数据结构二叉树C语言实现

合集下载

判断一棵树是否为满二叉树的算法c语言

判断一棵树是否为满二叉树的算法c语言

判断一棵树是否为满二叉树的算法c语言判断一棵树是否为满二叉树的算法(C语言)满二叉树是一种特殊的二叉树,每个节点要么没有子节点,要么有两个子节点。

判断一棵树是否为满二叉树的算法可以通过以下步骤实现:1. 定义二叉树的数据结构在C语言中,可以使用结构体定义二叉树的节点。

每个节点包含一个数据域和两个指针域,分别指向左子节点和右子节点。

```cstruct TreeNode {int data;struct TreeNode* left;struct TreeNode* right;};```2. 实现判断函数编写一个递归函数,用于判断给定二叉树是否为满二叉树。

函数的输入参数为根节点指针,返回值为布尔类型。

```cint isFullBinaryTree(struct TreeNode* root) {// 如果根节点为空,则返回真if (root == NULL) {return 1;}// 如果只有一个子节点或没有子节点,则返回假if ((root->left == NULL && root->right != NULL) ||(root->left != NULL && root->right == NULL)) {return 0;}// 递归判断左子树和右子树return isFullBinaryTree(root->left) && isFullBinaryTree(root->right);}```3. 测试样例可以编写一些测试样例来验证判断函数的正确性。

例如,下面是一个满二叉树和一个非满二叉树的示例:```cint main() {// 满二叉树struct TreeNode* root1 = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->data = 1;root1->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->data = 2;root1->left->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->left->data = 4;root1->left->left->left = NULL;root1->left->left->right = NULL;root1->left->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->left->right->data = 5;root1->left->right->left = NULL;root1->left->right->right = NULL;root1->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->data = 3;root1->right->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->left->data = 6;root1->right->left->left = NULL;root1->right->left->right = NULL;root1->right->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root1->right->right->data = 7;root1->right->right->left = NULL;root1->right->right->right = NULL;// 非满二叉树struct TreeNode* root2 = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->data = 1;root2->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->left->data = 2;root2->left->left = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->left->left->data = 4;root2->left->left->left = NULL;root2->left->left->right = NULL;root2->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->right->data = 3;root2->right->left = NULL;root2->right->right = (struct TreeNode*)malloc(sizeof(struct TreeNode));root2->right->right->data = 7;root2->right->right->left = NULL;root2->right->right->right = NULL;// 判断是否为满二叉树if (isFullBinaryTree(root1)) {printf("root1是满二叉树\n");} else {printf("root1不是满二叉树\n");}if (isFullBinaryTree(root2)) {printf("root2是满二叉树\n");} else {printf("root2不是满二叉树\n");}return 0;}```运行上述代码,输出结果为:```root1是满二叉树root2不是满二叉树```根据以上算法和示例,我们可以判断一棵树是否为满二叉树。

数据结构c语言课设-二叉树排序

数据结构c语言课设-二叉树排序

题目:二叉排序树的实现1 内容和要求1)编程实现二叉排序树,包括生成、插入,删除;2)对二叉排序树进展先根、中根、和后根非递归遍历;3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。

4)分别用二叉排序树和数组去存储一个班(50 人以上)的成员信息(至少包括学号、姓名、成绩3 项),比照查找效率,并说明在什么情况下二叉排序树效率高,为什么?2 解决方案和关键代码2.1 解决方案:先实现二叉排序树的生成、插入、删除,编写DisplayBST函数把遍历结果用树的形状表示出来。

前中后根遍历需要用到栈的数据构造,分模块编写栈与遍历代码。

要求比照二叉排序树和数组的查找效率,首先建立一个数组存储一个班的成员信息,分别用二叉树和数组查找,利用clock〔〕函数记录查找时间来比照查找效率。

2.2关键代码树的根本构造定义及根本函数typedef struct{KeyType key;} ElemType;typedef struct BiTNode//定义链表{ElemType data;struct BiTNode *lchild, *rchild;}BiTNode, *BiTree, *SElemType;//销毁树int DestroyBiTree(BiTree &T){if (T != NULL)free(T);return 0;}//清空树int ClearBiTree(BiTree &T){if (T != NULL){T->lchild = NULL;T->rchild = NULL;T = NULL;}return 0;}//查找关键字,指针p返回int SearchBST(BiTree T, KeyType key, BiTree f, BiTree &p) {if (!T){p = f;return FALSE;}else if EQ(key, T->data.key){p = T;return TRUE;}else if LT(key, T->data.key)return SearchBST(T->lchild, key, T, p);elsereturn SearchBST(T->rchild, key, T, p);}二叉树的生成、插入,删除生成void CreateBST(BiTree &BT, BiTree p){int i;ElemType k;printf("请输入元素值以创立排序二叉树:\n");scanf_s("%d", &k.key);for (i = 0; k.key != NULL; i++){//判断是否重复if (!SearchBST(BT, k.key, NULL, p)){InsertBST(BT, k);scanf_s("%d", &k.key);}else{printf("输入数据重复!\n");return;}}}插入int InsertBST(BiTree &T, ElemType e){BiTree s, p;if (!SearchBST(T, e.key, NULL, p)){s = (BiTree)malloc(sizeof(BiTNode));s->data = e;s->lchild = s->rchild = NULL;if (!p)T = s;else if LT(e.key, p->data.key)p->lchild = s;elsep->rchild = s;return TRUE;}else return FALSE;}删除//某个节点元素的删除int DeleteEle(BiTree &p){BiTree q, s;if (!p->rchild) //右子树为空{q = p;p = p->lchild;free(q);}else if (!p->lchild) //左子树为空{q = p;p = p->rchild;free(q);}else{q = p;s = p->lchild;while (s->rchild){q = s;s = s->rchild;}p->data = s->data;if (q != p)q->rchild = s->lchild;elseq->lchild = s->lchild;delete s;}return TRUE;}//整棵树的删除int DeleteBST(BiTree &T, KeyType key) //实现二叉排序树的删除操作{if (!T){return FALSE;}else{if (EQ(key, T->data.key)) //是否相等return DeleteEle(T);else if (LT(key, T->data.key)) //是否小于return DeleteBST(T->lchild, key);elsereturn DeleteBST(T->rchild, key);}return 0;}二叉树的前中后根遍历栈的定义typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;int InitStack(SqStack &S) //构造空栈{S.base = (SElemType*)malloc(STACK_INIT_SIZE *sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base;S.stacksize = STACK_INIT_SIZE;return OK;}//InitStackint Push(SqStack &S, SElemType e) //插入元素e为新栈顶{if (S.top - S.base >= S.stacksize){S.base = (SElemType*)realloc(S.base, (S.stacksize + STACKINCREMENT)*sizeof(SElemType));if (!S.base) exit(OVERFLOW);S.top = S.base + S.stacksize;S.stacksize += STACKINCREMENT;}*S.top++ = e;return OK;}//Pushint Pop(SqStack &S, SElemType &e) //删除栈顶,应用e返回其值{if (S.top == S.base) return ERROR;e = *--S.top;return OK;}//Popint StackEmpty(SqStack S) //判断是否为空栈{if (S.base == S.top) return TRUE;return FALSE;}先根遍历int PreOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);if (!Visit(p->data)) return ERROR;p = p->lchild;}else{Pop(S, p);p = p->rchild;}}return OK;}中根遍历int InOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S;BiTree p;InitStack(S);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);p = p->lchild;}else{Pop(S, p);if (!Visit(p->data)) return ERROR;p = p->rchild;}}return OK;}后根遍历int PostOrderTraverse(BiTree T, int(*Visit)(ElemType e)) {SqStack S, SS;BiTree p;InitStack(S);InitStack(SS);p = T;while (p || !StackEmpty(S)){if (p){Push(S, p);Push(SS, p);p = p->rchild;}else{if (!StackEmpty(S)){Pop(S, p);p = p->lchild;}}}while (!StackEmpty(SS)){Pop(SS, p);if (!Visit(p->data)) return ERROR;}return OK;}利用数组存储一个班学生信息ElemType a[] = { 51, "陈继真", 88,82, "黄景元", 89,53, "贾成", 88,44, "呼颜", 90,25, "鲁修德", 88,56, "须成", 88,47, "孙祥", 87, 38, "柏有患", 89, 9, " 革高", 89, 10, "考鬲", 87, 31, "李燧", 86, 12, "夏祥", 89, 53, "余惠", 84, 4, "鲁芝", 90, 75, "黄丙庆", 88, 16, "李应", 89, 87, "杨志", 86, 18, "李逵", 89, 9, "阮小五", 85, 20, "史进", 88, 21, "秦明", 88, 82, "杨雄", 89, 23, "刘唐", 85, 64, "武松", 88, 25, "李俊", 88, 86, "卢俊义", 88, 27, "华荣", 87, 28, "杨胜", 88, 29, "林冲", 89, 70, "李跃", 85, 31, "蓝虎", 90, 32, "宋禄", 84, 73, "鲁智深", 89, 34, "关斌", 90, 55, "龚成", 87, 36, "黄乌", 87, 57, "孔道灵", 87, 38, "张焕", 84, 59, "李信", 88, 30, "徐山", 83, 41, "秦祥", 85, 42, "葛公", 85, 23, "武衍公", 87, 94, "范斌", 83, 45, "黄乌", 60, 67, "叶景昌", 99, 7, "焦龙", 89, 78, "星姚烨", 85, 49, "孙吉", 90, 60, "陈梦庚", 95,};数组查询函数void ArraySearch(ElemType a[], int key, int length){int i;for (i = 0; i <= length; i++){if (key == a[i].key){cout << "学号:" << a[i].key << " 姓名:" << a[i].name << " 成绩:" << a[i].grade << endl;break;}}}二叉树查询函数上文二叉树根本函数中的SearchBST()即为二叉树查询函数。

数据结构实验指导书(新版)

数据结构实验指导书(新版)

《数据结构和算法》实验指导书实验及学时数分配序号实验名称学时数(小时)1 实验一线性表 42 实验二树和二叉树 23 实验三图 24 实验四查找 25 实验五内部排序 2合计12几点要求:一、上机前:认真预习相关实验内容,提前编写算法程序,上机时检查(未提前编写程序者,扣除平时成绩中实验相关分数)。

二、上机中:在Turbo C或VC6.0环境中,认真调试程序,记录调试过程中的问题、解决方法以及运行结果。

上机时签到;下机时验收签字。

三、下机后:按要求完成实验报告,并及时提交(实验后1周内)。

实验一线性表【实验目的】1、掌握用Turbo c上机调试线性表的基本方法;2、掌握线性表的基本操作,插入、删除、查找以及线性表合并等运算在顺序存储结构和链式存储结构上的运算;3、运用线性表解决线性结构问题。

【实验学时】4 学时【实验类型】设计型【实验内容】1、顺序表的插入、删除操作的实现;2、单链表的插入、删除操作的实现;3、两个线性表合并算法的实现。

(选做)【实验原理】1、当我们在线性表的顺序存储结构上的第i个位置上插入一个元素时,必须先将线性表中第i个元素之后的所有元素依次后移一个位置,以便腾出一个位置,再把新元素插入到该位置。

若是欲删除第i个元素时,也必须把第i个元素之后的所有元素前移一个位置;2、当我们在线性表的链式存储结构上的第i个位置上插入一个元素时,只需先确定第i个元素前一个元素位置,然后修改相应指针将新元素插入即可。

若是欲删除第i个元素时,也必须先确定第i个元素前一个元素位置,然后修改相应指针将该元素删除即可;3、详细原理请参考教材。

【实验步骤】一、用C语言编程实现建立一个顺序表,并在此表中插入一个元素和删除一个元素。

1、通过键盘读取元素建立线性表;(从键盘接受元素个数n以及n个整形数;按一定格式显示所建立的线性表)2、指定一个元素,在此元素之前插入一个新元素;(从键盘接受插入位置i,和要插入的元素值;实现插入;显示插入后的线性表)3、指定一个元素,删除此元素。

数据结构(C语言版)

数据结构(C语言版)

比较
Prim算法适用于稠密图, Kruskal算法适用于稀疏图;
两者时间复杂度相近,但 Kruskal算法需额外处理并查
集数据结构。
最短路径算法设计思想及实现方法比较
1 2
Dijkstra算法
从源点出发,每次找到距离源点最近的顶点并更 新距离值,直至所有顶点距离确定。适用于不含 负权边的图。
Floyd算法
特殊二叉树
满二叉树、完全二叉树等。
二叉树的遍历与线索化
二叉树的遍历
前序遍历、中序遍历、后序遍历和层 次遍历是二叉树的四种基本遍历方法 。
线索化二叉树
为了方便查找二叉树节点的前驱和后 继,可以对二叉树进行线索化处理, 即在节点的空指针域中存放指向前驱 或后继的指针。
树和森林的遍历与转换
树的遍历
01
串的顺序存储结构
01
02
03
串的顺序存储结构是用 一组地址连续的存储单 元来存储串中的字符序
列的。
按照预定义的大小,为 每个定义的串变量分配 一个固定长度的存储区 ,一般是用定长数组来
定义。
串值的存储:将实际串 长度值保存在数组的0下 标位置,串的字符序列 依次存放在从1开始的数
组元素中。
串的链式存储结构
03
比较
DFS空间复杂度较低,适用于递 归实现;BFS可找到最短路径, 适用于非递归实现。
最小生成树算法设计思想及实现方法比较
Prim算法
从某一顶点开始,每次选择当 前生成树与外界最近的边加入 生成树中,直至所有顶点加入

Kruskal算法
按边权值从小到大排序,依次 选择边加入生成树中,保证不
形成环路。
数据结构(C语言版)

数据结构-C语言描述(第三版)(陈慧南)章 (6)

数据结构-C语言描述(第三版)(陈慧南)章 (6)

第6章 树 例如,设有序表为(21, 25, 28, 33, 36, 43),若要在表中 查找元素36,通常的做法是从表中第一个元素开始,将待查元素 与表中元素逐一比较进行查找,直到找到36为止。粗略地说,如 果表中每个元素的查找概率是相等的,则平均起来,成功查找一 个元素需要将该元素与表中一半元素作比较。如果将表中元素组 成图6-3所示的树形结构,情况就大为改观。我们可以从根结点 起,将各结点与待查元素比较,在查找成功的情况下,所需的最 多的比较次数是从根到待查元素的路径上遇到的结点数目。当表 的长度n很大时,使用图6-3所示的树形结构组织表中数据,可 以很大程度地减少查找所需的时间。为了查找36,我们可以让36 与根结点元素28比较,36比28大,接着查右子树,查找成功。显 然,采用树形结构能节省查找时间。
第6章 树
E
E
A
F
B
G
CD
LJ
M
N
T1
X
YZ
U T2
B
F
A
DC
G
JL
T3 N
M
(a)
(b)
图6-2 树的例子
(a) 树T1和T2组成森林;(b) 树T3
第6章 树
6.2 二 叉 树
二叉树是非常重要的树形数据结构。很多从实际问题中抽 象出来的数据都是二叉树形的,而且许多算法如果采用二叉树 形式解决则非常方便和高效。此外,以后我们将看到一般的树 或森林都可通过一个简单的转换得到与之相应的二叉树,从而 为树和森林的存储及运算的实现提供了有效方法。
第6章 树
图6-1描述了欧洲部分语言的谱系关系,它是一个后裔图, 图中使用的描述树形结构数据的形式为倒置的树形表示法。在 前几章中,我们学习了多种线性数据结构,但是一般来讲,这 些数据结构不适合表示如图6-1所示的层次结构的数据。为了 表示这类层次结构的数据,我们采用树形数据结构。在本章中 我们将学习多种不同特性的树形数据结构,如一般树、二叉树、 穿线二叉树、堆和哈夫曼树等。

数据结构c语言版第三版习题解答

数据结构c语言版第三版习题解答

数据结构c语言版第三版习题解答数据结构 C 语言版第三版习题解答在学习计算机科学与技术的过程中,数据结构是一门非常重要的基础课程。

而《数据结构C 语言版第三版》更是众多教材中的经典之作。

其中的习题对于我们理解和掌握数据结构的概念、原理以及算法实现起着至关重要的作用。

接下来,我将为大家详细解答这本书中的一些典型习题。

首先,让我们来看一道关于线性表的习题。

题目是这样的:设计一个算法,从一个有序的线性表中删除所有其值重复的元素,使表中所有元素的值均不同。

对于这道题,我们可以采用双指针的方法来解决。

定义两个指针 p和 q,p 指向线性表的开头,q 从 p 的下一个位置开始。

当 q 所指向的元素与 p 所指向的元素相同时,我们就将 q 所指向的元素删除,并将 q 向后移动一位。

当 q 所指向的元素与 p 所指向的元素不同时,我们将 p 向后移动一位,并将 q 所指向的元素赋值给 p 所指向的位置,然后再将 q 向后移动一位。

当 q 超出线性表的范围时,算法结束。

下面是用 C 语言实现的代码:```cvoid removeDuplicates(int arr, int n) {int p = 0, q = 1;while (q < n) {if (arrp == arrq) {for (int i = q; i < n 1; i++){arri = arri + 1;}(n);} else {p++;arrp = arrq;}q++;}}```再来看一道关于栈的习题。

题目是:利用栈实现将一个十进制数转换为八进制数。

我们知道,将十进制数转换为八进制数可以通过不断除以 8 取余数的方法来实现。

而栈的特点是后进先出,正好适合存储这些余数。

以下是 C 语言实现的代码:```cinclude <stdioh>include <stdlibh>define MAX_SIZE 100typedef struct {int top;int dataMAX_SIZE;} Stack;//初始化栈void initStack(Stack s) {s>top =-1;}//判断栈是否为空int isEmpty(Stack s) {return s>top ==-1;}//判断栈是否已满int isFull(Stack s) {return s>top == MAX_SIZE 1;}//入栈操作void push(Stack s, int element) {if (isFull(s)){printf("Stack Overflow!\n");return;}s>data++s>top = element;}//出栈操作int pop(Stack s) {if (isEmpty(s)){printf("Stack Underflow!\n");return -1;}return s>datas>top;}//将十进制转换为八进制void decimalToOctal(int decimal) {Stack s;initStack(&s);while (decimal!= 0) {push(&s, decimal % 8);decimal /= 8;}while (!isEmpty(&s)){printf("%d", pop(&s));}printf("\n");}int main(){int decimal;printf("请输入一个十进制数: ");scanf("%d",&decimal);printf("转换后的八进制数为: ");decimalToOctal(decimal);return 0;}```接下来是一道关于队列的习题。

数据结构-C语言-树和二叉树

数据结构-C语言-树和二叉树

练习
一棵完全二叉树有5000个结点,可以计算出其
叶结点的个数是( 2500)。
二叉树的性质和存储结构
性质4: 具有n个结点的完全二叉树的深度必为[log2n]+1
k-1层 k层
2k−1−1<n≤2k−1 或 2k−1≤n<2k n k−1≤log2n<k,因为k是整数
所以k = log2n + 1
遍历二叉树和线索二叉树
遍历定义
指按某条搜索路线遍访每个结点且不重复(又称周游)。
遍历用途
它是树结构插入、删除、修改、查找和排序运算的前提, 是二叉树一切运算的基础和核心。
遍历规则 D
先左后右
L
R
DLR LDR LRD DRL RDL RLD
遍历规则
A BC DE
先序遍历:A B D E C 中序遍历:D B E A C 后序遍历:D E B C A
练习 具有3个结点的二叉树可能有几种不同形态?普通树呢?
5种/2种
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
(a + b *(c-d)-e/f)的二叉树
目 录 导 航 Contents
5.1 树和二叉树的定义 5.2 案例引入 5.3 树和二叉树的抽象数据类型定义 5.4 二叉树的性质和存储结构 5.5 遍历二叉树和线索二叉树 5.6 树和森林 5.7 哈夫曼树及其应用 5.8 案例分析与实现
二叉树的抽象数据类型定义
特殊形态的二叉树
只有最后一层叶子不满,且全部集中在左边

C语言中计算二叉树的宽度的两种方式

C语言中计算二叉树的宽度的两种方式

C语⾔中计算⼆叉树的宽度的两种⽅式C语⾔中计算⼆叉树的宽度的两种⽅式⼆叉树作为⼀种很特殊的数据结构,功能上有很⼤的作⽤!今天就来看看怎么计算⼀个⼆叉树的最⼤的宽度吧。

采⽤递归⽅式下⾯是代码内容:int GetMaxWidth(BinaryTree pointer){int width[10];//加⼊这棵树的最⼤⾼度不超过10int maxWidth=0;int floor=1;if(pointer){if(floor==1){//如果访问的是根节点的话,第⼀层节点++;width[floor]++;floor++;if(pointer->leftChild)width[floor]++;if(pointer->rightChild)width[floor]++;}else{floor++;if(pointer->leftChild)width[floor]++;if(pointer->rightChild)width[floor]++;}if(maxWidth<width[floor])maxWidth=width[floor];GetMaxWidth(pointer->leftChild);floor--;//记得退回⼀层,否则会出错。

因为已经Get过了,所以要及时的返回。

GetMaxWidth(pointer->rightChild);}return maxWidth;}采⽤⾮递归⽅式采⽤⾮递归⽅式计算⼆叉树的宽度需要借助于队列。

代码如下:int GetMaxWidth(BinaryTree pointer){if(pointer==null){return 0;}Queue<BinaryTreeNode> queue=new ArrayDeque<BinaryTreeNode>();int maxWidth=1;//最⼤宽度queue.add(pointer);while(true){int size=queue.size();//计算当前层的节点的个数if(size==0){break;}while(size>0){//如果当前层还有节点就进⾏下去BinaryTreeNode node=queue.poll();size--;if(node->leftChild)queue.add(node->leftChild);//当前节点的左⼦树⼊队if(node->rightChild)queue.add(node->rightChild);//当前节点的右⼦树⼊队maxWidth=Math.max(size,queue.size());}}return maxWidth;//返回计算所得的最⼤的⼆叉树的宽度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与信息技术学院2016~2017(下)学年
计科专业2015级《数据结构》实验报告 5 学号:2015201018 姓名:汪继超
printf("\n二叉树的叶子结点数为:%d",count1);
break;
case 7:
printf("\n树的深度为:");
high=TreeHigh(P);
printf("%d",high);
break;
case 0:
printf("\n谢谢使用,欢迎下次光临!\n");
exit(0);
default:
printf("\n输入错误!");
system("pause");
break;
}
printf("\n\n是否继续进行(y or n): ");
fflush(stdin);
scanf("%c",&b);
if(b=='y'||b=='Y')
{
f=1;
system("cls");
Menu();
printf("请再次选择你需要操作的步骤(0--6): ");
scanf("%d",&n);
}
else
exit(0);
}
}
实验结果:
主菜单:
1.创建树:
2-1.先序遍历二叉树:2-2.中序遍历二叉树:2-3.后序遍历二叉树:
注:“—”表示树结点为空。

3.左右孩子交换后先序遍历检验:
4.求树的叶子数:
5.求树的深度:
问题讨论:
1.二叉树遍历是其所有操作的基础,遍历操作中复杂的递归问题,可以通过0-5个结点的
二叉树基本模型进行深度分析,总结扩展n个结点。

相关文档
最新文档