)在Rt△DNC中,,∴CN=48(米),∴BC=72+6+48=126(米),答:坝底BC的长度为126米.【点睛】此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.37.(2019•普陀区一模)计算:4sin45°+cos230°.【答案】解:原式=4()2=22().【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.38.(2019•杨浦区一模)如图,AD是△ABC的中线,tan B,cos C,AC.求:(1)BC的长;(2)∠ADC的正弦值.【答案】解:(1)如图,作AH⊥BC于H.在Rt△ACH中,∵cos C,AC,∴CH=1,AH1,在Rt△ABH中,∵tan B,∴BH=5,∴BC=BH+CH=6.(2)∵BD=CD,∴CD=3,DH=2,AD在Rt△ADH中,sin∠ADH.∴∠ADC的正弦值为.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考中考常考题型.39.(2019•杨浦区三模)如图,已知某船向正东方向航行,在点A处测得某岛C在其北偏东60°方向上,前进8海里处到达点B处,测得岛C在其北偏东30°方向上.已知岛C周围6海里内有一暗礁,问:如果该船继续向东航行,有无触礁危险?请说明你的理由.【答案】解:作CD⊥AB于点D,由题意可知,∠CAB=30°,∠CBD=60°,∴∠ACB=30°,在Rt△BCD中,∵∠BDC=90°,∠CBD=60°,∴∠BCD=30°,∴∠ACB=∠BCD.∴△CDB∽△ADC.∴∵AB=CB=8∴BD=4,AD=12.。

2019届黑龙江省大庆市高三第二次模拟考试数学(理)试题

2019届黑龙江省大庆市高三第二次模拟考试数学(理)试题

2019届黑龙江省大庆市高三第二次模拟考试数学(理)试题一、单选题1.已知集合,,则( )A.B.C.D.【答案】D【解析】解一元二次不等式求得集合的具体范围,然后求两个集合的交集,从而得出正确选项【详解】由解得,故.故选D.【点睛】本小题主要考查集合交集的概念及运算,考查一元二次不等式的解法,属于基础题. 2.若复数满足(其中是虚数单位),则()A.2 B.4 C.D.【答案】A【解析】利用复数乘法和除法运算,化简为的形式,再求的模.【详解】依题意,故.故选A.【点睛】本小题主要考查复数的乘法运算,考查复数的除法运算,考查复数的模,属于基础题.3.设命题在定义域上为减函数;命题为奇函数,则下列命题中真命题是( )A.B.C.D.【答案】C【解析】分别判断命题的真假性,由此判断出正确的选项.【详解】对于命题,的减区间是和,不能写成并集,故命题为假命题.对于命题,为奇函数,故命题为真命题.所以为真命题,故选C.【点睛】本小题主要考查含有简单逻辑连接词命题真假性的判断,还考查了函数的单调性,三角函数的诱导公式以及三角函数的奇偶性,属于中档题.4.设,满足约束条件则的最小值是( )A.-7 B.-6 C.-5 D.-3【答案】B【解析】试题分析:作出可行域:,并作出直线,平移到经过点E(3,4)时,目标函数取得最小值为:;故选B.【考点】线性规划.5.在等差数列中,,是方程的两个实根,则( )A.B.-3 C.-6 D.2【答案】A【解析】利用韦达定理列出,的关系式,然后利用等差数列的性质求得所求表达式的值.【详解】由于,是方程的两个实根,所以,所以.故选A.【点睛】本小题主要考查等差数列的基本性质,考查一元二次方程根与系数关系,属于中档题. 6.已知,,,则,,的大小关系为()A.B.C.D.【答案】C【解析】利用对数运算的公式化简为形式相同的表达式,由此判断出的大小关系.【详解】依题意得,,,而,所以,故选C.【点睛】本小题主要考查对数的运算公式,考查化归与转化的数学思想方法,属于基础题. 7.我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:“幂势既同,则积不容异”.意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有同高的三棱锥和圆锥满足祖暅满足祖暅原理的条件.若圆锥的侧面展开图是半径为2的半圆,由此推算三棱锥的体积为()A.B.C.D.【答案】D【解析】根据圆锥侧面展开图是半径为的半圆,计算出圆锥的体积,也即是三棱锥的体积.【详解】设圆锥的底面半径为,则,解得,故圆锥的高为,所以圆锥的体积也即三棱锥的体积为.故选D.【点睛】本小题主要考查圆锥侧面展开图与底面圆的半径的关系,考查中国古代数学文化,属于基础题.8.已知是抛物线的焦点,过点的直线与抛物线交于,两点,为线段的中点,若,则直线的斜率为( )A.3 B.1 C.2 D.【答案】B【解析】根据求得的值,利用点差法求得直线的斜率.【详解】由于为中点,根据抛物线的定义,解得,抛物线方程为.设,则,两式相减并化简得,即直线的斜率为,故选B.【点睛】本小题主要考查抛物线的定义,考查利用点差法求解有关弦的中点问题,属于中档题. 9.已知函数,的值域为,则的取值范围是( )A.B.C.D.【答案】C【解析】先由的取值范围,求得的取值范围,结合函数的值域,求得的取值范围.【详解】由于,所以,由于,所以,解得.故选C.【点睛】本小题主要考查三角函数值域,考查三角函数的性质,考查运算求解能力,属于中档题. 10.某四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该四棱锥4个侧面中,直角三角形共有()A.4个B.3个C.2个D.1个【答案】A【解析】画出三视图对应的直观图,根据直观图,判断出个侧面中有几个直角三角形.【详解】画出三视图对应的四棱锥如下图所示.由三视图可知是直角三角形.而,所以,即为直角三角形.所以直角三角形一共有个,故选A.【点睛】本小题主要考查三视图和直观图,考查空间想象能力,属于基础题.11.已知双曲线的右焦点为,过作双曲线渐近线的垂线,垂足为,直线交双曲线右支于点,且为线段的中点,则该双曲线的离心率是()A.2 B.C.D.【答案】D【解析】先求得点的坐标,根据中点坐标公式求得点坐标,将点坐标代入双曲线方程,化简后求得双曲线的离心率.【详解】由于双曲线焦点到渐近线的距离为,所以,所以,由于是的中点,故,代入双曲线方程并化简得,即,.【点睛】本小题主要考查双曲线的几何性质,考查双曲线焦点到渐近线的距离,考查中点坐标公式,考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于中档题.双曲线焦点到渐近线的距离是一个定值,这个要作为结论来记忆.要求双曲线的离心率,可从一个等式中得到,本题通过双曲线上一个点的坐标来得到一个等式,由此解出双曲线的离心率.12.已知是定义在上的可导函数,且,则不等式的解集为()A.B.C.D.【答案】B【解析】构造函数,利用已知条件求得的正负,由此判断函数的单调性,并解出不等式的解集.【详解】由得,构造函数,,故为上的减函数.原不等式可转化为,即,所以,解得,故选B.【点睛】本小题主要考查函数导数运算,考查利用导数判断函数的单调性,考查构造函数法解函数不等式,考查化归与转化的数学思想方法,属于中档题.题目给定一个含有导数的式子,此类题目主要的解题方法是构造函数法,构造出符合题目已知条件的函数,通过所给的条件得出所构造函数的单调性,由此来解不等式.二、填空题13.______.【答案】【解析】利用微积分基本定理计算出定积分.【详解】依题意.【点睛】本小题主要考查利用微积分基本定理计算定积分,考查原函数的求法,属于基础题. 14.已知,为锐角,且,则_____.【答案】【解析】将题目所给方程展开后,化简为的形式,由此求得的大小.【详解】将展开得,即,由于,为锐角,,故.【点睛】本小题主要考查利用两角和的正切公式对已知条件进行化简,考查特殊角的三角函数值,属于中档题.15.已知球是棱长为4的正方体的外接球,,分别是和的中点,则球截直线所得弦长为______.【答案】【解析】先求得球心到直线的距离,然后利用勾股定理求得所求弦长.【详解】依题意可知球心为正方体体对角线的交点处,将球心和投影到平面内,画出图像如下图所示,由图可知到直线的距离为.由于球的半径等于正方体对角线的一半,即,根据勾股定理求得所求弦长为.【点睛】本小题主要考查正方体的外接球,考查与球有关的长度的计算,考查空间想象能力,属于中档题.与球有关的问题求解的关键在于找到球心的位置,本题由于几何体为正方体,球心在体对角线的中点处.求与球有关的弦长问题,主要先求得球心到弦的距离,然后利用勾股定理可求出弦长.16.已知为的外心,,,,设,则_____.【答案】3【解析】以为坐标原点建立平面直角坐标系,计算出外心的坐标,由此求得的值.【详解】以为坐标原点建立平面直角坐标系如下图所示,根据已知条件可知.根据外心的几何性质可知在直线上.中点坐标为,的斜率为,故中垂线的斜率为,方程为,令,解得.由得,解得,所以.【点睛】本小题主要考查向量的坐标运算,考查利用向量求解有关平面几何的问题,考查外心的定义以及找外心的方法,考查数形结合的数学思想方法,属于中档题.由于题目涉及到向量的运算,而且题目所给三角形的角度比较特殊,故可采用建立坐标系的方法,利用代数化来解决几何问题.三、解答题17.设数列的前项和为,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.【答案】(1)(2)【解析】(1)利用,求得数列{}是等比数列,由此求得数列的通项公式.(2)先求得的通项公式,然后利用裂项求和法求得的值.【详解】(Ⅰ)当时,由得,∴.当时,,∴.∴是以为首项,以为公比的等比数列.其通项公式为.(Ⅱ)∵∴【点睛】本小题主要考查利用求数列的通项公式,考查利用裂项求和法求数列的前项和.属于中档题.18.在中,内角,,所对的边分别为,,,且.(Ⅰ)求的值;(Ⅱ)若,面积为1,求边中线的长度.【答案】(1)(2)【解析】(1)利用三角形内角和定理以及正弦定理化简已知条件,求得的值,利用齐次方程求得的值.(2)根据(1)求得的值,求出的值,根据三角形的面积列方程,求得的值,利用余弦定理求得的值,然后可利用余弦定理、向量的模或者平行四边形的性质,求得边中线的长.【详解】(Ⅰ)∵,∴,由正弦定理得∵,∴,∴.∴.(Ⅱ)∵,且,∴为锐角.且,∴,∵,∴.在中,由余弦定理得,.设边的中点为,连接.法一:在,中,分别由余弦定理得:∴,∴.法二:∵,∴,.法三:由平行四边形的性质得:,∴.【点睛】本小题主要考查利用正弦定理解三角形,考查三角形的面积公式,考查利用余弦定理解三角形,属于中档题.19.如图所示,在四棱锥中,平面,,,AP=AD=2AB=2BC,点在棱上.(Ⅰ)求证:;(Ⅱ)当平面时,求直线与平面所成角的正弦值.【答案】(1)见证明;(2)【解析】(I)设中点为,连接、.设出的边长,通过计算证明,根据已知得到,由此证得平面,从而证得.(II)以为空间坐标原点建立空间直角坐标系,利用平面计算出点的坐标,根据直线的方向向量和平面的法向量计算出线面角的正弦值.【详解】(Ⅰ)设中点为,连接、.由题意.∵,∴四边形为平行四边形,又,∴为正方形.设,在中,,又,.∴,∴.∵平面,平面,∴.∵,平面,且,∴平面.∵平面,∴.(Ⅱ)因为平面,所以,,又,故,,两两垂直,以为坐标原点,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系.由(Ⅰ)所设知,则,,,.由已知平面,∴,设,则.,∵,∴,,∴.设平面的法向量,则令,得.设所求的角为,.所以直线与平面所成角的正弦值为.【点睛】本小题主要考查线线垂直的证明,考查线面垂直的证明,考查利用空间向量的方法计算直线与平面所成角的正弦值,属于中档题.20.已知椭圆的离心率为,短轴长为4.(Ⅰ)求椭圆的方程;(Ⅱ)过点作两条直线,分别交椭圆于,两点(异于点).当直线,的斜率之和为定值时,直线是否恒过定点?若是,求出定点坐标;若不是,请说明理由.【答案】(1) (2)见解析【解析】(I)根据椭圆的离心率和短轴长列方程组,解方程组求得的值,进而求得椭圆方程.(II)当直线的斜率存在时,设出直线的方程,根据化简得到表达式.联立直线的方程和椭圆的方程,写出韦达定理,并代入上面求得的表达式,化简后可求得的关系式,带回直线的方程,由此求得直线所过定点.当直线斜率不存在时,设直线的方程为,利用,求出的值,由此判断此时直线所过定点.【详解】(Ⅰ)由题意知:,,.解得,,,所以椭圆方程为.(Ⅱ)当直线的斜率存在时,设直线方程为,,由,得,整理得联立,消去得,由题意知二次方程有两个不等实根.∴,,代入得.整理得.∵,∴,∴,即.所以直线过定点.当直线的斜率不存在时,设直线的方程为,,,其中.∴ ,由,得,∴.∴当直线的斜率不存在时,直线也过定点.综上所述,直线恒过定点.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查化归与转化的数学思想方法,属于中档题.求解椭圆的标准方程,主要方法是根据题目所给已知条件,结合列方程组,解方程组求得的值,进而求得椭圆方程.在设直线方程时,要注意考虑直线斜率是否存在.21.已知函数.(Ⅰ)若点在函数的图象上运动,直线与函数的图象不相交,求点到直线距离的最小值;(Ⅱ)若当时,恒成立,求实数的取值范围.【答案】(1)(2)【解析】(I)先求得函数的定义域,然后利用导数求得函数对应图像上与平行的切线方程,利用两平行线间的距离公式求得到直线距离的最小值.(II)(1)构造函数,利用的导函数,对分类讨论函数的单调性,结合求得的取值范围. (2)将分类常数,转化为,利用导数求得的最小值,由此求得的范围.结合(1)(2)可求得的的取值范围.【详解】(Ⅰ)的定义域为,.由题意,令,得,解得或(舍去),∵,∴到直线的距离为所求的最小值.(Ⅱ)(1)当,恒成立时,设,.①当即时,,,,所以,即在上是增函数.又,即,∴时满足题意.②当即时,令.因为,所以存在,使.当时,,即,在上是减函数,,∴时,不恒成立;(2)当,恒成立时,.设,,,,,,∴在上是减函数,在上是增函数,,∴.综上所述,的取值范围是.【点睛】本小题主要考查曲线上的点到直线的最小距离的求法,考查利用导数求解不等式恒成立问题,考查化归与转化的数学思想方法,属于难题.要求曲线上的点到直线的最小距离,是通过找到曲线上和直线平行的一条直线,利用两条平行直线间的距离公式,来求得最小值.22.选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),是上的动点,点满足,点的轨迹为曲线.(Ⅰ)求的普通方程;(Ⅱ)在以为极点,轴的正半轴为极轴的极坐标系中,直线与交于,两点,交轴于点,求的值.【答案】(1) (2)【解析】(I)设出点的坐标,根据两个向量相等的坐标表示,求得点的坐标,消去参数后得到的普通方程.(II)方法一:先求得直线的直角坐标方程,联立直线的方程和的方程,求得交点的坐标,利用两点间的距离公式求得的长,进而求得的值.方法二:先求出直线的参数方程,将参数方程代入的方程,利用直线参数的几何意义,求得的值.【详解】(Ⅰ)设,.∵∴,消去得的普通方程为.(Ⅱ)法一:直线的极坐标方程,即.∵,,得直线的直角坐标方程为.∴,由得,∴,.∴,,∴.法二:直线的极坐标方程,即.∵,,得直线的直角坐标方程为.∴.∵直线的倾斜角为,∴可得直线的参数方程为(为参数).代入,得,设此方程的两个根为,,则.∴.本小题主要考查轨迹方程的求法,考查极坐标和直角坐标的转化,考查直线的参数方程,属于中档题.23.选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)求函数的值域.【答案】(1) (2)【解析】(I)利用零点分段法去绝对值,然后解不等式求得解集.(II)利用绝对值不等式求得的最小值,根据的单调性,求得的值域【详解】(Ⅰ)∵,即,当时,原不等式化为,解得,∴,当时,原不等式化为,解得,∴,当时,原不等式化为,解得,∴,综上,原不等式的解集为.(Ⅱ)设,则.∵,∴的最小值为1.∵在上是减函数,∴,∴函数的值域为.本小题主要考查含有绝对值不等式的解法,考查利用绝对值不等式求不等式的最小值,考查指数函数的单调性,属于中档题.。

四川省宜宾市2019届高三第二次诊断性考试数学(理)试题 Word版含解析

四川省宜宾市2019届高三第二次诊断性考试数学(理)试题 Word版含解析

四川省宜宾市2019届高三第二次诊断性考试数学(理)试题一、选择题(本大题共12小题,共60.0分)1.设,则的虚部为( )A. 1B.C. -1D.【答案】C【解析】【分析】利用复数的乘法运算法则计算出z,然后找出虚部。

【详解】,则虚部是,选C【点睛】本题考查复数的运算,解题的关键是先进行乘法运算将其化成形式,其中实部为,虚部为,属于简单题.2.已知集合,,则A. B. C. 1, D. 0,1,【答案】D【解析】【分析】根据题意利用交集定义直接求解,即可得到集合的交集,得到答案.【详解】由题意知,集合,,所以0,1,.故选:D.【点睛】本题主要考查了交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3.一个袋子中有4个红球,2个白球,若从中任取2个球,则这2个球中有白球的概率是A. B. C. D.【答案】B【解析】【分析】先计算从中任取2个球的基本事件总数,然后计算这2个球中有白球包含的基本事件个数,由此能求出这2个球中有白球的概率.【详解】解:一个袋子中有4个红球,2个白球,将4红球编号为1,2,3,4;2个白球编号为5,6.从中任取2个球,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A表示“两个球中有白球”这一事件,则A包含的基本事件有:{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},{5,6}共9个,这2个球中有白球的概率是.故选:B.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.4.已知焦点在x轴上的双曲线的渐近线方程是,则该双曲线的离心率是A. B. C. 2 D.【答案】B【解析】【分析】设双曲线方程为,可得渐近线方程是,结合题意解出,再利用平方关系算出,根据离心率公式即得答案.【详解】解:双曲线的焦点在x轴上,设双曲线的方程为可得双曲线的渐近线方程是结合题意双曲线的渐近线方程是,得,可得因此,此双曲线的离心率.故选:B.【点睛】本题考查双曲线的标准方程与简单几何性质,考查双曲线的渐近线方程和离心率的求法,属于基础题.5.若函数,且的图象恒过点,则A. 3B. 1C.D.【答案】C【解析】【分析】根据题意利用指数函数的单调性和特殊点可得,且,求得m和n的值,可得的值.【详解】由题意,函数,且的图象恒过点,所以,且,解得,,,故选:C.【点睛】本题主要考查了指数函数的图象与性质的应用,其中解答中熟记指数函数的图象与性质,合理应用是解答的关键,着重考查了推理与运算能力,属于基础题.6.已知棱长都为2的正三棱柱的直观图如图,若正三棱柱绕着它的一条侧棱所在直线旋转,则它的侧视图可以为A.B.C.D.【答案】B【解析】【分析】根据所给视图,借助三视图的性质,利用排除法,即可求解,得到答案.【详解】由题意,四个选项高都是2,若侧视图为A,中间应该有一条竖直的实线或虚线.若为C,则其中有两条侧棱重合,不应有中间竖线.若为D,则长应为,而不是1.故选:B.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,着重考查了空间想象能力,属于基础题.7.在平行四边形ABCD中,M是DC的中点,向量,设,,则A. B. C. D.【答案】A【解析】【分析】根据图形来找出所求向量与基底向量的关系,采用数形结合法能很快找到具体思路.【详解】根据题意画图,如图所示,则,,,故选:A.【点睛】本题主要考查了向量的减法和数乘运用,其中解答中熟记向量的线性运算法则是解答的关键,属于基础题,着重考查了运算与求解能力.8.设为等比数列的前n项和,若,,则的公比的取值范围是A. B. C. D.【答案】A【解析】【分析】设等比数列的公比为q,可得,,得到,即可求解,得到答案.【详解】设等比数列的公比为q,则.,,,,且,解得.综上可得:的公比的取值范围是:.故选:A.【点睛】本题主要考查了等比数列的通项公式求和公式及其性质,考查了推理能力与计算能力,属于中档题.9.已知三棱锥的四个顶点都在半径为2的球面上,,平面ABC,则三棱锥的体积为A. B. C. D.【答案】D【解析】【分析】由题意画出图形,利用球的性质求出三棱锥的高,再利用棱锥的体积公式,即可求解,得到答案.【详解】如图所示,取BC中点D,连接AD,则,设三角形ABC的中心为G,则,又球O得半径为2,则,则.三棱锥的体积为.故选:D.【点睛】本题主要考查了球的内接多面体与球的关系,考查空间想象能力和计算能力,是中档题.10.要得到函数的图象,可以将函数的图象A. 向右平移个单位B. 向左平移个单位C. 向右平移个单位D. 向左平移个单位【答案】A【解析】【分析】直接利用三角函数关系式的恒等变变换和图象的平移变换和伸缩变换的应用求出结果.【详解】函数的图象,转换为:,将函数的图象向右平移个单位,得到的图象.故选:A.【点睛】本题主要考查了三角函数关系式的恒等变变换,正弦型函数图象的平移变换和伸缩变换的应用,主要考查学生的运算能力和转化能力,属于基础题型.11.过直线上一点P,作圆C:的切线,切点分别为A、B,则当四边形PACB面积最小时直线AB的方程是A. B. C. D.【答案】B【解析】【分析】根据题意,由切线长公式可得,进而可得,可得当取得最小值时,四边形PACB面积最小,设AB 的直线方程为,由相似三角形的性质和点到直线的距离公式求出C到AB的距离d,即可求解m的值,即可得答案.【详解】根据题意,圆C:的圆心C为,半径;点P为直线上一点,PA、PB为圆C的切线,则,,则有,则,则当取得最小值时,四边形PACB面积最小,此时CP与直线垂直,且,则C到AB的距离,又由,则直线AB与直线平行,且设AB的直线方程为,则有,解可得:或舍,则直线AB的方程为;故选:B.【点睛】本题主要考查了直线与圆方程的应用,其中解答中关键是分析“四边形PACB面积最小”的条件,再利用相似三角形和点到直线的距离公式,列出方程求解,着重考查了分析问题和解答问题的能力,属于中档试题.12.若关于x的不等式成立,则的最小值是A. B. C. D.【答案】A【解析】【分析】构造函数,利用函数图象的性质,借助数形结合,确定最小值,即可得到答案.【详解】令,,函数单调递增,,函数单调递减,且时,,绘制函数的图象如图所示,满足题意时,直线恒不在函数图象的下方,很明显时不合题意,当时,令可得:,故取到最小值时,直线在x轴的截距最大,令可得:,据此可得:的最小值是.故选:A.【点睛】本题主要考查了导函数研究函数图象的性质及其应用,其中解答合理利用导数得出函数的单调性,刻画处函数的性质上解答的关键,着重考查了数形结合的数学思想,等价转化的数学思想等知识,属于中等题.二、填空题(本大题共4小题,共20.0分)13.数列中,若,,则______.【答案】34【解析】【分析】先判断数列为等差数列,再求出首项,即可求得结果.【详解】解:,数列为等差数列,其公差,,,,,故答案为:34【点睛】本题考查等差数列的定义和通项公式的应用,属于基础题.14.二项式的展开式中常数项是______.【答案】【解析】【分析】利用二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.【详解】由题意,二项式的展开式的通项公式为,令,求得,可得展开式中常数项是,故答案为:.【点睛】本题主要考查了二项式定理的应用,二项展开式的通项公式,二项式系数的性质,其中解答中熟记二项展开式的通项,合理确定的值是解答的关键,属于基础题.15.已知奇函数是定义在R上的单调函数,若函数恰有4个零点,则a的取值范围是______.【答案】【解析】【分析】利用函数与方程的关系,由函数的奇偶性和单调性,进行转化,利用参数分离法进行求解即可.【详解】由题意,因为,是偶函数,若恰有4个零点,等价为当时,有两个不同的零点,是奇函数,由,得,是单调函数,,即,当时,有两个根即可,当时,等价为,,设,要使当时,有两个根,则,即,即实数a的取值范围是,故答案为:【点睛】本题主要考查了查函数与方程的应用,其中解答中熟练应用参数分离法,结合数形结合是解决本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.16.已知直线与抛物线交于A、B两点,过B作x轴的平行线交抛物线的准线于点M,O为坐标原点,若::2,则______.【答案】【解析】【分析】先证明A,O,M三点共线,再将面积比为1:2转化为::2,由此求出A的坐标,再用斜率公式求出斜率.【详解】联立消去x得,设,,则,则,,,,,O,M三点共线,:::2,,,,,,,,,,故答案为:.【点睛】本题主要考查了准线与抛物线的位置关系的应用,其中熟记抛物线的几何性质,以及联立方程组,合理应用根与系数的关系是解答的关键,着重考查转化思想以及数形结合思想的应用属中档题.三、解答题(本大题共7小题,共82.0分)17.如图,在四边形ABCD中,,,,,.求边AB的长及的值;若记,求的值.【答案】(1),;(2).【解析】【分析】由已知可求,中,由正弦定理可求AB,中由余弦定理,可求.由可得,进而可求,进而根据二倍角公式,可求,然后根据两角差的余弦公式即可求解.【详解】由题意,因为,,,,,中,由正弦定理可得,,,.中由余弦定理可得,由可得,,,.【点睛】本题主要考查了正弦定理、余弦定理和三角恒等变换的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.18.艾滋病是一种危害性极大的传染病,由感染艾滋病病毒病毒引起,它把人体免疫系统中最重要的CD4T淋巴细胞作为主要攻击目标,使人体丧失免疫功能下表是近八年来我国艾滋病病毒感染人数统计表:请根据该统计表,画出这八年我国艾滋病病毒感染人数的折线图;请用相关系数说明:能用线性回归模型拟合y 与x 的关系; 建立y 关于x 的回归方程系数精确到,预测2019年我国艾滋病病毒感染人数.参考数据:;,,,参考公式:相关系数,回归方程中, ,.【答案】(1)见解析;(2)见解析;(3)预测2019年我国艾滋病感染累积人数为万人【解析】 【分析】(1)由所给的数据绘制折线图即可;(2)由题意计算相关系数来说明变量之间的相关关系即可;(3)首先求得回归方程,然后利用回归方程的预测作用进行预测即可.【详解】解:(1)我国艾滋病病毒感染人数的折线图如图所示,,,.故具有强线性相关关系.,,.当时,.故预测2019年我国艾滋病感染累积人数为万人.【点睛】本题主要考查线性回归方程的求解与预测作用,相关系数的计算与含义等知识,意在考查学生的转化能力和计算求解能力.19.如图,四边形ABCD是菱形,平面ABCD,,平面BDE,G是AB中点.求证:平面BCF;若,,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】【分析】设,连结OE,OF,推导出,平面ABCD,以O为原点,OA,OB,OF 所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能证明平面BCF.求出平面ABE的法向量和平面BDE的法向量,利用向量法能求出二面角的余弦值.【详解】设,连结OE,OF,四边形ABCD是菱形,平面ABCD,,平面BDE,,,平面ABCD,设,,,以O为原点,OA,OB,OF所在直线分别为x,y,z轴,建立空间直角坐标系,则0,,,b,,0,,0,,b,,0,,,设平面BCF的法向量为y,,则,取,得c,,,平面BCF,平面BCF.设,,,,,1,,,,,,,设平面ABE的法向量y,,则,取,得,设平面BDE的法向量y,,则,取,得0,,设二面角的平面角为,则,二面角的余弦值为.【点睛】本题主要考查了线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.已知点M到定点的距离和它到直线的距离的比是常数.求点M的轨迹C的方程;若直线l:与圆相切,切点N在第四象限,直线与曲线C交于A、B两点,求证:的周长为定值.【答案】(1);(2)详见解析.【解析】【分析】由椭圆的定义可知:M的轨迹是以F为焦点,l为准线的椭圆,然后即可求得其方程.法一:设,根据点到直线的距离和椭圆的定义即可求出,法二,联立直线和圆的方程,可得m与k的关系式,再联立直线与椭圆方程,消去y,利用韦达定理,弦长公式,求出的三条边,即可求的周长.【详解】设由题意得,为轨迹C的方程;证明:法一:设,A到l的距设为d,,,,,,,,同理,,的周长为定值10.法二:设,,由题知,,直线l:与圆相切,即,把代入得显然,,,的周长为定值10.【点睛】本题主要考查了椭圆,圆的基本知识和轨迹方程的求法以及三角形的周长的求法,解题时要注意公式的灵活运用,属于中档题.21.已知函数.当时,判断有没有极值点?若有,求出它的极值点;若没有,请说明理由;若,求a的取值范围.【答案】(1)没有极值点;(2)【解析】【分析】求出函数的定义域,计算时函数的导数,利用导数等于0判断函数是否有极值点;由得,转化为,设,利用导数讨论的单调性和极值,从而求出不等式成立时a的取值范围.【详解】函数,则且,即函数的定义域为;当时,,则,令,则,当时,,为减函数,,,无极值点;当时,,为增函数,,,无极值点;综上,当时,没有极值点;由,得,即;令,则;当时,时;时,成立,即符合题意;当时,,;当时,为减函数,,成立;当时,为减函数,,成立;即符合题意;当时,由,得,且;设两根为,,,,;由,得,解集为,在上为增函数,,,不合题意;综上,a的取值范围是【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.在直角坐标系xOy中,抛物线C的方程为,以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为,l与x轴交于点M.求l的直角坐标方程,点M的极坐标;设l与C相交于A,B两点,若、、成等比数列,求p的值.【答案】(1),;(2)【解析】【分析】直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换.写出直线l的参数方程并代入曲线C中,写出韦达定理利用参数t的几何意义进行求解.【详解】解:由得,,的直角坐标方程.令得点M的直角坐标为,点M的极坐标为.由知l的倾斜角为,参数方程为,为参数,代入,得,.,,.,.【点睛】本题考查参数方程直角坐标方程和极坐标方程之间的转换,考查直线参数方程中参数t的几何意义的应用,属于基础题.23.设函数.若关于x的不等式的解集为,求a,b的值;若,求的最小值.【答案】(1),;(2)【解析】【分析】通过讨论b的范围,得到关于a,b的方程组,解出即可;根据基本不等式的性质求出的最小值即可.【详解】解:由得,,当时,不合题意;当时,,由已知得,,综上,,(2)当,即时,有最小值,最小值是【点睛】本题考查绝对值不等式的解法,考查利用基本不等式及绝对值三角不等式的性质求最值,属于基础题.- 21 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2018—2019 学年第二学期第二次模拟测试数学(学科)试题
参考答案及评分标准
一.单项选择题(每小题 3 分,共 30 分)
二.填空题
π -
3 11. 3( x + 3)( x - 3) 12. 3 ; 13 .17; 14. x=
4 ; 15.10; .... 16. 2 4
三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分) 17. 解:原式= - 2 - 1 + 3 - 1 L L L = - 1 L L L 4 分 6 分 第一行每个“点”1 分,共 4 分第二行 2 分
18. 解:原式 = x + 1 ÷ ( x - 1 + 2 ) L L L 1 分
( x - 1) 2
x - 1 x - 1
= x + 1 ÷ x + 1 L L L 2 分 ( x - 1) 2
x - 1
= x + 1 • x - 1 L L L 3 分 ( x - 1) 2
=
1 x + 1
L L L
4 分 x - 1
当x =
3时,原式 = 1 = 3 + 1 = 3 + 1 L L L
6 分
3 - 1 ( 3 - 1)( 3 + 1)
2
19.解:(1)如图所示,DE 即为所求. L L L (2)证明:∵DE 垂直平分 AB ∴DA=DB L L L ∴∠DBA=∠A=30° L L L ∵∠C=90°
2 分
3 分
4 分 ∴∠ABC=180°-∠C -∠A =180°- 90° -30°= 60°
∴∠CBD=∠ABC -∠DBA =60°- 30°=30° ∴∠CBD =∠DBA L L L ∴BD 平分∠ABC,
又∵DE⊥AB,DC⊥BC, ∴DE=DC L L L
5 分
6 分
1
题号 1 2 3 4 5 6 7 8 9 10 答案 C D C B B A B
C C A
四、解答题(二)(本大题 3 小题,每小题 7 分,共 21 分)
20.解:(1)m = 30, n = 20 ;补充条形统计图如图所示;L L L 3 分 (2)90° L L L (3)被抽查的人数:15÷15%=100(人)
4 分
全校不合格的人数:
900 ⨯ 10 + 15 + 25 = 450 (人)
100
L L L 6 分
答:估计这所学校本次听写比赛不合格的学生人数为 450 人。

L L L 21. 解:(1)∵O 是 AC 的中点, 7 分 ∴OA=OC L L L ∵AD∥BC
1 分
∴∠ADO=∠CBO L L L 在△AOD 和△COB 中,
∴△AOD≌△COB ∴OD=OB L L L
2 分
3 分
∴四边形 ABCD 是平行四边形. L L L
(2)∵四边形 ABCD 是平行四边形,且 AC⊥BD 4 分 ∴ 四 边 形 ABCD 是 菱 形 L L L 6 分
∴▱ABCD 的 面 积 = 1 AC • BD = 1 ⨯ 8 ⨯ 6 = 24 L L L
7 分
2
2
22. 解:(1)设该种商品每次降价的百分率为 x L L L
依 题 意 得 :400(1-x )2 = 324, L L L
1 分
2 分 解得:x 1=0.1=10% , x 2 =1.9(舍去) L L L
3 分 答:该种商品每次降价的百分率为 10%. L L L (2)设第一次降价后售出该种商品 m 件, 则第二次降价后售出该种商品(100-m )件, L L L
4 分
5 分
第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);
第二次降价后的单件利润为:324-300=24(元/件).
依 题 意 得 :60m+ 24×(100-m )≥3120, L L L
6 分
解得:m≥20. 答:第一次降价后至少要售出该种商品 20 件. L L L
7 分
2
建议:此题两个小问的设未知数没有单位合起来扣 1 分, 两小问的作答不完整或没有作答合起来扣 1 分
五、解答题(三)(本大题 3 小题,每小题 9 分,共 27 分)
23. 解:(1)将点A(4,3)代入y= ,得:k=12,
则反比例函数解析式为y= ;L L L 1 分
(2)如图,过点 A 作AC⊥x 轴于点C,
则OC=4、AC=3,
∴OA= =5,L L L 2 分
∵AB∥x 轴,且AB=OA=5,
∴ 点 B 的坐标为(9,3). L L L3分(3)∵点 B 坐标为(9,3),
∴OB 所在直线解析式为y=x,L L L
由可得点P 坐标为(6,2),L L L
过点P 作PD⊥x 轴,延长DP 交AB 于点E,
则点 E 坐标为(6,3),L L L ∴AE=2,PE=1,PD=2,4分6分7分
∴△OAP 的面积= ×(2+6)×3﹣×6×2﹣×2×1=5.L L
L
24. 证明:(1)
∵∠ODB=∠AEC,∠AEC=∠ABC,
9 分
∴∠ODB=∠ABC,L L L
∵OF⊥BC,
∴∠BFD=90°,
∴∠ODB+∠DBF=90°,L L L
∴∠ABC+∠DBF=90°,
即∠OBD=90°,
∴BD⊥OB,
∴BD 是⊙O 的切线;L L L
(2)证明:连接AC,如图1 所示:∵OF⊥BC,
∴,1分2分3分
∴∠CAE=∠ECB,L L L 4 分∵∠CEA=∠HEC,
∴△CEH∽△AEC,L L L ∴,
∴CE2=EH•EA;L L L
5分
6分3
(3)解:连接BE,如图2 所示:
∵AB 是⊙O 的直径,
∴∠AEB=90°,
∵⊙O 的半径为5,sin∠BAE=,
∴AB=10,BE=AB•sin∠BAE=10×=6,
∴EA= = =8,L L L
∵,
∴BE=CE=6,
∵CE2=EH•EA,
7分
∴EH= = ,L L L
在Rt△BEH 中,BH= = = .L L L 8分9分
25. 证明:(1)
∵四边形 ABCD 是矩形,
∴AB∥CD,AB=CD,∠D=90°,
设 AB=x,则 AP=x,DP=x-4,L L L
在Rt△ADP 中,由勾股定理得:
82+(x-4)2=x2,L L L
解得:x=10,
∴AB=10;L L L
(2)过M 作MG⊥AN于G,则∠AGM=∠D=90°,∵AB∥CD,
∴∠APD=∠MAG,1分2分3分
∴△APD∽△MAG,L L L
L L L
4分5分
L L L 6分
4
E
(3)线段 EF 的长度不发生变化;理由如下:作MQ∥AN,交 PB 于点 Q,如图 2,
∵AP=AB,MQ∥AN
∴∠APB=∠ABP=∠MQP.
∴MP=MQ,
∵BN=PM,
∴BN=QM.
∵MP=MQ,ME⊥PQ,
∴EQ =1
PQ
2
L L L 7分
∵MQ∥AN,
∴∠QMF=∠BNF,
∴QF=BF
∴QF =1
QB
2
L L L 8分
L L L 9分5。

相关文档
最新文档