高三数学模拟考试卷(附答案解析)

合集下载

2025届湖北省黄冈、华师大附中高三第四次模拟考试数学试卷含解析

2025届湖北省黄冈、华师大附中高三第四次模拟考试数学试卷含解析

2025届湖北省黄冈、华师大附中高三第四次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在棱长均相等的正三棱柱111ABC A B C =中,D 为1BB 的中点,F 在1AC 上,且1DF AC ⊥,则下述结论:①1AC BC ⊥;②1AF FC =;③平面1DAC ⊥平面11ACC A :④异面直线1AC 与CD 所成角为60︒其中正确命题的个数为( )A .1B .2C .3D .42.已知实数x ,y 满足10260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,则22z x y =+的最大值等于( )A .2B .22C .4D .83.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是A .2()(2)3-∞+∞,, B .2(2)3, C .22()33-, D .22()()33-∞-+∞,, 4.已知集合(){}*,|4,M x y x y x y N =+<∈、,则集合M 的非空子集个数是( ) A .2 B .3 C .7 D .85.已知不重合的平面,,αβγ 和直线l ,则“//αβ ”的充分不必要条件是( )A .α内有无数条直线与β平行B .l α⊥ 且l β⊥C .αγ⊥ 且γβ⊥D .α内的任何直线都与β平行6.若0a b <<,则下列不等式不能成立的是( )A .11a b >B .11a b a >-C .|a|>|b|D .22a b >7.已知等差数列{}n a 的前n 项和为n S ,37a =,39S =,则10a =( )A .25B .32C .35D .408.设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在[0,2]π上有且仅有5个零点,则ω的取值范围为( ) A .1229,510⎡⎫⎪⎢⎣⎭ B .1229,510⎛⎤ ⎥⎝⎦ C .1229,510⎛⎫ ⎪⎝⎭ D .1229,510⎡⎤⎢⎥⎣⎦9.已知正项等比数列{}n a 的前n 项和为2317,,927n S S S ==,则12n a a a 的最小值为( ) A .24()27 B .34()27 C .44()27 D .54()2710.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天 的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八 边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边 形的边长为10m ,阴阳太极图的半径为4m ,则每块八卦田的面积约为( )A .247.79mB .254.07mC .257.21mD .2114.43m11.过抛物线22(0)y px p =>的焦点作直线交抛物线于A B ,两点,若线段AB 中点的横坐标为3,且8AB =,则抛物线的方程是( )A .22y x =B .24y x =C .28y x =D .210y x = 12.在ABC 中,已知9AB AC ⋅=,sin cos sin B A C =,6ABC S =,P 为线段AB 上的一点,且CACB CP x y CA CB=⋅+⋅,则11x y +的最小值为( )A .73123+B .12C .43D .53124+ 二、填空题:本题共4小题,每小题5分,共20分。

2023-2024学年江苏省盐城中学高三年级模拟考试数学试题+答案解析(附后)

2023-2024学年江苏省盐城中学高三年级模拟考试数学试题+答案解析(附后)

一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求2023-2024学年江苏省盐城中学高三年级模拟考试数学试题的。

1.若集合,,则( )A. B.C.D.2.若是关于x 的 实系数方程的一个虚数根,则( )A. , B. ,C. ,D. ,3.若,则( )A. B.C.D.4.已知,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.若函数在R 上无极值,则实数a 的取值范围( )A. B.C.D. 6.设,是双曲线的两个焦点,O 为坐标原点,P 是C 的左支上一点,且,则的面积为( )A.B.C. 8D.7.数列中,,,使对任意的为正整数恒成立的最大整数k 的值为( )A. 1209B. 1211C. 1213D. 12158.对于一个古典概型的样本空间和事件A ,B ,C ,D ,其中,,,,,,,,则( )A. A 与B 不互斥B. A 与D 互斥但不对立C. C 与D 互斥D. A 与C相互独立二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知,则( )A. B.C. D.10.已知函数的一条对称轴为,则( )A. 的最小正周期为B.C. 在上单调递增D.11.平行六面体中,各棱长均为2,设,则( )A. 当时,B. 的取值范围为C. 变大时,平行六面体的体积也越来越大D. 变化时,和BD总垂直12.已知曲线C是平面内到定点和定直线的距离之和等于4的点的轨迹,若在曲线C上,则下列结论正确的是( )A.曲线C关于x轴对称B. 曲线C关于y轴对称 C. D.三、填空题:本题共4小题,每小题5分,共20分。

13.某产品有5件正品和3件次品混在了一起产品外观上看不出有任何区别,现从这8件产品中随机抽取3件,则取出的3件产品中恰有1件是次品的概率为__________.14.已知单位向量,,满足,则的值为__________.15.在数字通信中,信号是由数字“0”和“1”组成的序列,“0,1数列”是每一项均为0或1的数列,设C是一个“0,1数列”,定义数列为数列C中每个0都变为“1,0,1”,每个1都变为“0,1,0”所得到的新数列.例如数列,1,则数列,0,1,0,1,已知数列,1,0,1,0,记数列,,2,3,,则数列的所有项之和为__________;数列的所有项之和为__________.16.在中,,P为内部一动点含边界,在空间中,若到点P的距离不超过1的点的轨迹为L,则几何体L的体积等于__________.四、解答题:本题共6小题,共70分。

2024年枣庄市高三数学第三次调研模拟考试卷附答案解析

2024年枣庄市高三数学第三次调研模拟考试卷附答案解析

2024年枣庄市高三数学第三次调研模拟考试卷试卷满分150分,考试用时120分钟2024.05一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}20A x x =+>∣,{}220B x x x =--<∣,则A B = ()A .{21}xx -<<∣B .{22}x x -<<∣C .{11}x x -<<∣D .{12}xx -<<∣2.已知双曲线22:14y x C m-=的一条渐近线方程为2y x =,则m =()A .1B .2C .8D .163.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,则πcos 6α⎛⎫-=⎪⎝⎭()A .0B .12C D .24.对数螺线广泛应用于科技领域.某种对数螺线可以用πe ϕρα=表达,其中α为正实数,ϕ是极角,ρ是极径.若ϕ每增加π2个单位,则ρ变为原来的()A .13e 倍B .12e 倍C .π2e 倍D .πe 倍5.己知平面向量(1,1),(2,0)a b =-=,则a 在b 上的投影向量为()A .(1,0)-B .(1,0)C .(D .6.已知圆柱的底面半径为1,母线长为2,它的两个底面的圆周在同一个球的球面上,则该球的表面积为()A .4πB .6πC .8πD .10π7.已知复数1212,,z z z z ≠,若12,z z 同时满足||1z =和|1||i |z z -=-,则12z z -为()A .1BC .2D .8.在ABC 中,1202ACB BC AC ∠=︒=,,D 为ABC 内一点,AD CD ⊥,120BDC ∠=︒,则tan ACD ∠=()A .B C D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知两个变量y 与x 对应关系如下表:x 12345y5m8910.5若y 与x 满足一元线性回归模型,且经验回归方程为ˆ125 4.25yx =+.,则()A .y 与x 正相关B .7m =C .样本数据y 的第60百分位数为8D .各组数据的残差和为010.若函数()()()2ln 1ln 1f x x x x=+--+,则()A .()f x 的图象关于()0,0对称B .()f x 在22⎛ ⎝⎭上单调递增C .()f x 的极小值点为22D .()f x 有两个零点11.已知正方体1111ABCD A B C D -的棱长为2,点M ,N 分别为棱1,DD DC 的中点,点P 为四边形1111D C B A (含边界)内一动点,且2MP =,则()A .1AB ∥平面AMNB .点P 的轨迹长度为π2C .存在点P ,使得MP ⊥平面AMND .点P 到平面AMN 三、填空题:本题共3个小题,每小题5分,共15分.12.写出函数()sin cos 1f x x x =+图象的一条对称轴方程.13.某人上楼梯,每步上1阶的概率为34,每步上2阶的概率为14,设该人从第1阶台阶出发,到达第3阶台阶的概率为.14.设()()1122,,,A x y B x y 为平面上两点,定义1212(,)d A B x x y y =-+-、已知点P 为抛物线2:2(0)C x py p =>上一动点,点(3,0),(,)Q d P Q 的最小值为2,则p =;若斜率为32的直线l 过点Q ,点M 是直线l 上一动点,则(,)d P M 的最小值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.如图,四棱台1111ABCD A B C D -的底面为菱形,14,3,60AB DD BAD ==∠=︒,点E 为BC 中点,11,D E BC D E ⊥=(1)证明:1DD ⊥平面ABCD ;(2)若112AD =,求平面11A C E 与平面ABCD 夹角的余弦值.16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E 的离心率为12,椭圆E 上的点到右焦点的最小距离为1.(1)求椭圆E 的方程;(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程.17.在一个袋子中有若干红球和白球(除颜色外均相同),袋中红球数占总球数的比例为p .(1)若有放回摸球,摸到红球时停止.在第2次没有摸到红球的条件下,求第3次也没有摸到红球的概率;(2)某同学不知道比例p ,为估计p 的值,设计了如下两种方案:方案一:从袋中进行有放回摸球,摸出红球或摸球5次停止.方案二:从袋中进行有放回摸球5次.分别求两个方案红球出现频率的数学期望,并以数学期望为依据,分析哪个方案估计p 的值更合理.18.已知函数2()e x f x ax x =--,()f x '为()f x 的导数(1)讨论()f x '的单调性;(2)若0x =是()f x 的极大值点,求a 的取值范围;(3)若π0,2θ⎛⎫∈ ⎪⎝⎭,证明:sin 1cos 1e e ln(sin cos )1θθθθ--++<.19.若数列{}n a 的各项均为正数,对任意*N n ∈,有212n n n a a a ++≥,则称数列{}n a 为“对数凹性”数列.(1)已知数列1,3,2,4和数列1,2,4,3,2,判断它们是否为“对数凹性”数列,并说明理由;(2)若函数231234()f x b b x b x b x =+++有三个零点,其中0(1,2,3,4)i b i >=.证明:数列1234,,,b b b b 为“对数凹性”数列;(3)若数列{}n c 的各项均为正数,21c c >,记{}n c 的前n 项和为n S ,1n n W S n=,对任意三个不相等正整数p ,q ,r ,存在常数t ,使得()()()r p q p q W q r W r p W t -+-+-=.证明:数列{}n S 为“对数凹性”数列.1.D【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由220x x --<,即()()120x x +-<,解得12x -<<,所以{}{}21220|B xx x x x <-=-=<-<∣,又{}{}202A xx x x =+>=>-∣∣,所以{}12A B x x =-<< ∣.故选:D 2.A【分析】利用双曲线方程先含参表示渐近线方程,待定系数计算即可.【详解】依题意,得0m >,令2204y x y x m -=⇒=,即C 的渐近线方程为y x =,21m=⇒=.故选:A 3.D【分析】根据三角函数的定义求出sin α,cos α,再由两角差的余弦公式计算可得.【详解】因为ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,即122P ⎛⎫ ⎪ ⎪⎝⎭,即角α的终边经过点1322P ⎛⎫ ⎪ ⎪⎝⎭,所以sin α=,1cos 2α=,所以πππ11cos cos cos sin sin 66622ααα⎛⎫-=+== ⎪⎝⎭.故选:D 4.B【分析】设0ϕ所对应的极径为0ρ,10π2ϕϕ=+所对应的极径为1ρ,根据所给表达式及指数幂的运算法则计算可得.【详解】设0ϕ所对应的极径为0ρ,则0π0e ϕρα=,则10π2ϕϕ=+所对应的极径为0π2π1eϕρα+=,所以0000ππ222π1πππ1e e e e ϕϕϕϕραρα++-===,故ϕ每增加π2个单位,则ρ变为原来的12e 倍.故选:B 5.A【分析】根据已知条件分别求出a b ⋅ 和b ,然后按照平面向量的投影向量公式计算即可得解.【详解】(1,1),(2,0)a b =-=,2a b ⋅=-,2b =,a 在b 上的投影向量为()()22,01,04a b b bb⋅-⋅==-.故选:A.6.C【分析】利用圆柱及球的特征计算即可.【详解】由题意可知该球为圆柱的外切球,所以球心为圆柱的中心,设球半径为r ,则r =,故该球的表面积为24π8πr =.故选:C 7.C【分析】设()i ,R z x y x y =+∈,根据||1z =和|1||i |z z -=-求出交点坐标,即可求出12,z z ,再计算其模即可.【详解】设()i ,R z x y x y =+∈,则()11i z x y -=-+,()i 1i z x y -=+-,由||1z =和|1||i |z z -=-,所以221x y +=且()()222211x y y x -+=-+,即221x y +=且x y =,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩或22x y ⎧=-⎪⎪⎨⎪=-⎪⎩,所以122z =+、2i 22z =-(或122i 22z =--、222i 22z =+),则21i i 2222z z ⎛⎫-=--- ⎪ ⎪⎝⎭(或21z z -=),所以122z z -=.故选:C 8.B【分析】在Rt ADC 中,设ACD θ∠=,AC x =,即可表示出CB,CD ,再在BCD △中利用正弦定理得cos sin(60)x θθ-︒,再由两角差的正弦公式及同角三角函数的基本关系将弦化切,即可得解.【详解】在Rt ADC 中,设ACD θ∠=π02θ⎛⎫<<⎪⎝⎭,令AC x =()0x >,则2CB x =,cos CD x θ=,在BCD △中,可得120BCD θ∠=︒-,60CBD θ∠=-︒,由正弦定理sin sin BC CDCDB CBD=∠∠,cos sin(60)x θθ==-︒=,可得tan θ=tan ACD ∠=故选:B .【点睛】关键点点睛:本题解答关键是找到角之间的关系,从而通过设元、转化到BCD △中利用正弦定理得到关系式.9.AD【分析】利用相关性的定义及线性回归直线可判定A ,根据样本中心点在回归方程上可判定B ,利用百分位数的计算可判定C ,利用回归方程计算预测值可得残差即可判定D.【详解】由回归直线方程知:1.250>,所以y 与x 正相关,即A 正确;由表格数据及回归方程易知32.53, 1.253 4.257.55mx y m +==⨯+=⇒=,即B 错误;易知560%3⨯=,所以样本数据y 的第60百分位数为898.52+=,即C 错误;由回归直线方程知1,2,3,4,5x =时对应的预测值分别为 5.5,6.75,8,9.25,.5ˆ10y=,对应残差分别为0.5,0.75,0,0.25,0--,显然残差之和为0,即D 正确.故选:AD 10.AC【分析】首先求出函数的定义域,即可判断奇偶性,从而判断A ,利用导数说明函数的单调性,即可判断B 、C ,求出极小值即可判断D.【详解】对于函数()()()2ln 1ln 1f x x x x =+--+,令10100x x x +>⎧⎪->⎨⎪≠⎩,解得10x -<<或01x <<,所以函数的定义域为()()1,00,1-U ,又()()()()()()22ln 1ln 1ln 1ln 1f x x x x x f x x x ⎡⎤-=--+-=-+--+=-⎢⎥⎣⎦,所以()f x 为奇函数,函数图象关于()0,0对称,故A 正确;又()22221121122211111f x x x x x x x x x---'=--=+-=-+-+--222222222(1)24(1)(1)x x x x x x x ----==--,当x ⎛∈ ⎝⎭时,()0f x '<,即()f x在⎛ ⎝⎭上单调递减,故B 错误;当2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x ¢>,即()f x在,12⎛⎫ ⎪ ⎪⎝⎭上单调递增,根据奇函数的对称性可知()f x 在21,2⎛⎫- ⎪ ⎪⎝⎭上单调递增,在22⎛⎫- ⎪ ⎪⎝⎭上单调递减,所以()f x 的极小值点为22,极大值点为22-,故C 正确;又(()ln 320f x f ==++⎝⎭极小值,且当x 趋近于1时,()f x 趋近于无穷大,当x 趋近于0时,()f x 趋近于无穷大,所以()f x 在()0,1上无零点,根据对称性可知()f x 在()1,0-上无零点,故()f x 无零点,故D 错误.故选:AC .11.ABD【分析】利用线线平行的性质可判定A ,利用空间轨迹结合弧长公式可判定B ,建立空间直角坐标系,利用空间向量研究线面关系及点面距离可判定C 、D.【详解】对于A ,在正方体中易知1111//,////MN CD CD A B NM A B ⇒,又1⊄A B 平面AMN ,MN ⊂平面AMN ,所以1A B ∥平面AMN ,即A 正确;对于B ,因为点P 为四边形1111D C B A (含边界)内一动点,且2MP =,11MD =,则1DP =P 点轨迹为以1D所以点P的轨迹长度为132ππ42⨯,故B 正确;对于C ,建立如图所示空间直角坐标系,则()()())π2,0,0,0,0,1,0,1,0,,,20,2A M N Pθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,所以()())2,0,1,2,1,0,,1AM AN MP θθ=-=-=,若存在点P ,使得MP ⊥面AMN,则100AM MP AN MP θθθ⎧⋅=-=⎪⎨⋅=-=⎪⎩,解之得sin ,cos θθ=即不存在点P ,使得MP ⊥面AMN ,故C 错误;对于D ,设平面AMN 的一个法向量为(),,n x y z = ,则2020AM n x z AN n x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取12x y z =⇒==,即()1,2,2n =,则点P 到平面AMN的距离()221πtan ,0,3322n MP d n θϕθθϕϕ⋅++⎛⎫++⎛⎫====∈ ⎪⎪⎝⎭⎝⎭ ,显然π2θϕ+=时取得最大值max d =D 正确.故选:ABD【点睛】思路点睛:对于B ,利用定点定距离结合空间轨迹即可解决,对于C 、D 因为动点不方便利用几何法处理,可以利用空间直角坐标系,由空间向量研究空间位置关系及点面距离计算即可.12.π4x =(答案不唯一)【分析】利用二倍角公式及三角函数的图象与性质计算即可.【详解】易知1()sin 212f x x =+,所以()()πππ2πZ Z 242k x k k x k =+∈⇒=+∈,不妨取0k =,则π4x =.故答案为:π4x =(答案不唯一)13.1316【分析】先分①②两种方法,再由独立事件的乘法公式计算即可.【详解】到达第3台阶的方法有两种:第一种:每步上一个台阶,上两步,则概率为3394416⨯=;第二种:只上一步且上两个台阶,则概率为14,所以到达第3阶台阶的概率为911316416+=,故答案为:1316.14.232【分析】利用定义结合二次函数求最值计算即可得第一空,过P 作//PN x 并构造直角三角形,根据(,)d P M 的定义化折为直,结合直线与抛物线的位置关系计算即可.【详解】设2,2m P m p ⎛⎫ ⎪⎝⎭,则()()2221,30332222m m p d P Q m m m p p p p =-+-≥-+=-+-,322p⇒-=,即2p =,p m =时取得最小值;易知39:22l y x =-,2:4C x y =,联立有26180x x -+=,显然无解,即直线与抛物线无交点,如下图所示,过P 作//PN x 交l 于N ,过M 作ME PN ⊥,则(,)d P M PE EM PE EN PN =+≥+=(,M N 重合时取得等号),设2,4n P n ⎛⎫ ⎪⎝⎭,则223,64n n N ⎛⎫+ ⎪⎝⎭,所以()22133336622n PN n n =-+=-+≥,故答案为:2,32【点睛】思路点睛:对于曼哈顿距离的新定义问题可以利用化折为直的思想,数形结合再根据二次函数的性质计算最值即可.15.(1)证明见解析【分析】(1)连接DE 、DB ,即可证明BC ⊥平面1D DE ,从而得到1BC DD ⊥,再由勾股定理逆定理得到1DD DE ⊥,即可证明1DD ⊥平面ABCD ;(2)建立空间直角坐标系,利用空间向量法计算可得.【详解】(1)连接DE 、DB ,因为四边形ABCD 为菱形,60BAD ∠= 所以BDC 是边长为4的正三角形,因为E 为BC 中点,所以DE BC ⊥,DE =又因为11,D E BC D E DE E ⊥⋂=,1,D E DE ⊂平面1D DE ,所以BC ⊥平面1D DE ,又1DD ⊂平面1D DE ,所以1BC DD ⊥,又1D E =13DD =,DE =所以22211DD DE D E +=,所以1DD DE ⊥,又因为,,DE BC E DE BC =⊂ 平面ABCD ,所以1DD ⊥平面ABCD.(2)因为直线1,,DA DE DD 两两垂直,以D 为原点,1,,DA DE DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则()()()()()10,0,0,4,0,0,0,,2,2,2,0,3D A E C A -,所以()()1111,2,2A C AC EA ==-=- 设平面11A C E 的一个法向量为(),,n x y z = ,则11130230n A C x n EA x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,即43y x z ⎧=⎪⎨=⎪⎩,令3x =,得4y z ==,所以()4n = ,由题意知,()0,0,1m = 是平面ABCD 的一个法向量,设平面11A C E 与平面ABCD 的夹角为θ,则cos 13m n m n θ⋅===⋅ ,所以平面11A C E与平面ABCD 16.(1)22143x y +=(2)10x y +-=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B 、C 坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121ca a c abc ⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=;(2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A ==所以122y y =-①设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=,由韦达定理得()122122634934my y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩,把①式代入上式得222226349234my m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++,解得255m =±,所以直线l 的方程为:10x y -=或10x y -=.17.(1)1p-(2)答案见解析【分析】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,根据条件概率公式计算可得;(2)记“方案一”中红球出现的频率用随机变量X 表示,X 的可能取值为11110,,,,,15432,求出所对应的概率,即可得到分布列与数学期望,“方案二”中红球出现的频率用随机变量Y 表示,则()55,Y B p ~,由二项分布的概率公式得到分布列,即可求出期望,再判断即可.【详解】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,则()()21P A p =-,()()31P B p =-,所以()()()()()32(1)|1(1)P AB P B p P B A p P A P A p -====--;(2)“方案一”中红球出现的频率用随机变量X 表示,则X 的可能取值为:11110,,,,,15432,且()()501P X p ==-,()4115P X p p ⎛⎫==- ⎪⎝⎭,()3114P X p p ⎛⎫==- ⎪⎝⎭,()2113P X p p ⎛⎫==- ⎪⎝⎭,()112P X p p ⎛⎫==- ⎪⎝⎭,()1P X p ==,所以X 的分布列为:X 0151413121P 5(1)p -4(1)p p -3(1)p p -2(1)p p -()1p p-p 则()()()354211110(1)(1)1(1)115432E X p p p p p p p p p p =⨯-+⨯-+⨯-+⨯-+⨯-+⨯()4321(1)(1)(1)5432p p p p p p p p p ----=++++,“方案二”中红球出现的频率用随机变量Y 表示,因为()55,Y B p ~,所以5Y 的分布列为:()555C (1),0,1,2,3,4,5k k k P Y k p p k -==-=,即Y 的分布列为:Y 0152535451P 5(1)p -45(1)p p -3210(1)p p -3210(1)p p -()451p p -5p 所以()55E Y p =,则()E Y p =,因为()E X p >,()E Y p =,所以“方案二”估计p 的值更合理.18.(1)答案见解析(2)12a >(3)证明见解析【分析】(1)令()()g x f x '=,求出导函数,再分0a ≤和0a >两种情况讨论,分别求出函数的单调区间;(2)结合(1)分0a ≤、102a <<、12a =、12a >四种情况讨论,判断()f x 的单调性,即可确定极值点,从而得解;(3)利用分析法可得只需证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,只需证对任意10x -<<,有()2e ln 1(1)x x x ++<+,结合(2)只需证明()ln 1(10)x x x +<-<<,构造函数,利用导数证明即可.【详解】(1)由题知()e 21x f x ax =--',令()()21x g x f x ax =-'=-e ,则()e 2x g x a '=-,当0a ≤时,()()0,g x f x ''>在区间(),-∞+∞单调递增,当0a >时,令()0g x '=,解得ln2=x a ,当(),ln2x a ∞∈-时,()0g x '<,当()ln2,x a ∈+∞时,()0g x '>,所以()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增,综上所述,当0a ≤时,()f x '在区间(),-∞+∞上单调递增;当0a >时,()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增.(2)当0a ≤时,()00f '=,由(1)知,当(),0x ∈-∞时,()()0,f x f x '<在(),0∞-上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当102a <<时,ln20a <,且()00f '=,由(1)知,当()ln2,0x a ∈时,()()0,f x f x '<在()ln2,0a 上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当12a =时,ln20a =,则当(),x ∈-∞+∞时,()()0,f x f x '≥在(),-∞+∞上单调递增,所以()f x 无极值点,不合题意;当12a >时,ln20a >,且()00f '=;当(),0x ∈-∞时,()()0,f x f x '>在(),0∞-上单调递增;当()0,ln2∈x a 时,()()0,f x f x '<在()0,ln2a 上单调递减;所以0x =是函数()f x 的极大值点,符合题意;综上所述,a 的取值范围是12a >.(3)要证()sin 1cos 1e e ln sin cos 1θθθθ--++<,只要证()()sin 1cos 122e e ln sin ln cos sin cos θθθθθθ--+++<+,只要证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,因为π0,2θ⎛⎫∈ ⎪⎝⎭,则()()sin 0,1,cos 0,1θθ∈∈,所以只要证对任意01x <<,有12e ln x x x -+<,只要证对任意10x -<<,有()2e ln 1(1)x x x ++<+(※),因为由(2)知:当1a =时,若0x <,则()()01f x f <=,所以2e 1x x x --<,即2e 1x x x <++①,令函数()()ln 1(10)h x x x x =+--<<,则()1111x h x x x-'=-=++,所以当10x -<<时()0h x '>,所以()h x 在()1,0-单调递增;则()()00h x h <=,即()ln 1(10)x x x +<-<<,由①+②得()22e ln 121(1)x x x x x ++<++=+,所以(※)成立,所以()sin 1cos 1e e ln sin cos 1θθθθ--++<成立.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.(1)只有1,2,4,3,2是“对数凹性”数列,理由见解析(2)证明见解析(3)证明见解析【分析】(1)利用“对数凹性”数列的定义计算即可;(2)利用导数研究三次函数的性质结合()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同及“对数凹性”数列的定义计算即可;(3)将,p q 互换计算可得0=t ,令1,2p q ==,可证明{}n W 是等差数列,结合等差数列得通项公式可知()11n W c n d =+-,利用1n n W S n=及,n n S c 的关系可得()121n c c d n =+-,并判定{}n c 为单调递增的等差数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.【详解】(1)根据“对数凹性”数列的定义可知数列1,3,2,4中2234≥⨯不成立,所以数列1,3,2,4不是“对数凹性”数列;而数列1,2,4,3,2中222214423342⎧≥⨯⎪≥⨯⎨⎪≥⨯⎩均成立,所以数列1,2,4,3,2是“对数凹性”数列;(2)根据题意及三次函数的性质易知2234()23f x b b x b x =++'有两个不等实数根,所以221324324Δ44303b b b b b b =-⨯>⇒>,又0(1,2,3,4)i b i >=,所以2324243b b b b b >>,显然()1000x f b =⇒=>,即0x =不是()f x 的零点,又2312341111f b b b b x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,令1t x =,则()231234f t b b t b t b t =+++也有三个零点,即32123431b x b x b x b f x x +++⎛⎫= ⎪⎝⎭有三个零点,则()321234g x b x b x b x b =+++有三个零点,所以()212332g x b x b x b =++'有两个零点,所以同上有22221321313Δ44303b b b b b b b b =-⨯>⇒>>,故数列1234,,,b b b b 为“对数凹性”数列(3)将,p q 互换得:()()()r q p t q p W p vr W r q W t =-+-+-=-,所以0=t ,令1,2p q ==,得()()(2210r W r W r W -+-+-=,所以()()()()12121211r W r W r W W r W W =-+-=+--,故数列{}n W 是等差数列,记221211022S c c d W W c -=-=-=>,所以()()2111112n c c W c n c n d -⎛⎫=+-=+- ⎪⎝⎭,所以()21n n S nW dn c d n ==+-,又因为11,1,2n n n c n c S S n -=⎧=⎨-≥⎩,所以()121n c c d n=+-,所以120n n c c d +-=>,所以{}n c 为单调递增的等差数列,所以()11210,2,2n n n n n n n n cc c c c c c S ++++>>+==.所以()()()()()22212111124(1)2n n n n n n S S S n c c n n c c c c ++++-=++-+++()()()()22112211(1)22n n n c c c c n c c n n ++⎡⎤+++>++-+⎢⎥⎣⎦()()222112112(1)22n n c c c n c c n n ++++⎛⎫=++-+ ⎪⎝⎭()()()2221111(1)2n n n c c n n c c ++=++-++()()2211(1)2n n n n c c +⎡⎤=+-++⎣⎦()2110n c c +=+>所以212n n n S S S ++≥,数列{}n S 是“对数凹性”数列【点睛】思路点睛:第二问根据定义及三次函数的性质、判别式先判定2324243b b b b b >>,再判定()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同,再次利用导函数零点个数及判别式判定2213133b b b b b >>即可;第三问根据条件将,p q 互换得0=t ,利用赋值法证明{}n W 是等差数列,再根据1n n W S n=及,n n S c 的关系可得n c 从而判定其为单调递增数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.。

2025届泸州市泸县五中高三数学上学期第一次模拟考试卷及答案解析

2025届泸州市泸县五中高三数学上学期第一次模拟考试卷及答案解析

泸县五中高2022级高三上期第一次诊断性考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.共150分.考试时间120分钟.第I 卷(选择题 共58分)一、选择题:本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1. 已知全集U =R ,集合{|11}A x x =-<,{|1B x x =<或4}x ³,则()U A B =U ð( )A. {|12}x x <<B. {|04}x x <<C. {|12}x x £<D. {|04}x x <£【答案】B 【解析】【分析】根据并集、补集的定义进行计算得出结果.【详解】由{|1B x x =<或4}x ³得{|14}U B x x =£<ð,又{{|11}|02}A x x x x =-<=<<,所以(){|04}U x A x B =<<U ð.故选:B.2. 命题“(),1x $Î-¥,3210x x +-<”的否定是( )A. [1,]x $Î+¥,3210x x +-≥ B. (),1x $Î-¥,3210x x +-≥C. [1,]x "Î+¥,3210x x +-≥ D. (),1x "Î-¥,3210x x +-≥【答案】D 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系,可得:命题“(),1x $Î-¥,3210x x +-<”的否定是“(),1x "Î-¥,3210x x +-≥”.故选:D.3. 已知sin 4πsin 3aa =æö-ç÷èø,则tan a =( )A. -B.C.D.【答案】D 【解析】【分析】由正弦展开式和三角函数化简求值得出.【详解】sin 4πsin 3a a ==æö-ç÷èø,4=,所以tan 2tan a a =,解得tan a =故选:D4.已知tan q =,则cos2q =( )A. 89-B.89C. 79-D.79【答案】C 【解析】【分析】根据给定条件,利用二倍角公式,结合正余弦齐次式法计算即得.【详解】由tan q =,得22222222cos sin 1tan 7cos2cos sin cos sin 1tan 9q q q q q q q q q --=-===-++.故选:C5. 将函数()cos3f x x =的图象向右平移π6个单位,得到函数()g x 的图象,则函数()g x 的一条对称轴方程是( )A. π2x =B. π3x =C. π9x = D. π18x =【答案】A【解析】【分析】根据三角函数的图象变换及诱导公式结合三角函数的性质即可判定.【详解】由题意得()ππcos 3cos 3sin 362g x x x x éùæöæö=-=-=ç÷ç÷êúèøèøëû显然由()()πππ3πZ Z 263k x k k x k =+ÎÞ=+Î,当1k =时,π2x =是其一条对称轴,而B 、C 、D 三项,均不存在整数k 满足题意.故选:A6. {}n a 为等差数列,若11100a a +<,1190a a +>,那么n S 取得最小正值时,n 的值( )A. 11 B. 17C. 19D. 21【答案】C 【解析】【分析】由等差数列的性质可得10110,0a a ><,从而得0d <,由1()2n n n a a S +=,结合条件得到19200,0S S ><,即可求解.【详解】因为11100a a +<,1191020a a a +=>,所以10110,0a a ><,故等差数列{}n a 的公差0d <,又1()2n n n a a S +=,又11120100a a a a +=+<,1191020a a a +=>,得到1202020()02a a S +=<,1191919()02a a S +=>,所以n S 取得最小正值时,n 的值为19,故选:C.7. 如图,在正方形ABCD 中,E 为BC 的中点,P 是以AB 为直径的半圆弧上任意一点,设(,)AE xAD y AP x y =+ÎR uuu r uuu r uuu r,则2x y +的最小值为( )A. 1-B. 1C. 2D. 3【答案】B 【解析】【分析】建立平面直角坐标系,设00(,)P x y ,利用坐标法将,x y 用P 点坐标表示,即可求出2x y +的最小值.【详解】以A 点为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立如图所示的平面直角坐标系,设2AB =,00(,)P x y ,则(0,0)A ,(0,2)D ,(2,1)E ,半圆的方程为22(1)1(0)x y y -+=³,所以(2,1)AE =uuu r ,(0,2)AD =uuu r ,00(,)AP x y =uuu r,因为(,)AE xAD y AP x y =+ÎR uuu r uuu r uuu r,即00(2,1)(0,2)(,)x y x y =+,所以00212yx x yy =ìí=+î,即0002221y x y x x ì=ïïíï=-ïî,所以01212y x y x -+=+×,又00(,)P x y 是半圆上的任意一点,所以01cos x θ=+,0sin y q =,[0,]q p Î,所以1sin 2121cos θx y θ-+=+×+,所以当2pq =时,2x y +取得最小值1.故选:B【点睛】关键点点睛:本题主要考查二元变量的最值求法,关键是根据已知把几何图形放在适当的坐标系中,把有关点与向量用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.8. 已知函数ln ,0()ln(),0ax x x f x ax x x ->ì=í+-<î,若()f x 有两个极值点12,x x ,记过点11(,())A x f x ,22(,())B x f x 的直线的斜率为k ,若02e k <£,则实数a 的取值范围为( )A. 1,e e æùçúèûB. 1,2eæùçúèûC. (e,2e]D. 12,2eæ+ùçúèû【答案】A【解析】【分析】当0x >时,求导,根据()f x 有两个极值点可得0a >,由奇函数的定义可得()f x 为奇函数,不妨设210x x =->,则有21x a =,所以1,1ln B a a æö+ç÷èø,()1,1ln A a a æö--+ç÷èø.由直线的斜率公式k 的表达式,可得1(1ln ),e k a a a =+>,令1()(1ln ),e h a a a a =+>,利用导数可得()h a 在1,e æö+¥ç÷èø上单调递增,又由10,(e)2e e h h æö==ç÷èø,根据单调性可得实数a 的取值范围.【详解】当0x >时,函数()ln f x ax x =-的导数为()11ax f x a x x-¢=-=,由函数()f x 由两个极值点得0a >.当10x a<<时,()0f x ¢<,()f x 单调递减;当1x a>时,()0f x ¢>,()f x 单调递增.故当0x >时,函数()f x 的极小值点为1x a=.当0x <时,则0x ->,则()()()()()ln ln f x a x x ax x f x -=---=-+-=-éùëû,同理当0x >时,也有()()f x f x -=-,故()f x 为奇函数.不妨设210x x =->,则有21x a =,所以1,1ln B a a æö+ç÷èø,可得()1,1ln A a a æö--+ç÷èø,由直线的斜率公式可得2121()()(1ln ),0f x f x k a a a x x -==+>-,又0,1ln 0k a >+>,所以1e >a 设()1(1ln ),eh a a a a =+>,得()2ln 1(1ln )0h a a a =+=++>¢,所以()h a 在1,eæö+¥ç÷èø上单调递增,又由10,(e)2e e h h æö==ç÷èø,.由02e k <<,得()1()e e h h a h æö<£ç÷èø,所以1e ea <£.故选:A.【点睛】对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知关于x 的不等式20ax bx c ++>的解集为()(),12,-¥+¥U ,则()A. 0a >且0c >B. 不等式0bx c +>的解集是23x x ìü>íýîþC. 0a b c -+>D. 不等式20cx bx a ++<的解集为1,12æöç÷èø【答案】ACD 【解析】【分析】由题意可知a >0且1和2是方程ax 2+bx +c =0的两个根,根据韦达定理可得3,2b a c a =-=,由此易判断A,将b c 、替换成a ,由此可求B 、D ,结合二次函数的图象可以判断C.【详解】Q 关于的的不等式20ax bx c ++>的解集为()(),12,¥¥-È+,0a \>且1和2是方程ax 2+bx +c =0的两个根,12123,2b cx x x x a a\+=-===,3,2b a c a \=-=对A,0,20a c a >\=>Q ,故A 正确.对B,3,2,0b a c a bx c =-=\+>Q 可化为320ax a -+>0320a x >\-+>Q ,解的23x <,\不等式0bx c +>的解集为23x x ìü<íýîþ,故B 错误.对C,0a >Q ,1和2是方程ax 2+bx +c =0的两个根,且二次函数y =ax 2+bx +c 开口向上,\当x =―1时,0y >,即0a b c -+>,故C 正确.对D ,不等式20cx bx a ++<可化为2230ax ax a -+<,202310a x x >\-+<Q ,即()()2110x x --<,解得112x <<,\不等式20cx bx a ++<的的集为1{1}2x x <<∣,故D 正确.故选:ACD10. 已知函数2()log (1)f x x =-,若12x x <,12()()f x f x =,则( )A. 122x x << B. 122x x << C.12111x x +=D. 1223x x ++>【答案】ACD 【解析】【分析】作出函数2()log (1)f x x =-的图象,根据12x x <,12()()f x f x =,结合函数图象逐项判断.【详解】作出函数2()log (1)f x x =-的图象,如图所示:因为12x x <,12()()f x f x =,由图象可知:12122,x x <<<,故A 正确;B 错误;由12()()f x f x =,得2122log (1)log (1)x x -=-,即2122log (1)log (1)x x --=-,所以12(1)(1)1x x --=,即1212x x x x =+,所以12111x x +=,故C 正确;因为121223(1)2(1)x x x x +=-+-³=-12(1)2(1)x x -=-时,等号成立,因12x x <,所以122(1)12(1)x x x -<-<-,所以取不到等号,故D 正确.故选:ACD【点睛】关键点点睛:本题关键是将12()()f x f x =转化为12(1)(1)1x x --=而得解.11. 已知数列{}n a 满足11a =,211n n a a +=+,则( )A. 2n a n³ B. 12n n a -³C. 12161n n a -³+ D. 122log 4n n a -³【答案】BCD 【解析】【分析】先证明{}n a 是递增数列,且各项均为正,由递推公式求得234,,a a a 发现A 错误,然后由递推关系利用基本不等式变成不等式2n n a a ³,让n 依次减1进行归纳得出B 正确,由递推式适当放缩得222421()n n n n a a a a ++>>=,这样对2n a 进行归纳得出21444222242()()()n n n n a a a a --->>>>L 142n -=,此不等式两边取以2为底的对数可证明选项D ,对142n -由指数幂运算法则变形为1244216n n --=,然后证明241n n ->-,再结合{}n a 是正整数可得证C .【详解】221131()024n n n n n a a a a a +-=-+=-+>,∴1n n a a +>,{}n a 是递增数列,又11a =,所以0n a >,22a =,35a =,426a =,233a <,A 显然错误;2211112222n n n n n n a a a a a +-=+³³³³=L ,∴12n n a -³,B 正确;对选项C ,222421()n n n n a a a a ++>>=,∴244442222424()()n n n n a a a a --->>=,依此类推:21444222242()()()n n n n a a a a --->>>>L 142n -=,1244216n n --=,下证241n n -³-,1n =时,140-³,2n =时,0411=³,3n =时,242>,假设n k =时,241k k -³-成立,2k >,为则1n k =+时,1224444(1)(1)1k k k k +--=׳->+-,所以对任意不小于3的正整数n ,241n n ->-,所以24121616n n n a --=>,又2n a 是正整数,所以12161n n a -³+,C 正确;对选项D ,由选项C 得1422n n a -³,所以141222log log 24n n n a --³=, D 正确.故选:BCD .第II 卷(非选择题共92分)注意事项:(1)非选择题的答案必须用0.5毫米黑色签字笔直接答在答题卡上,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,答在试题卷和草稿纸上无效.(2)本部分共8个小题,共92分.三、填空题:本大题共3小题,每小题5分,共计15分.12. 已知函数()2log ,02,12,2,2x x f x x x ì<£ï=í-+>ïî则()()3f f =______.【答案】1【解析】【分析】结合分段函数解析式,由内向外计算即可.【详解】由题意得()1133222f =-´+=,211log 122f æö==ç÷èø.所以((3))1f f =,故答案为:1.13. 计算:14cos10tan10-=o o____________【解析】【分析】切化弦,通分后结合二倍角和两角和差正弦公式可化简求得结果.【详解】1cos10cos104sin10cos10cos102sin 204cos104cos10tan10sin10sin10sin10---=-==o o o o o o o oo o o o()cos102sin 3010sin10--====o o o o.14. 已知函数2()(1)ln 2x f x mx x mx =-+-,函数()()g x f x ¢=有两个极值点12,x x .若110,e x æùÎçúèû,则()()12g x g x -的最小值是______.【答案】4e【解析】【分析】求导后可知12,x x 是方程210x mx ++=在()0,¥+上的两根,结合韦达定理可得211x x =,111a x x æö=-+ç÷èø;将()()12g x g x -化为11111112ln 2x x x x x æöæö-++-ç÷ç÷èøèø,令()11122ln 0e h x x x x x x x æöæöæö=--+<£ç÷ç÷ç÷èøèøèø,利用导数可求得()min h x ,从而得到结果.【详解】因为2()(1)ln 2x f x mx x mx =-+-,令()()g x f x ¢=()11ln ln 0mx m x x m m x x x x x-=++-=+->,因为()222111m x mx g x x x x++=++=¢,()g x 有两个极值点12,x x ,所以12,x x 是方程210x mx ++=在()0,¥+上的两根,所以12x x m +=-,121x x =,所以211x x =,111m x x æö=-+ç÷èø,所以()()1211221211ln ln g x g x m x x m x x x x -=+---+111111*********ln ln 2ln 2m x x m x x x x x x x x x æöæö=+-+-+=-++-ç÷ç÷èøèø,设()11122ln ,0e h x x x x x x x æöæöæö=--+<£ç÷ç÷ç÷èøèøèø,则()()()222221122122ln 21ln x x h x x x x x x x +-æöæö¢=+---+=-ç÷ç÷èøèø,所以当10,ex æùÎçúèû时,()0h x ¢<,所以()h x 在10,e æùçúèû上单调递减,所以()min 11142e 2e e e e eh x h æöæöæö==-++=ç÷ç÷ç÷èøèøèø,即()()12g x g x -的最小值为4e .故答案为:4e.【点睛】思路点睛:本题考查利用导数求解函数最值的问题;本题求解最值的基本思路是将多个变量统一为关于一个变量的函数的形式,通过构造函数将问题转化为函数最值的求解问题.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()()sin f x x w j =+(其中0w >,π02j <<)的最小正周期为π,且___________.①点π,112æöç÷èø在函数()y f x =的图象上;②函数()f x 的一个零点为π6-;③()f x 的一个增区间为5ππ,1212æö-ç÷èø.请你从以上三个条件选择一个(如果选择多个,则按选择的第一个给分),补充完整题目,并求解下列问题:(1)求()f x 的解析式;(2)用“五点作图法”画出函数()f x 一个周期内的图象.【答案】(1)无论选哪个条件,函数()f x 的解析式均为()πsin 23f x x æö=+ç÷èø. (2)答案见解析【解析】【分析】(1)若选①,则ππsin 211212f j æöæö=´+=ç÷ç÷èøèø,若选②,则ππsin 063f j æöæö-=-+=ç÷ç÷èøèø,若选③,则5ππππ,,6622j j æöæö-++=-ç÷ç÷èøèø,由此求出分别求出j 即可得解.(2)直接用“等距法”按照五点画图的步骤作图即可.【小问1详解】由题意最小正周期为2ππ,>0T w w==,解得2w =,所以()()sin 2f x x j =+,若选①,则ππsin 211212f j æöæö=´+=ç÷ç÷èøèø,所以ππ2π,Z 62k k j +=+Î,又π02j <<,所以π0,3k j ==,所以函数()f x 的解析式为()πsin 23f x x æö=+ç÷èø;若选②,则ππsin 063f j æöæö-=-+=ç÷ç÷èøèø,所以ππ,Z 3k k j -+=Î,又π02j <<,所以π0,3k j ==,所以函数()f x 的解析式为()πsin 23f x x æö=+ç÷èø;若选③,即()f x 的一个增区间为5ππ,1212æö-ç÷èø,当5ππ,1212x æöÎ-ç÷èø时,5ππ2,66t x j j j æö=+Î-++ç÷èø,又π02j <<,由复合函数单调性可知,只能5ππππ,,6622j j æöæö-++=-ç÷ç÷èøèø,π3j =,所以函数()f x 解析式为()πsin 23f x x æö=+ç÷èø;综上所述,无论选哪个条件,函数()f x 的解析式均为()πsin 23f x x æö=+ç÷èø.【小问2详解】列表如下:xπ6-π12π37π125π6π23t x =+π2π3π22π()πsin 23f x x æö=+ç÷èø0101-0的描点、连线(光滑曲线)画出函数()f x 一个周期内的图象如图所示:16. 已知定义在R 上的函数1()1xxa f x a-=+(0a >且1a ¹).(1)判断函数奇偶性,并说明理由;(2)若1(1)2f =-,试判断函数()f x 的单调性并加以证明;并求()10f x m +-=在[2,3]-上有解时,实数m 的取值范围.【答案】(1)()f x 为奇函数,理由见解析 (2)()f x 为减函数,证明见解析;51914,m éùÎêúëû【解析】【分析】(1)先判断函数的奇偶性,再利用定义证明即可.(2)求出参数值得到原函数,再转化为交点问题求解参数范围即可.【小问1详解】()f x 为奇函数对任意x ÎR ,都有R x -Î,且该函数的定义域为R ,显然关于原点对称,可得1111()()01111x x x x x x xx a a a a f x f x a a a a ------+-=+=+=++++.()f x \为奇函数.【小问2详解】当1(1)2f =-时,可得2111a a -+=-,解得3a =,此时13()13xxf x -=+在R 上为严格减函数,证明如下:任取21x x >,且12,R x x Î,则()()21212113131313x x x x f x f x ---=-++的()()()()()12121122123(13)(13)(13)(13)2131313133x x x x x x x x x x -+--++++=+-=,21x x >Q ,21330x x >>,()()210f x f x \-<,()f x \在R 上为严格减函数,而413(2),(4)513f f -=-=-,13()13xxf x -\=+在[2,3]-上的值域为13,5414éù-êúëû,要使()10f x m +-=在[2,3]-上有零点,此时等价于y m =与()1y f x =+在[2,3]-上有交点,而当[2,3]x Î-时,可得()1,,51914f x éù+Îêúëû故51914,m éùÎêúëû.17. 在ABCV 中,已知)tan tan tan tan 1A B A B +=-.(1)求C ;(2)记G 为ABC V 的重心,过G 的直线分别交边,CA CB 于,M N 两点,设,CM CA CN CB l m ==uuuu r uuu r uuu r uuu r .(i )求11lm+的值;(ii )若CA CB =,求CMN V 和ABC V 周长之比的最小值.【答案】(1)π3C = (2)(i )3(ii )23【解析】【分析】(1)借助三角形内角关系及两角和的正切公式化简并计算即可得;(2)(i )设D 为AB 的中点,结合重心的性质及向量运算可得1133CG CM CN l m=+uuu r uuuu r uuu r,再利用三点共线定理即可得解;(ii )由题意可得ABC V 为等边三角形,可设其边长为1,则可用,l m 表示两三角形周长之比,结合(i )中所得与基本不等式即可得解.【小问1详解】由题可知()()tan tan tan tan πtan 1tan tan A BC A B A B A B+=--=-+=-=-又()0,πC Î,所以π3C =;【小问2详解】(i )设D 为AB 的中点,则1122CD CA CB =+uuu r uuu r uuu r,又因为23CG CD =uuu r uuu r,所以11113333CG CA CB CM CN l m=+=+uuu r uuu r uuu r uuuu r uuu r ,因,,M G N 三点共线,所以11133l m +=,所以113l m+=;(ii )由CA CB =,π3C =,可得ABC V 为等边三角形,设ABC V 的边长为1,CMN V 与ABC V 周长分别为12,C C ,则23C =,MN =,所以1C l m =+所以12C C =由113lm+=可得,3lm l =+,解得49lm ³,易知函数y x =4,9éö+¥÷êëø上单调递增,所以12C C lm =³所以CMN V 和ABC V 的周长之比的最小值为23.18. 已知等比数列{}n a 的各项均为正数,5462,,4a a a 成等差数列,且满足2434a a =,等差数列数列{b n }的前n 项和244,6,10n S b b S +==.(1)求数列{}n a 和{b n }的通项公式;(2)设{}*252123,,n n n n n n b d a n d b b +++=ÎN 的前n 项和n T ,求证:13n T <.(3)设()()n n n n b n c a b n ìï=í×ïî为奇数为偶数,求数列{}n c 的前2n 项和.【答案】(1)1()2nn a =;n b n =(2)证明见解析 (3)2868994nn n ++-×【解析】为【分析】(1)设等比数列{}n a 的公比为q ,等差数列{b n }的公差为d ,根据题意,列出方程组,分别求得11,,,a q b d 的值,即可求得数列{}n a 和{b n }的通项公式;(2)由(1)求得111(21)2(23)2[]2n n n d n n +-=+×+×,结合裂项法求和,求得数列{}n d 的前n 项和113(23)2n nT n =-+×,即可得证;(3)根据题意,求得数列{}n c 的通项公式,结合等差数列的求和公式和乘公比错位法求和,即可求解.【小问1详解】解:由等比数列{}n a 的各项均为正数,设公比为(0)q q >,因为5462,,4a a a 成等差数列,且满足2434a a =,可得4562432244a a a a a =+ìí=î,即()3451112321124a q a q a q a q a q ì=+ïí=ïî,即211214q q a q ì=+í=î,解得111,22a q ==,所以1111((222n nn a -=×=,设等差数列{b n }的公差为d ,因为2446,10b b S +==,可得112464610b d b d +=ìí+=î,解得11b d ==,所以1(1)1n b n n =+-´=,即数列{b n }的通项公式为n b n =.【小问2详解】证明:由(1)知1()2nn a =,n b n =,可得252123125111()(21)(23[)2(21)2(23)22n n n n n n n n b d a b b n n n n n +++++=×-+++×+×=,则()()11111111123254547878916212232n n n T n n +éùæöæöæöæö=-+-+-++-êúç÷ç÷ç÷ç÷ç÷××××××+×+×èøèøèøêúèøëûL 111112[]6(23)23(23)2n nn n +=×-=-+×+×,因为10(23)2n n >+×,所以1113(23)23n n -<+×,故13nT <.【小问3详解】解:因为()()n n n n b n c a b n ìï=í×ïî为奇数为偶数,可得,1,2n n n n c n n ìï=íæö×ïç÷èøî为奇数为偶数,则数列{}n c 的前2n 项和2111(1321)(2424162n n M n n =+++-+×+×++×L L ,令()2(121)13212n n n U n n +-=+++-==L ,令21112424162n n V n =×+×++×L ,则221111242416642n n V n +=×+×++×L ,两式相减得21222211(1)3111111242214283222214n n n n n n n -++×-=++++-×=-×-L 21212141112341()3222332n n n n n ++++=×--×=-×,所以8681868994994n n nn n V ++=-×=-×,所以数列{}n c 的前2n 项和2868994n n n nn M U V n +=+=+-×.19. 已知函数()()()ln 3cos 2f x x x =-+-的图象与()g x 的图象关于直线1x =对称.(1)求函数()g x 的解析式;(2)若()1g x ax -£在定义域内恒成立,求a 的取值范围;(3)求证:()2*11ln 2ni n g n n i =+æö<+Îç÷èøåN .【答案】(1)()()ln 1cos g x x x =++ (2)1 (3)证明见解析【解析】【分析】(1)根据两函数关于1x =对称求解析式即可;(2)先探求1a =时成立,再证明当1a =时恒成立,证明过程利用导数求出函数极大值即可;(3)根据(2)可得111g i i æö£+ç÷èø,转化为211111112212ni n g n i n n n n =+æöæö£+++++ç÷ç÷++-èøèøåL ,再由()11ln ln 1ln 1n n n n n+<=+-+,累加相消即可得证.【小问1详解】设()g x 图象上任意一点00(,)P x y ,则其关于直线1x =的对称点为00(2,)P x y ¢-,由题意知,P ¢点在函数()f x 图象上,所以()()()000002ln 1cos y g x f x x x ==-=++,所以()()ln 1cos g x x x =++.【小问2详解】不妨令()()1ln(1)cos 1(1)h x g x ax x x ax x =--=++-->-,则()0≤h x 在(1,)-+¥上恒成立,注意到(0)0h =且()h x 在(1,)Î-+¥x 上是连续函数,则0x =是函数()h x 的一个极大值点,所以(0)0h ¢=,又()1sin 1h x x a x ¢=--+,所以()010h a =¢-=,解得 1.a =下面证明:当1a =时,()0≤h x 在()1,x ¥Î-+上恒成立,令()()()ln 11x x x x j =+->-,则()1111x x x x j -=-=¢++,当(1,0)x Î-时,()0x j ¢>,()j x 单调递增;当(0,)x Î+¥时,()0,()x x j j ¢<单调递减,所以()(0)0x j j £=,即ln(1)x x +£在(1,)Î-+¥x 上恒成立,又cos 10x -£,所以()0≤h x ,综上,1a =.【小问3详解】由(2)知,()1g x x -£,则111g i iæö-£ç÷èø,111g i iæö\£+ç÷èø,211111112212ni n g n i n n n n =+æöæö\£+++++ç÷ç÷++-èøèøåL ,又由(2)知:ln(1)x x +£在(1,)-+¥恒成立,则ln 1£-x x 在(0,+∞)上恒成立,当且仅当1x =时取等号,则令()*0,1,N 1nx n n =ÎÎ+,则1<1ln 1n n n +-+,()11ln ln 1ln .1n n n n n +\<=+-+()()()()()111ln 1ln ln 2ln 1ln 2ln 21ln 2.122n n n n n n n n n\+++<+-++-+++--=++L L()2*11ln 2ni n g n n i =+æö\<+Îç÷èøåN ,证毕.【点睛】关键点点睛:在证明第(3)问时,关键应用(2)后合理变形,得到211111112212ni n g n i n n n n =+æöæö£+++++ç÷ç÷++-èøèøåL ,再令()*0,1,N 1n x n n =ÎÎ+,利用(2)中式子得()11ln ln 1ln 1n n n n n+<=+-+,能够利用累加相消是证明的关键.。

浙江省杭州市下学期2025届高三第四次模拟考试数学试卷含解析

浙江省杭州市下学期2025届高三第四次模拟考试数学试卷含解析

浙江省杭州市下学期2025届高三第四次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形ABCD 为朱方,正方形BEFG 为青方”,则在五边形AGFID 内随机取一个点,此点取自朱方的概率为( )A .1637B .949C .937D .3112.执行程序框图,则输出的数值为( )A .12B .29C .70D .1693.已知函数()()sin f x A x =+ωϕ(其中0A >,0>ω,0ϕπ<<)的图象关于点5,012M π⎛⎫⎪⎝⎭成中心对称,且与点M 相邻的一个最低点为2,33N π⎛⎫- ⎪⎝⎭,则对于下列判断: ①直线2x π=是函数()f x 图象的一条对称轴;②点,012π⎛⎫-⎪⎝⎭是函数()f x 的一个对称中心; ③函数1y =与()351212y f x x ππ⎛⎫=-≤≤⎪⎝⎭的图象的所有交点的横坐标之和为7π. 其中正确的判断是( ) A .①②B .①③C .②③D .①②③4.已知双曲线2222x y 1(a 0,b 0)a b-=>>,过原点作一条倾斜角为π3直线分别交双曲线左、右两支P ,Q 两点,以线段PQ 为直径的圆过右焦点F ,则双曲线离心率为( ) A .21+ B .31+ C .2D .55.已知,都是偶函数,且在上单调递增,设函数,若,则( )A .且B .且C .且D .且6.过抛物线22x py =(0p >)的焦点且倾斜角为α的直线交抛物线于两点A B ,.2AF BF =,且A 在第一象限,则cos2α=( ) A 5B .35C .79D 237.设函数()f x 定义域为全体实数,令()(||)|()|g x f x f x =-.有以下6个论断: ①()f x 是奇函数时,()g x 是奇函数; ②()f x 是偶函数时,()g x 是奇函数; ③()f x 是偶函数时,()g x 是偶函数; ④()f x 是奇函数时,()g x 是偶函数 ⑤()g x 是偶函数;⑥对任意的实数x ,()0g x . 那么正确论断的编号是( ) A .③④ B .①②⑥C .③④⑥D .③④⑤8.已知(),A A A x y 是圆心为坐标原点O ,半径为1的圆上的任意一点,将射线OA 绕点O 逆时针旋转23π到OB 交圆于点(),B B B x y ,则2AB yy +的最大值为( )A .3B .2C .3D .59. 若x,y 满足约束条件x 0x+y-30z 2x-2y 0x y ≥⎧⎪≥=+⎨⎪≤⎩,则的取值范围是A .[0,6]B .[0,4]C .[6, +∞)D .[4, +∞)10.已知函数()1ln 11xf x x x+=++-且()()12f a f a ++>,则实数a 的取值范围是( ) A .11,2⎛⎫-- ⎪⎝⎭B .1,02⎛⎫-⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭11.已知平面向量a ,b ,c 满足:0,1a b c ⋅==,5a c b c -=-=,则a b -的最小值为( ) A .5B .6C .7D .812.已知三棱柱111ABC A B C -的所有棱长均相等,侧棱1AA ⊥平面ABC ,过1AB 作平面α与1BC 平行,设平面α与平面11ACC A 的交线为l ,记直线l 与直线,,AB BC CA 所成锐角分别为αβγ,,,则这三个角的大小关系为( )A .αγβ>>B .αβγ=>C .γβα>>D .αβγ>=二、填空题:本题共4小题,每小题5分,共20分。

2024届高三数学仿真模拟卷(天津卷)(全解全析)

2024届高三数学仿真模拟卷(天津卷)(全解全析)

2024年高考第三次模拟考试高三数学(天津卷)第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,2,本卷共9小题,每小题5分,共45分参考公式:•如果事件A 、B 互斥,那么()()()⋃=+P A B P A P B .•如果事件A 、B 相互独立,那么()()()P AB P A P B =.•球的体积公式313V R π=,其中R 表示球的半径.•圆锥的体积公式13V Sh =,其中S 表示圆锥的底面面积,h 表示圆锥的高。

一、选择题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}2120A x x x =--<,(){}2R log 51B x x =∈-<,则()A B =R I ð()A .{}34x x -<≤B .{}34x x -≤<C .{}4x x ≥D .{}45x x ≤<【答案】D【解析】由2120x x --<,得34x -<<,所以{}34A x x =-<<;由()2log 51x -<,得052x <-<,解得35x <<,所以{}35B x x =<<.所以{R 3A x x =≤-ð或}4x ≥,所以(){}R 45A B x x ⋂=≤<ð.故选:D .2.已知等差数列{}n a 的公差为d ,其前n 项和为n S ,则“0d >”是“81092S S S +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】因为8109810991091092220S S S S S S a a a a a d +>⇔+-=+-=-=>,所以“0d >”是“81092S S S +>”的充要条件.故选:C.3.华罗庚是享誉世界的数学大师,国际上以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华氏算子”“华—王方法”等,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”,告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数图象的特征.已知函数()y f x =的图象如图所示,则()f x 的解析式可能是()A .sin ()3xf x =B .cos ()3xf x =C .sin 1()3xf x ⎛⎫= ⎪⎝⎭D .cos 1()3xf x ⎛⎫= ⎪⎝⎭【答案】A【解析】由函数图象可知,()y f x =的图象不关y 轴对称,而()()cos cos ()33x xf x f x --===,()()cos cos 11()33x xf x f x -⎛⎫⎛⎫-=== ⎪⎪⎝⎭⎝⎭,即这两个函数均关于y 轴对称,则排除选项B 、D ;由指数函数的性质可知3xy =为单调递增函数,13xy ⎛⎫= ⎪⎝⎭为单调递减函数,由sin y x =的图象可知存在一个极小的值00x >,使得sin y x =在区间()00,x 上单调递增,由复合函数的单调性可知,sin ()3xf x =在区间()00,x 上单调递增,sin 1()3xf x ⎛⎫= ⎪⎝⎭在区间()00,x 上单调递减,由图象可知sin ()3x f x =符合题意,故选:A .4.已知0.10.52log 3,log 3,2a b c -===,则,,a b c 的大小关系是()A .a c b <<B .c a b <<C .a b c <<D .b<c<a【答案】A【解析】由题意得0.5log y x =在(0,)+∞上单调递减,2log y x =在(0,)+∞上单调递增,2x y =在R 上单调递增,故0.10.50.0522102121log 3log ,log 3log ,02a b c -=<<==<=>==,故a c b <<,故选:A5.下列说法错误的是()A .若随机变量ξ、η满足21ηξ=-且()3D ξ=,则()12D η=B .样本数据50,53,55,59,62,68,70,73,77,80的第45百分位数为62C .若事件A 、B 相互独立,则()(|)P A B P A =D .若A 、B 两组成对数据的相关系数分别为0.95A r =、0.98B r =-,则A 组数据的相关性更强【答案】D【解析】对于A :因为21ηξ=-且()3D ξ=,所以()()()221212D D D ηξξ=-=⨯=,故A 正确;对于B :因为1045% 4.5⨯=,所以第45百分位数为从小到大排列的第5个数,即为62,故B 正确;对于C :若事件A 、B 相互独立,则()()()P AB P A P B =,所以()()()()()()(|)P AB P A P B P A B P A P B P B ===,故C 正确;对于D :若A 、B 两组成对数据的相关系数分别为0.95A r =、0.98B r =-,因为B A r r >,所以B 组数据的相关性更强,故D 错误.故选:D6的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将半径为1的鸡蛋(视为球)放入其中,蛋巢形状保持不变,则鸡蛋最高点与蛋巢底面的距离为()A .322+B .32C .322+D .322+【答案】D【解析】由题得,蛋巢的底面是边长为1的正方形,故经过4个顶点截鸡蛋所得的截面圆的直径为1.由于鸡蛋(球)的半径为12=,而垂直折起的4个小直角三角形的高为12,故鸡蛋最高点与蛋巢底面的距离为1312222++=+.故选:D .7.已知函数()()ππ2sin 222f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于点π,03⎛⎫⎪⎝⎭中心对称,将函数()f x 的图像向右平移π3个单位长度得到函数()g x 的图像,则下列说法正确的是()A .()f x 在区间ππ36⎛⎫- ⎪⎝⎭,上的值域是(]12-,B .()2sin2g x x=-C .函数()g x 在π5π1212⎡⎤-⎢⎥⎣⎦,上单调递增D .函数()g x 在区间[]ππ-,内有3个零点【答案】C【解析】 函数()f x 的图像关于点π,03⎛⎫⎪⎝⎭中心对称,π2π2sin 033f ϕ⎛⎫⎛⎫∴=+= ⎪ ⎪⎝⎭⎝⎭,2ππ,Z 3k k ϕ∴+=∈,即2ππ,Z 3k k ϕ=-+∈,又ππ22ϕ-<<,π3ϕ∴=,则()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭.当ππ,36x ⎛⎫∈- ⎪⎝⎭时,ππ2π2,333x ⎛⎫+∈- ⎪⎝⎭,πsin 2,13x ⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦,()(2f x⎤∴∈⎦,故A 错误;将函数()f x 的图像向右平移π3个单位长度得到函数()π2sin 23g x x ⎛⎫=- ⎪⎝⎭的图像,故B 错误;令2223πππππ,22k x k k -+≤-≤+∈Z ,得π5πππ,1212k x k k -+≤≤+∈Z ,当0k =时,π51212πx -≤≤,∴函数()g x 在π5π,1212⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确;令π2π,3x k k -=∈Z ,得ππ62k x =+,k ∈Z ,∴函数()g x 在区间[]π,π-内的零点有5π6x =-,ππ2π,,363x x x =-==,共4个,故D 错误.故选:C.8.记双曲线C :22221x y a b-=(0a >,0b >)虚轴的两个端点分别为M ,N ,点A ,B 在双曲线C 上,点E在x 轴上,若M ,N 分别为线段EA ,EB 的中点,且60AEB ∠=︒,则双曲线C 的离心率为()ABC.3D【答案】C【解析】由题意得,M ,N 关于x 轴对称,则,A B 也关于x 轴对称且4AB b =,不妨设点A 在双曲线C 的右支上且在第一象限,其纵坐标为2b ,又因为260AEB AEO ∠=∠=︒,所以30AEO ∠=︒,所以4AE BE b ==,则ABE 为等边三角形,故),2Ab ,代入22221x y a b-=中,得2253b a =,则双曲线C的离心率c e a ===C 正确.故选:C.9.已知函数()()()eln 010xx f x x x x ⎧>⎪=⎨⎪+≤⎩,若关于x 的方程()()210f x af x a -+⎣⎦-⎤=⎡有8个不相等的实数根,则实数a 的取值范围为()A.()1,1-B.)1,1C.()2,1D.()1,2+【答案】C【解析】令()eln xh x x =,则()()2e 1ln x h x x-'=,令()0h x '=,解得e x =,故当0e x <<时,()()0,h x h x '>单调递增,当e x >时,()()0,h x h x '<单调递减,所以()()max e 1h x h ==,且当1x >时,()0h x >,当01x <<时,()0h x <,结合绝对值函数的图象可画出函数()f x的大致图象,如图所示:令()t f x =,则方程()()210f x af x a ⎡⎤-+-=⎣⎦,即方程()210t at a -+-=*,()22Δ4144a a a a =--=+-,①当Δ0<时,()*式无实数根,直线y t =和()f x 的图象无交点,原方程无实数根;②当Δ0=时,()*式有两个相等的实数根,直线y t =和()f x 的图象最多有4个交点,因此要使()()210f x af x a ⎡⎤-+-=⎣⎦有8个不相等的实数根,则()*式有两个不相等的实数根,不妨设为12,t t ,且12t t <,则1201t t <<<.则22Δ440012101110a a a a a a ⎧=+->⎪⎪<<⎪⎨⎪->⎪-⨯+->⎪⎩,解得21a <<.故选:C.第II 卷注意事项1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题,本大题共6小题,每小题5分,共30分,试题中包含两个空的,答对1个的给3分,全部答对的给5分。

安徽省淮北市、宿州市2025届高三第一次模拟考试数学试卷含解析

安徽省淮北市、宿州市2025届高三第一次模拟考试数学试卷含解析

安徽省淮北市、宿州市2025届高三第一次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将函数()sin 2f x x =的图象向左平移02πϕϕ⎛⎫≤≤ ⎪⎝⎭个单位长度,得到的函数为偶函数,则ϕ的值为( ) A .12π B .6π C .3π D .4π 2.函数||1()e sin 28x f x x =的部分图象大致是( ) A . B .C .D .3.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .174.抛物线22y x =的焦点为F ,则经过点F 与点()2,2M且与抛物线的准线相切的圆的个数有( )A .1个B .2个C .0个D .无数个5.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .6.已知a ,b 为两条不同直线,α,β,γ为三个不同平面,下列命题:①若//αβ,//αγ,则//βγ;②若//a α,//a β,则//αβ;③若αγ⊥,βγ⊥,则αβ⊥;④若a α⊥,b α⊥,则//a b .其中正确命题序号为( )A .②③B .②③④C .①④D .①②③7.已知六棱锥P ABCDEF -各顶点都在同一个球(记为球O )的球面上,且底面ABCDEF 为正六边形,顶点P 在底面上的射影是正六边形ABCDEF 的中心G ,若6PA 2AB =,则球O 的表面积为( )A .163πB .94π C .6πD .9π8.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( ) A .,5()4k k π⎛⎫-∈⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈⎪⎝⎭Z C .,4()5k k π⎛⎫-∈⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z 9.设一个正三棱柱ABC DEF -,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为10P ,则10P 为( )A .10111432⎛⎫⋅+ ⎪⎝⎭B .111132⎛⎫+ ⎪⎝⎭C .111132⎛⎫- ⎪⎝⎭D .10111232⎛⎫⋅+ ⎪⎝⎭10.已知()5x a +展开式的二项式系数和与展开式中常数项相等,则2x 项系数为( ) A .10B .32C .40D .8011.函数()()sin f x A x =+ωϕ(其中0A >,0>ω,2πϕ<)的图象如图,则此函数表达式为( )A .()3sin 24f x x π⎛⎫=+⎪⎝⎭B .()13sin 24f x x π⎛⎫=+⎪⎝⎭C .()3sin 24f x x π⎛⎫=- ⎪⎝⎭D .()13sin 24πf x x ⎛⎫=- ⎪⎝⎭12.中,如果,则的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形二、填空题:本题共4小题,每小题5分,共20分。

2025届陕西省延安市高三第一次模拟考试数学试卷含解析

2025届陕西省延安市高三第一次模拟考试数学试卷含解析

2025届陕西省延安市高三第一次模拟考试数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,矩形ABCD 中,1AB =,2BC =,E 是AD 的中点,将ABE △沿BE 折起至A BE ',记二面角A BE D '--的平面角为α,直线A E '与平面BCDE 所成的角为β,A E '与BC 所成的角为γ,有如下两个命题:①对满足题意的任意的A '的位置,αβπ+≤;②对满足题意的任意的A '的位置,αγπ+≤,则( )A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立2.35(1)(2)x y --的展开式中,满足2m n +=的m nx y 的系数之和为( )A .640B .416C .406D .236-3.M 是抛物线24y x =上一点,N 是圆()()22121x y -+-=关于直线10x y --=的对称圆上的一点,则MN 最小值是( ) A 111- B 31 C .221D .324.512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为 A .-40B .-20C .20D .405.已知ABC 是边长为3的正三角形,若13BD BC =,则AD BC ⋅=A .32- B .152 C .32D .152-6.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( )A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆7.如图,圆锥底面半径为2,体积为223π,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于( )A .12B .1C .104D .528.直三棱柱111ABC A B C -中,12CA CC CB ==,AC BC ⊥,则直线1BC 与1AB 所成的角的余弦值为( ) A .55B .53C .255D .359.执行下面的程序框图,如果输入1995m =,228n =,则计算机输出的数是( )A .58B .57C .56D .5510.若向量(0,2)m =-,(3,1)n =,则与2m n +共线的向量可以是( ) A .(3,1)-B .(3)-C .(3,1)-D .(1,3)-11.设f (x )是定义在R 上的偶函数,且在(0,+∞)单调递减,则( )A .0.30.43(log 0.3)(2)(2)f f f -->> B .0.40.33(log 0.3)(2)(2)f f f -->> C .0.30.43(2)(2)(log 0.3)f f f -->>D .0.40.33(2)(2)(log 0.3)f f f -->>12.已知n S 是等差数列{}n a 的前n 项和,若312S a S +=,46a =,则5S =( )A .5B .10C .15D .20二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学模拟考试卷(附答案解析)一、单选题(本大题共4小题,共20分。

在每小题列出的选项中,选出符合题目的一项)1.已知p:sinx=siny,q:x=y,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件2.已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,则此双曲线的渐近线方程为()A. y=±3xB. y=±2xC. y=±2xD. y=±x3.函数y=f(x)是定义域为R的奇函数,且对于任意的x1≠x2,都有f(x1)−f(x2)x1−x2<1成立.如果f(m)>m,则实数m的取值集合是()A. {0}B. {m|m>0}C. {m|m<0}D. R4.已知数列{an}满足a1+a2+⋯+an=n(n+3),n∈N*,则an=()A. 2nB. 2n+2C. n+3D. 3n+1二、填空题(本大题共12小题,共54分)5.不等式|2x+1|+|x−1|<2的解集为______.6.函数f(x)=x+9x(x>0)的值域为______.7.函数f(x)=sinx+cosx(x∈R)的最小正周期为______.8.若an为(1+x)n的二项展开式中x2项的系数,则n→+∞lim ann2=______.9.在所有由1,2,3,4,5这五个数字组成的无重复数字的五位数中,任取一个数,则取出的数是奇数的概率为______.10.若实数x,y满足x+y≤4y≤3xy≥0,则2x+3y的取值范围是______.11.已知向量a,b满足|a|=2,|b|=1,|a+b|=3,则|a−b|=______.12.已知椭圆C:x29+y2b2=1(b>0)的左、右两个焦点分别为F1、F2,过F2的直线交椭圆C于A,B两点.若△F1AB是等边三角形,则b的值等于______.13.已知等比数列{an}的前n项和为Sn,公比q>1,且a2+1为a1与a3的等差中项,S3=14.若数列{bn}满足bn=log2an,其前n项和为Tn,则Tn=______.14.已知A,B,C是△ABC的内角,若(sinA+i⋅cosA)(sinB+i⋅cosB)=12+32i,其中i为虚数单位,则C 等于______.15.设a∈R,k∈R,三条直线l1:ax−y−2a+5=0,l2:x+ay−3a−4=0,l3:y=kx,则l1与l2的交点M到l3的距离的最大值为.16.设函数f(x)=x2−1,x≥a|x−a−1|+a,x<a,若函数f(x)存在最小值,则a的取值范围为______.三、解答题(本大题共5小题,共76分。

解答应写出文字说明,证明过程或演算步骤)17.(本小题14分)如图,四棱锥P−ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,PD=DC=1,直线PB与平面ABCD 所成的角为π6.(1)求四棱锥P−ABCD的体积;(2)求异面直线AM与PC所成的角的大小.18.(本小题14分)已知函数f(x)=3x+b3x+1是定义域为R的奇函数.(1)求实数b的值,并证明f(x)在R上单调递增;(2)已知a>0且a≠1,若对于任意的x1、x2∈[1,3],都有f(x1)+32≥ax2−2恒成立,求实数a的取值范围.19.(本小题14分)如图,某地一天从6∼14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b.(1)求这一天6∼14时的最大温差;(2)写出这段曲线的函数解析式.20.(本小题16分)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,记准线l与x轴的交点为A,过A作直线交抛物线C于M(x1,y1),N(x2,y2)(x2>x1)两点.(1)若x1+x2=2p,求|MF|+|NF|的值;(2)若M是线段AN的中点,求直线MN的方程;(3)若P,Q是准线l上关于x轴对称的两点,问直线PM与QN的交点是否在一条定直线上?请说明理由.21.(本小题18分)单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)设bn=n⋅an,求数列{bn}的前n项和Sn;(2)若(1)中Sn满足(n−1)2≤m(Sn−n−1)对于n≥2恒成立,求实数m的取值范围.参考答案和解析1.【答案】B【解析】本题主要考查必要不充分条件的判断,属于基础题.【解答】解:充分性:当sinx=siny时,例如x=0,y=π,推不出x=y,充分性不成立;必要性:当x=y时,sinx=siny,必要性成立,即p是q的必要不充分条件.2.【答案】D【解析】本题主要考查双曲线渐近线方程和性质,属于基础题.【解答】解:由双曲线x2a2−y2b2=1(a,b>0)的离心率为2,可得ba=1.∴双曲线的渐近线方程为y=±x.3.【答案】B【解析】解:令g(x)=f(x)−x,因为f(x)为奇函数,所以g(x)为R上的奇函数,不妨设x1<x2,由f(x1)−f(x2)x1−x2<1成立可得f(x1)−f(x2)>x1−x2,即f(x1)−x1>f(x2)−x2,所以g(x1)>g(x2),即g(x)在R上单调递增,由f(m)>m得g(m)>0=g(0),所以m>0.故选:B.结合已知可构造函数g(x)=f(x)−x,然后判断函数g(x)的单调性及奇偶性,结合单调性及奇偶性即可求解.本题主要考查了函数的单调性及奇偶性在求解不等式中的应用,属于中档题.4.【答案】B【解析】本题考查数列的通项an与前n项和的关系,属于基础题.【解答】解:∵a1+a2+⋯+an=n(n+3),当n=1时,a1=4,当n≥2时,an=n(n+3)−(n−1)(n+2)=2n+2,n=1时,a1=4也适合此式,∴an=2n+2.5.【答案】(−23,1)【解析】解:由2x+1=0,得x=−12;由x−1=0,得x=1.①当x≥1时,原不等式转化为:2x+1+x−1=3x<2,解得x<23,无解;②当−12≤x<1时,原不等式转化为:−2x−1+x−1=−x−2<2,解得x>−4,∴−12≤x<1.③当x<−12时,原不等式转化为:−2x−1+1−x=−3x<2,解得x>−23,∴−23<x<−12.综上所述,不等式|2x+1|+|x−1|<2的解集为−23<x<1.故答案为:(−23,1).利用零点分段讨论法能求出不等式|2x+1|+|x−1|<2的解集.本题考查含绝对值不等式的解法,是中档题,解题时要认真审题,仔细解答,注意零点分段讨论法的合理运用.6.【答案】[6,+∞)【解析】解:因为x>0,所以f(x)=x+9x≥2x⋅9x=6,当且仅当x=3时取等号,所以函数的值域为[6,+∞).故答案为:[6,+∞).由已知结合基本不等式即可直接求解.本题主要考查了基本不等式在求解函数最值或值域中的应用,属于基础题.7.【答案】2π【解析】解:因为:f(x)=sinx+cosx=2sin(x+π4)所以:T=2π1=2π.故答案为:2π.先利用辅助角公式对函数进行整理,再结合函数y=Asin(ωx+φ)的周期公式即可得到结论.本题主要考查函数的周期公式.函数y=Asin(ωx+φ)的最小正周期为:T=2π|ω|.8.【答案】12【解析】解:展开式中含x2项的系数为Cn2=a2=n(n−1)2,所以n→∞lim ann2=n→∞lim n(n−1)2n2=n→∞lim n−12n=n→∞lim(12−12n)=12,故答案为:12.根据二项式定理求出a2,然后根据极限的运算性质即可求解.本题考查了二项式定理的应用,涉及到极限的运算性质,考查了学生的运算能力,属于基础题.9.【答案】35.【解析】解:由1,2,3,4,5这五个数字组成的无重复数字的五位数共A55=120种,组成的数是奇数共C31A44=72种,所以,取出的数是奇数的概率72120=35.故答案为:35.先计算由1,2,3,4,5这五个数字组成的无重复数字的五位数的总情况数,再计算组成的数是奇数的情况数,最后利用古典概型公式计算即可.本题主要考查古典概型的问题,熟记概率的计算公式即可,属于常考题型.10.【答案】[0,11]【解析】解:由约束条件作出可行域如图,联立y=3xx+y=4,解得A(1,3),令z=2x+3y,作出直线2x+3y=0,由图可知,当直线2x+3y=0过O时,z有最小值为0,平移直线直线2x+3y过A时,z有最大值为2×1+3×3=11.∴2x+3y的取值范围是[0,11].故答案为:[0,11].由约束条件作出可行域,令z=2x+3y,数形结合得到最优解,把最优解的坐标代入目标函数得答案.本题考查简单的线性规划,考查数形结合思想,是基础题.11.【答案】7【解析】解:∵|a+b|2=a2+b2+2a⋅b=5+2a⋅b=3,∴a⋅b=−1,∴|a−b|=a2+b2−2a⋅b=4+1+2=7.故答案为:7.对|a+b|=3两边平方即可求出a⋅b的值,然后即可求出|a−b|=(a−b)2的值.本题考查了向量数量积的运算,向量长度的求法,考查了计算能力,属于基础题.12.【答案】6【解析】解:过F2的直线交椭圆C于A,B两点,设|AF2|=m,|BF2|=n,由椭圆的定义可得|AF1|=2a−m,|BF1|=2a−n,又因为△F1AB是等边三角形可得|AF1|=|BF1|,所以可得2a−m=2a−n,可得m=n,即AB⊥x轴,可得m=b2a=33⋅2c,而由椭圆的方程可得a=3,c2=a2−b2=9−b2,解得:b2=6,解得b=6,故答案为:6.设|AF2|,|BF2|,由椭圆的定义可得|AF1|,|BF1|的表达式,再由△F1AB是等边三角形可得AB⊥x轴,可得A的纵坐标,进而可得a,b,c的关系,再由a,b,c之间的关系求出b的值.本题考查椭圆的性质的应用及等边三角形的性质的应用,属于中档题.13.【答案】n(n+1)2【解析】解:由题可得,2(a1q+1)=a1+a1q2a1+a1q+a1q2=14,而q>1,解得:a1=2q=2,所以an=2n,即bn=log2an=n,所以Tn=n(n+1)2.故答案为:n(n+1)2.先根据等比数列{an}的前n项和的基本量的计算求出an,即可得到数列{bn}的通项公式,再根据等差数列的前n项和公式即可解出.本题考查了数列的通项公式和求和公式,属于基础题.14.【答案】π3【解析】解:(sinA+icosA)(sinB+icosB)=sinAsinB+sinAcosBi+sinBcosAi−cosAcosB=−(cosAcosB−sinAsinB)+(sinBcosA+cosBsinA)i=−cos(A+B)+sin(B+A)i=cosC+sinCi=12+32C,∵C是△ABC的内角,∴C=π3.故答案为:π3.根据已知条件,结合三角函数的恒等变换,以及复数的四则运算,即可求解.本题主要考查三角函数的恒等变换,以及复数的四则运算,属于基础题.15.【答案】5+2【解析】本题考查了圆的轨迹方程,考查了转化思想.根据直线l1,l2的方程易知l1⊥l2,而直线l1,l2分别过定点A,B,所以l1与l2的交点M在以AB为直径的圆上,直线l3过定点(0,0),即可利用圆心到(0,0)的距离加半径解出.【解答】解:因为a×1+(−1)×a=0,所以l1⊥l2.而直线l1:ax−y−2a+5=0即a(x−2)−y+5=0过定点A(2,5),l2:x+ay−3a−4=0即x−4+a(y−3)=0过定点B(4,3),所以l1与l2的交点M在以AB为直径的圆上,可求得圆心为(3,4),半径为2,方程为(x−3)2+(y−4)2=2,因为l3:y=kx为过原点的直线,所以M到l3的距离的最大值为(3−0)2+(4−0)2+2=5+2.故答案为:5+2.16.【答案】[−2,2]【解析】解:当x<a时,函数f(x)=|x−a−1|+a=a+1−x+a=−x+2a+1,函数f(x)在(−∞,a)上单调递减,则f(x)>f(a)=a+1,当a≥0时,函数y=x2−1在[a,+∞)上单调递增,则y≥a2−1,∵f(x)存在最小值,∴a+1≥a2−1,化简可得−1≤a≤2,∵a≥0,∴0≤a≤2,当a<0时,函数y=x2−1在[a,0)上单调递减,在(0,+∞)上单调递增,故当x=0时,函数y=x2−1有最小值为02−1=−1,∵f(x)存在最小值,∴a+1≥−1,故a≥−2,而a<0,所以−2≤a<0,综上所述:−2≤a≤2,故a的取值范围为[−2,2].故答案为:[−2,2].根据分段函数的单调性分类讨论,即可求解.本题主要考查分段函数的应用,考查分类讨论的思想,属于中档题.17.【答案】解:(1)∵PD⊥底面ABCD,∴直线PB与平面ABCD所成的角为∠PBD=π6,又PD=1,∴DB=3,又底面ABCD是矩形,且DC=1,∴BC=2,∴四棱锥P−ABCD的体积为13×2×1×1=23;(2)取AD的中点N,连接NC,NP,又M为BC中点,∴AN=DN=MC=22,且AN//MC,∴四边形AMCN为平行四边形,∴AM//NC,∴直线AM与PC所成的角即为NC与PC所成的角,即直线AM与PC所成的角为∠PCN=θ或其补角,又NP=NC=12+1=32,又PC=1+1=2,∴cosθ=12PCNC=2232=33,∴θ=arccos33,∴异面直线AM与PC所成的角的大小为arccos33.【解析】(1)根据线面角的定义,锥体的体积公式即可求解;(2)将两异面直线平移成相交直线,再结合解三角形知识即可求解.本题考查线面角的定义,锥体的体积公式,两异面直线所成角,属基础题.18.【答案】解:(1)∵f(x)为定义在R上的奇函数,∴f(0)=1+b1+1=0,解得b=−1,经检验,b=−1符合题意,∴f(x)=3x−13x+1=3x+1−23x+1=1−23x+1,设x1<x2,则f(x1)−f(x2)=23x2+1−23x1+1=2(3x1−3x2)(3x1+1)(3x2+1),又x1<x2,则3x1−3x2<0,3x1>0,3x2>0,∴f(x1)−f(x2)<0,则f(x1)<f(x2),∴f(x)在R上单调递增;(2)依题意,[f(x)+32]min≥(ax−2)max在[1,3]上恒成立,又f(x)在R上单调递增,∴当x∈[1,3]时,f(x)+32的最小值为f(1)+32=1−231+1+32=2,当0<a<1时,(ax−2)max=a−1,则2≥a−1,解得a≥12,此时a∈[12,1);当a>1时,(ax−2)max=a2,则2≥a2,解得1<a≤2;综上,实数a的取值范围为[12,1)∪(1,2].【解析】(1)由f(0)=0,可求得b的值,由单调性的定义可证明f(x)在R上单调递增;(2)问题等价于[f(x)+32]min≥(ax−2)max在[1,3]上恒成立,易知f(x)+32的最小值为2,然后分0<a<1及a>1讨论即可得解.本题考查函数奇偶性与单调性的综合运用,考查不等式的恒成立问题,考查转化思想,分类讨论思想及运算求解能力,属于中档题.19.【答案】解:(1)由图可知,这段时间的最大温差是20C°C.(2)由图可以看出,从6∼14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象,所以A=12(30−10)=10,b=12(30+10)=20.因为12×2πω=14−6,所以ω=π8.将A=10,b=20,ω=π8,x=6,y=10代入 ①式,可得φ=3π4.综上,所求解析式为y=10sin(π8x+3π4)+20,x∈[6,14].【解析】本题主要考查由函数y=Asin(ωx+φ)+b的图象性质和求解析式,属于基础题.(1)由三角函数性质根据图象直接观察可知;(2)由函数的图象的顶点坐标求出A和b,由周期求出ω,由最低点得到φ的值即可.20.【答案】解:(1)因为准线为l:x=−p2,所以|MF|+|NF|=x1+p2+x2+p2=3p;(2)设直线MN的方程x=my−p2,联立y2=2px(p>0)可得,y2−2mpy+p2=0,所以Δ=4m2−4p2>0,y1+y2=2mp,y1y2=p2,而M是线段AN的中点,所以y1=y22,解得:y1=2p2,y2=2p,即2p2+2p=2mp,解得:m=324,所以直线MN的方程为x=324y−p2,即4x−32y+2p=0;(3)直线MN的方程x=my−p2,设P(−p2,y0),Q(−p2,−y0),y0≠0,则PM:y=y1−y0x1+p2(x+p2)+y0=y1−y0my1(x+p2)+y0,QN:y=y2+y0x2+p2(x+p2)−y0=y2+y0my2(x+p2)−y0,联立可得:(x+p2)(1y1+1y2)=2m,由y1+y2=2mp,y1y2=p2,代入解得:x=2my1y2y1+y2−p2=2m×p22mp−p2=p2,所以直线PM与QN的交点在定直线x=p2上.【解析】(1)根据焦半径公式即可求出;(2)设直线MN的方程x=my−p2,与抛物线联立即可利用M是线段AN的中点求出m,从而解出;(3)设P(−p2,y0),Q(−p2,−y0),即可求出直线PM与QN的方程,联立即可解出交点,从而可以判断交点在定直线上.本题考查了抛物线的性质,属于中档题.21.【答案】解:(1)设单调递增的等比数列{an}的公比为q,由a2+a3+a4=28,可得a2+a4=28−a3,又由a3+2是a2,a4的等差中项.可得2(a3+2)=a2+a4=28−a3,解得a3=8,a2+a4=20,即有a1q2=8,a1q+a1q3=20,解得a1=2q=2或a1=32q=12(舍去),所以bn=n⋅an=n⋅2n,Sn=1⋅2+2⋅22+3⋅23+...+n⋅2n,2Sn=1⋅22+2⋅23+3⋅24+...+n⋅2n+1,上面两式相减可得−Sn=2+22+23+...+2n−n⋅2n+1=2(1−2n)1−2−n⋅2n+1,化简可得Sn=(n−1)⋅2n+1+2;(2)(n−1)2≤m(Sn−n−1)即为(n−1)2≤m(n−1)(2n+1−1),因为n≥2,所以m≥n−12n+1−1对于n≥2恒成立.设cn=n−12n+1−1(n≥2),则cn−cn−1=n−12n+1−1−n−22n−1=−1−(n−3)⋅2n(2n−1)(2n+1−1),因为n≥3,所以−1−(n−3)⋅2n<0,(2n−1)(2n+1−1)>0,则cn−cn−1<0,即有{cn}在n≥2且n∈N*为递减数列,所以{cn}中的最大项为c2=17,所以m≥17,即m的取值范围是[17,+∞).【解析】(1)由等比数列的通项公式和等差数列的中项性质,解方程可得首项和公比,再由数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和;(2)原不等式等价为m≥n−12n+1−1对于n≥2恒成立,然后构造数列,判断单调性,求得最值,可得所求取值范围.。

相关文档
最新文档