计算机操作系统内存分配实验说明
实验五模板(内存分配)

实验报告(五)内存分配一、实验目的通过学习Minix操作系统的内存分配,加深理解操作系统内存管理的相关概念和原理。
二、准备工作注:如果熟悉准备工作内容,可忽略。
1、练习使用vi编辑器vi编辑器具有两种模式(1)命令模式通过键盘左上角ESC键进入,在该模式下可以使用编辑命令。
删除一行(连续键入两个d);删除光标处的字符(小写x);在当前光标前插入(i);在当前光标后插入(a);保存(shift+冒号,再键入w);退出编辑器(shift+冒号,再键入q);保存并且退出(shift+冒号,再键入wq);(2)编辑模式在命令模式下,通过在当前光标前插入(i)或在当前光标后插入(a),进入编辑模式。
通过键盘左上角ESC键切换到命令模式。
2、练习修改、编译和安装新操作系统(1)修改/usr/src/kernel/main.c中的announce函数cd /usr/src/kernelcp main.c main.c.backupvi main.c找到announce函数增加打印语句kprintf(“在这儿增加你想打印的语句”);保存退出vi编辑器(通过键盘左上角ESC键进入命令模式,然后shift+冒号,再键入wq)(2)编译新操作系统cd /usr/src/toolsmake image(3)安装新操作系统make install(4)用新操作系统更换旧操作系统:shutdown在boot monitor下(出现d0p0s0>时),键入boot c0d0p0重新进入新操作系统。
三、实验内容、过程与分析(一)实验内容1、学习《Operating Systems Design and Implementation》(Andrew S. Tanenbaum著,第三版)中的第4章4.8.8小节,Memory Management Utilities,内存管理。
Minix内存管理采用了动态分区分配以及首次适应算法。
内存分配实验报告

内存分配实验报告内存分配实验报告一、引言内存分配是计算机科学中一个重要的概念,它涉及到操作系统、编程语言以及计算机硬件等多个方面。
在本次实验中,我们将探索不同的内存分配算法,并对它们的性能进行评估和比较。
二、实验目的1. 理解内存分配的基本原理和概念;2. 学习不同的内存分配算法,并掌握它们的优缺点;3. 通过实验对比,评估不同算法在不同场景下的性能表现。
三、实验方法1. 实验环境本次实验使用C语言编写,运行在Linux操作系统上。
实验中使用了常见的内存分配算法,包括首次适应算法、最佳适应算法和最坏适应算法。
2. 实验步骤(1)首次适应算法首次适应算法是一种简单而常用的内存分配算法。
它从内存的起始位置开始查找,找到第一个能满足分配要求的空闲块进行分配。
实验中,我们模拟了一系列内存分配请求,并记录了每次分配的时间和分配结果。
(2)最佳适应算法最佳适应算法是一种在空闲块中选择最小合适空间进行分配的算法。
实验中,我们使用了一个链表来维护空闲块,并按照大小进行排序。
每次分配请求时,选择最小合适的空间进行分配,并更新链表。
同样,我们记录了每次分配的时间和分配结果。
(3)最坏适应算法最坏适应算法与最佳适应算法相反,它选择最大合适空间进行分配。
实验中,我们同样使用链表维护空闲块,并按照大小进行排序。
每次分配请求时,选择最大合适的空间进行分配,并更新链表。
同样,我们记录了每次分配的时间和分配结果。
四、实验结果与分析通过实验,我们得到了不同内存分配算法在不同场景下的性能表现。
首次适应算法在处理大量小内存请求时表现较好,因为它能够更快地找到合适的空闲块。
而最佳适应算法在处理大量大内存请求时表现较好,因为它能够更好地利用内存空间。
最坏适应算法则在处理大量随机大小的内存请求时表现较好,因为它能够更快地找到较大的空闲块。
五、实验总结通过本次实验,我们深入了解了内存分配算法的原理和应用。
不同的算法适用于不同的场景,我们需要根据实际需求选择合适的算法。
实现内存分配实验报告(3篇)

第1篇一、实验目的1. 理解操作系统内存分配的基本原理和常用算法。
2. 掌握动态分区分配方式中的数据结构和分配算法。
3. 通过编写程序,实现内存分配和回收功能。
二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:GCC编译器三、实验原理1. 内存分配的基本原理操作系统内存分配是指操作系统根据程序运行需要,将物理内存分配给程序使用的过程。
内存分配算法主要包括以下几种:(1)首次适应算法(First Fit):从内存空间首部开始查找,找到第一个满足条件的空闲区域进行分配。
(2)最佳适应算法(Best Fit):在所有满足条件的空闲区域中,选择最小的空闲区域进行分配。
(3)最坏适应算法(Worst Fit):在所有满足条件的空闲区域中,选择最大的空闲区域进行分配。
2. 动态分区分配方式动态分区分配方式是指操作系统在程序运行过程中,根据需要动态地分配和回收内存空间。
动态分区分配方式包括以下几种:(1)固定分区分配:将内存划分为若干个固定大小的分区,程序运行时按需分配分区。
(2)可变分区分配:根据程序大小动态分配分区,分区大小可变。
(3)分页分配:将内存划分为若干个固定大小的页,程序运行时按需分配页。
四、实验内容1. 实现首次适应算法(1)创建空闲分区链表,记录空闲分区信息,包括分区起始地址、分区大小等。
(2)编写分配函数,实现首次适应算法,根据程序大小查找空闲分区,分配内存。
(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。
2. 实现最佳适应算法(1)创建空闲分区链表,记录空闲分区信息。
(2)编写分配函数,实现最佳适应算法,根据程序大小查找最佳空闲分区,分配内存。
(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。
3. 实验结果分析(1)通过实验,验证首次适应算法和最佳适应算法的正确性。
(2)对比两种算法在内存分配效率、外部碎片等方面的差异。
五、实验步骤1. 创建一个动态内存分配模拟程序,包括空闲分区链表、分配函数和回收函数。
实验四 操作系统存储管理实验报告

实验四操作系统存储管理实验报告一、实验目的本次操作系统存储管理实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配、回收、地址转换等关键技术,提高对操作系统存储管理机制的认识和应用能力。
二、实验环境操作系统:Windows 10开发工具:Visual Studio 2019三、实验原理1、内存分配方式连续分配:分为单一连续分配和分区式分配(固定分区和动态分区)。
离散分配:分页存储管理、分段存储管理、段页式存储管理。
2、内存回收算法首次适应算法:从内存低地址开始查找,找到第一个满足要求的空闲分区进行分配。
最佳适应算法:选择大小最接近作业需求的空闲分区进行分配。
最坏适应算法:选择最大的空闲分区进行分配。
3、地址转换逻辑地址到物理地址的转换:在分页存储管理中,通过页表实现;在分段存储管理中,通过段表实现。
四、实验内容及步骤1、连续内存分配实验设计一个简单的内存分配程序,模拟固定分区和动态分区两种分配方式。
输入作业的大小和请求分配的分区类型,程序输出分配的结果(成功或失败)以及分配后的内存状态。
2、内存回收实验在上述连续内存分配实验的基础上,添加内存回收功能。
输入要回收的作业号,程序执行回收操作,并输出回收后的内存状态。
3、离散内存分配实验实现分页存储管理的地址转换功能。
输入逻辑地址,程序计算并输出对应的物理地址。
4、存储管理算法比较实验分别使用首次适应算法、最佳适应算法和最坏适应算法进行内存分配和回收操作。
记录不同算法在不同作业序列下的内存利用率和分配时间,比较它们的性能。
五、实验结果与分析1、连续内存分配实验结果固定分区分配方式:在固定分区大小的情况下,对于作业大小小于或等于分区大小的请求能够成功分配,否则分配失败。
内存状态显示清晰,分区的使用和空闲情况一目了然。
动态分区分配方式:能够根据作业的大小动态地分配内存,但容易产生内存碎片。
2、内存回收实验结果成功回收指定作业占用的内存空间,内存状态得到及时更新,空闲分区得到合并,提高了内存的利用率。
操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。
本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。
二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。
三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。
分区的大小可以相等,也可以不等。
2、实现创建一个固定大小的内存空间数组,模拟内存分区。
为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。
3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。
分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。
(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。
2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。
实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。
3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。
观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。
(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。
2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。
模拟页面的调入和调出过程,处理缺页中断。
3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。
探讨页大小的选择对存储管理的影响。
(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。
操作系统 主存储器空间分配实验

学生实验报告(课程名称:操作系统)实验题目:主存储器空间分配实验一、实验目的通过首次适应算法、最佳适应算法和最坏适应算法实现主存空间的分配,可以使读者可好地理解存储分配算法。
二、实验环境VC++三、实验内容与要求编写一段程序来模拟可变分区管理方法。
要求能通过文件形式定义空闲区表;能随意输入作业及需要分配的空间;能分别使用首次适应算法、最佳适应算法和最坏适应算法对输入的作业进行空间分配;能显示系统空闲表和已分配空间表。
⑴可变分区方式是按作业需要的主存空间大小来分区。
当装入一个作业时,首先要查看是否有足够的空闲空间来分配,若有则按指定的分配方式进行分配;否则作业不能装入。
随着作业的装入和撤离主存空间被分为若干个大大小小的不连续的区间,为了表明各区间的状态可以用一个内存分区表如表1所示来表示。
表1 内存分区表起始地址长度标志120k 20k 作业1200k 50k 空闲这样我们可以定义一个如下的结构表示内存分区信息。
typedef struct node{int start; //起始地址int length; //长度char tag[20]; //标志}job;⑵可变分区的三种算法就是为作业分配主存空间的方法。
●首次适应算法:在空闲区间中查询满足作业需要的空间,并将作业装入第一个满足条件的空间中去。
●最佳适应算法:在空闲区间中查询满足作业需要的空间,并将作业装入满足条件的空闲空间中最小的一个空间中去。
●最坏适应算法:在空闲区间中查询满足作业需要的空间,并将作业装入满足条件的空闲空间中最大的一个空间中去。
从三种算法的说明可以看出,分配空间的过程主要可以分两步:●查询所有满足作业需求的空间块。
●按照指定的算法将作业装入空间块中。
⑶在操作的最初主存空间实际就是一个大的空闲区,不涉及到如何分配的问题。
为直接模拟运行一段时间后主存中出现了多个空闲块的状态,题目要求从一个文件读入空闲区表。
在这里我们可以设计一个空闲区表文件的结构为如表2所示:表2 空闲区表起始地址长度200k 50k……这样也可以方便地将空闲表一次读入程序中,而不必再一个个的输入。
内存连续分配方式实验

内存连续分配方式实验内存连续分配是操作系统中的重要概念之一、在计算机系统中,内存分配是指将进程所需的内存空间分配给其使用,同时也需要满足内存管理的要求。
内存连续分配方式是指将进程所需的内存空间连续地划分并分配给进程。
下面将介绍内存连续分配的几种方式及实验。
1.固定分区分配方式:固定分区分配方式是将整个内存空间分为若干个大小相等的分区,并为每个分区分配一个进程。
这种分配方式适用于进程数固定或进程大小相对稳定的场景。
固定分区分配方式的优点是简单易实现,缺点是可能会造成内存空间浪费,同时,当进程数或进程大小发生变化时,需要重新划分分区,性能较差。
2.动态分区分配方式:动态分区分配方式是根据进程的实际需要动态地分配内存空间。
动态分区分配方式将内存空间划分为若干个大小不等的分区,每个分区都可以独立地分配给进程使用。
当有新进程需要内存空间时,系统会根据分区空闲情况找到合适的分区进行分配。
动态分区分配方式的优点是充分利用内存空间,缺点是可能会出现内存碎片问题。
3.伙伴系统分配方式:伙伴系统分配方式是一种动态分区分配方式的改进版本。
它将内存空间划分为若干个大小相等的块,每个块大小都是2的幂。
当有新进程需要内存空间时,系统会找到与其大小最接近的空闲块进行分配。
如果找到的块大于所需大小,则将其划分为两个大小相等的块,其中一个分配给进程,另一个留作备用;如果找到的块小于所需大小,则会继续查找更大的空闲块进行分配。
伙伴系统分配方式的优点是减少了内存碎片问题,缺点是实现较为复杂。
实验设计:1.实验目的:通过实验,测试和比较不同的内存连续分配方式在不同场景下的性能和效果。
2.实验环境:使用一台具备内存管理功能的计算机,并在上面运行操作系统。
3.实验步骤:a.首先,选择一种内存连续分配方式,如固定分区分配方式。
b.根据选择的分配方式,设置相应的分区大小和数量。
c.运行一些需要内存空间的进程,并观察它们的分配情况。
d.记录每个进程所分配到的内存空间大小和位置,以及未分配的内存空间大小和位置。
内存操作实验报告

一、实验目的1. 熟悉内存的基本操作,包括内存的分配、释放、读写等。
2. 掌握C语言中内存操作的相关函数,如malloc、free、memcpy等。
3. 提高对内存管理重要性的认识,了解内存泄漏的成因及预防措施。
二、实验环境1. 操作系统:Windows 102. 编译器:Visual Studio 20193. 编程语言:C语言三、实验内容1. 内存分配与释放2. 内存读写3. 内存拷贝4. 内存泄漏检测四、实验步骤1. 内存分配与释放(1)编写一个函数,使用malloc分配内存,并打印分配的内存地址。
```c#include <stdio.h>#include <stdlib.h>void test_malloc() {int p = (int )malloc(sizeof(int));if (p == NULL) {printf("Memory allocation failed.\n");return;}printf("Memory address: %p\n", p);free(p);}int main() {test_malloc();return 0;}```(2)编写一个函数,使用calloc分配内存,并打印分配的内存地址。
```c#include <stdio.h>#include <stdlib.h>void test_calloc() {int p = (int )calloc(10, sizeof(int));if (p == NULL) {printf("Memory allocation failed.\n");return;}printf("Memory address: %p\n", p);free(p);}int main() {test_calloc();return 0;}```2. 内存读写(1)编写一个函数,使用memcpy函数复制内存内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验要求使用可变分区存储管理方式,分区分配中所用的数据结构 采用空闲分区表和空闲分区链来进行,分区分配中所用的算法采用首次 适应算法、最佳适应算法、最差适应算法三种算法来实现主存的分配与 回收。同时,要求设计一个实用友好的用户界面,并显示分配与回收的 过程。同时要求设计一个实用友好的用户界面,并显示分配与回收的过 程。
i=1,分配空间函数a i=0,退出程序 i=2,回收空间函数
选择操作i 结束
分配空间里的流程图
p->data.length=request 分配不成功
分配空间函数
a=1 a=2 a=3 输入申请内存大小
按顺序找空闲块
初始化q,使它指向空闲块中长度小的一块 输入申请内存大小
初始化q,使它指向空闲块中长度大的一块 p->data.length>request p的状态为已分配 剩下 p->data.length-=request 输入申请内存大小 Y Y N N
设置一个内存空闲分区链,内存空间分区通过空闲分区链来管理, 在进行内存分配时,系统优先使用空闲低端的空间。
设计一个空闲分区说明链,设计一个某时刻主存空间占用情况表, 作为主存当前使用基础。初始化空间区和已分配区说明链的值,设计作 业申请队列以及作业完成后释放顺序,实现主存的分配和回收。要求每 次分配和回收后显示出空闲内存分区链的情况。把空闲区说明链的变化 情况以及各作业的申请、释放情况显示打印出来。
况:
(1) 释放区下邻空闲区(低地址邻接) (2) 释放区上邻空闲区(高地址邻接) (3) 释放区上下都与空闲区邻接 (4) 释放区上下邻都与空闲区不邻接
五、程序流程图
main函数里的流程图
初始化first和end 整理分区序号
显示空闲分区链
选择算法a a=1,首次适应算法 a=2,最佳适应算法 a=3,最坏适应算法
返回到整理分区序号
回收空间里的流程图 p的状态改为空闲
回收p,p的前一个为first p的后一个是end
p的后一个状态空 与后面空闲块相连 将p 的状态改为空闲
将p 的状态改为空闲
回收空间函数
p的后一个是end
Y N Y N Y N
p的前一个状态空 p的前一个状态空 p的后一个状态空 p的后一个状态空 p的后一个状态空 p的后一个状态空
闲区的大小比其他满足要求的空闲区都大,从中划出与请求的大
ห้องสมุดไป่ตู้
小相等的存储空间分配给作业,余下的空闲区仍留在空闲区链
中。
4、主存空间回收 当一个作业执行完成撤离时,作业所占的分区应该归还给系统。
归还的分区如果与其它空闲区相邻,则应合成一个较大的空闲区,登记
在空闲区说明链中,此时,相邻空闲区的合并问题,要求考虑四种情
2.采用可变分区存储管理,分别采用首次适应算法、最佳适应算法 和最坏适应算法实现主存分配和回收。
3、主存空间分配 (1)首次适应算法 在该算法中,把主存中所有空闲区按其起始地址递增的次序 排列。在为作业分配存储空间时,从上次找到的空闲分区的下一 个空闲分区开始查找,直到找到第一个能满足要求的空闲区,从 中划出与请求的大小相等的存储空间分配给作业,余下的空闲区 仍留在空闲区链中。 (2)最佳适应算法 在该算法中,把主存中所有空闲区按其起始地址递增的次序 排列。在为作业分配存储空间时,从上次找到的空闲分区的下一 个空闲分区开始查找,直到找到一个能满足要求的空闲区且该空 闲区的大小比其他满足要求的空闲区都小,从中划出与请求的大 小相等的存储空间分配给作业,余下的空闲区仍留在空闲区链中 (3)最坏适应算法 在该算法中,把主存中所有空闲区按其起始地址递增的次序 排列。在为作业分配存储空间时,从上次找到的空闲分区的下一 个空闲分区开始查找,直到找到一个能满足要求的空闲区且该空
Y Y Y
N N N
与前面空闲块相连
p的状态改为空闲
与前面空闲块相连 与后面空闲块相连
Y N 返回到整理分区序号
六、相关数据结构及关键函数说明 本程序采用了一个struct free_table数据结构,里面包含分区序号
(num)、起始地址(address)、分区长度(length)和分区状态 (state)。还用了线性表的双性链表存储结构(struct Node),里面包 含前区指针(prior)和后继指针(next)。一开始定义一条(含有first 和end)的链,用开始指针和尾指针开创空间链表。然后分别按三种算 法进行分配和回收。 在该程序中关键函数有,sort()、allocation()、recovery()、和 First_fit()、Best_fit()、Worst_fit();其中sort()函数是用来整 理分区序号的,如在删序号3时,她与前面序号2相连在一起了,然后序 号2中的长度总满足申请的内存大小,就会在序号2中分配,然后序号在 2的基础上加1,一直加,加到与原本序号3的下一个序号也就是4相等, 这时sort()就开始有明显的工作了;allocation()是分配空间的,也 是过渡到三个算法中的,当三个算法中满足或者不满足分配请求,都会 又返回值给allocation();recovery()是用来回收内存的,里面包含 了四种情况相连结果,即释放区上与空闲区邻接、释放区下与空闲区邻 接、释放区上下都与空闲区邻接、释放区上下都与空闲区不邻接这四种 情况的结果。
作业4 申请 200KB、 作业3释放100KB、 作业1 释放130KB 、 作 业5申请140KB 、
作业6申请60KB 、作业7申请50KB) 当作业1进入内存后,分给作业1(130KB),随着作业1、2、3的进
入,分别分配60KB、100KB,经过一段时间的运行后,作业2运行完毕, 释放所占内存。此时,作业4进入系统,要求分配200KB内存。作业3、1 运行完毕,释放所占内存。此时又有作业5申请140KB,作业6申请 60KB,作业7申请50KB。为它们进行主存分配和回收。 1、采用可变分区存储管理,使用空闲分区链实现主存分配和回收。 空闲分区链:使用链指针把所有的空闲分区链成一条链,为了实现对空 闲分区的分配和链接,在每个分区的起始部分设置状态位、分区的大小 和链接各个分区的前向指针,由状态位指示该分区是否分配出去了;同 时,在分区尾部还设置有一后向指针,用来链接后面的分区;分区中间 部分是用来存放作业的空闲内存空间,当该分区分配出去后,状态位就 由“0”置为“1”。
三、实验主要仪器设备和材料 实验环境 硬件环境:PC或兼容机 软件环境:VC++ 6.0
四、实验原理及设计分析 某系统采用可变分区存储管理,在系统运行当然开始,假设初始状
态下,可用的内存空间为640KB,存储器区被分为操作系统分区 (40KB)和可给用户的空间区(600KB)。
(作业1 申请130KB、 作业2 申请60KB、 作业3 申请100KB 、 作 业2 释放 60KB 、
一、实验目的 熟悉主存的分配与回收。理解在不同的存储管理方式下,如何实现
主存空间的分配与回收。掌握动态分区分配方式中的数据结构和分配算 法及动态分区存储管理方式及其实现过程。
二、实验内容和要求 主存的分配和回收的实现是与主存储器的管理方式有关的。所谓分
配,就是解决多道作业或多进程如何共享主存空间的问题。所谓回收, 就是当作业运行完成时将作业或进程所占的主存空间归还给系统。