内存管理实验报告

合集下载

存储器管理实验实验报告

存储器管理实验实验报告

存储器管理实验实验报告一、实验目的存储器管理是操作系统的重要组成部分,本次实验的目的在于深入理解存储器管理的基本原理和方法,通过实际操作和观察,掌握存储器分配与回收的算法,以及页面置换算法的实现和性能评估。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。

三、实验内容与步骤(一)存储器分配与回收算法实现1、首次适应算法(1)原理:从空闲分区链的首地址开始查找,找到第一个满足需求的空闲分区进行分配。

(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态(已分配或空闲)。

当有分配请求时,从链表头部开始遍历,找到第一个大小满足需求的空闲分区。

将该分区进行分割,一部分分配给请求,剩余部分仍作为空闲分区留在链表中。

若找不到满足需求的空闲分区,则返回分配失败。

2、最佳适应算法(1)原理:从空闲分区链中选择与需求大小最接近的空闲分区进行分配。

(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态。

当有分配请求时,遍历整个链表,计算每个空闲分区与需求大小的差值。

选择差值最小的空闲分区进行分配,若有多个差值相同且最小的分区,选择其中起始地址最小的分区。

对选中的分区进行分割和处理,与首次适应算法类似。

3、最坏适应算法(1)原理:选择空闲分区链中最大的空闲分区进行分配。

(2)实现步骤:建立空闲分区链表,每个节点包含分区的起始地址、大小和状态。

当有分配请求时,遍历链表,找到最大的空闲分区。

对该分区进行分配和处理。

(二)页面置换算法实现1、先进先出(FIFO)页面置换算法(1)原理:选择在内存中驻留时间最久的页面进行置换。

(2)实现步骤:建立页面访问序列。

为每个页面设置一个进入内存的时间戳。

当发生缺页中断时,选择时间戳最早的页面进行置换。

2、最近最久未使用(LRU)页面置换算法(1)原理:选择最近一段时间内最长时间未被访问的页面进行置换。

存储管理实验报告

存储管理实验报告

存储管理实验报告存储管理实验报告引言:存储管理是计算机系统中非常重要的一部分,它负责管理计算机系统中的存储资源,包括内存和外存。

合理的存储管理能够提高计算机系统的性能和效率,保证系统的稳定运行。

本次实验旨在通过实践操作,深入了解存储管理的原理和方法,并通过实验结果分析,探讨存储管理的优化策略。

一、实验目的本次实验的主要目的是通过实践操作,深入了解存储管理的原理和方法,并通过实验结果分析,探讨存储管理的优化策略。

具体目标如下:1. 了解存储管理的基本概念和原理;2. 掌握存储管理的常用方法和技术;3. 分析实验结果,探讨存储管理的优化策略。

二、实验环境本次实验使用了一台配置较高的计算机,具备较大的内存和高速的硬盘。

实验环境如下:1. 操作系统:Windows 10;2. 内存:16GB;3. 硬盘:1TB。

三、实验过程1. 内存管理实验在内存管理实验中,我们使用了一段较大的程序代码进行测试。

首先,我们通过编程语言将程序代码写入内存中,然后通过内存管理技术将程序代码加载到内存的合适位置。

在加载过程中,我们使用了分页和分段两种常用的内存管理技术,并比较了它们的性能差异。

实验结果显示,分页技术相对来说更加高效,能够更好地利用内存资源,提高系统的运行速度。

2. 外存管理实验在外存管理实验中,我们模拟了大文件的读写操作。

首先,我们将一个较大的文件写入硬盘中,然后通过外存管理技术将文件加载到内存中进行读取。

在加载过程中,我们使用了磁盘调度算法和文件系统管理技术,并比较了它们的性能差异。

实验结果显示,磁盘调度算法的选择对系统的读写速度有较大的影响,而文件系统的合理管理能够提高文件的存取效率。

四、实验结果分析通过对实验结果的分析,我们可以得出以下结论:1. 内存管理中,分页技术相对于分段技术更加高效,能够更好地利用内存资源,提高系统的运行速度;2. 外存管理中,磁盘调度算法的选择对系统的读写速度有较大的影响,合理选择磁盘调度算法能够提高系统的性能;3. 文件系统的合理管理能够提高文件的存取效率,减少文件的碎片化,提高系统的整体性能。

实验3内存管理

实验3内存管理

实验3内存管理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII深圳大学实验报告课程名称:操作系统实验项目名称:内存管理实验学院:计算机与软件学院专业:计算机科学与技术指导教师:罗秋明报告人:学号:班级:实验时间: 2014-11-21 实验报告提交时间: 2014-11-30教务部制getchar();a=(int*)malloc(pow(2,27)*sizeof(int));b=(int*)malloc(pow(2,27)*sizeof(int));c=(int*)malloc(pow(2,27)*sizeof(int));printf("3 new space has already created.Type to free space b.\n"); getchar();free(b);printf("Space b is free.Type to create new space d.\n");getchar();d=(int*)malloc(pow(2,28)*sizeof(int));printf("Space d has been created.\n");getchar();return 0;}运行代码,查看虚存空间。

在释放空间b前,存储空间如下:用maps查看:用status查看:释放b空间后:Maps:Status:建立新空间d后:Maps: Status:#include<stdio.h>#include<stdlib.h>int main(){int i;char *a[100000];printf("The pid is:%d\n",getpid());for(i=0;i<10000000000;i++){a[i]=(char*)malloc(pow(2,30)*sizeof(char));//每次分配1G内存 if(a[i]==NULL){printf("The max virtual memory is %d G\n",i);//输出内存getchar();break;}}return 0;}输出结果:用status查看更详细的内存使用情况:由以上结果可以知道,虚存空间最大值为137436438472kB,约38633G。

实现内存分配实验报告(3篇)

实现内存分配实验报告(3篇)

第1篇一、实验目的1. 理解操作系统内存分配的基本原理和常用算法。

2. 掌握动态分区分配方式中的数据结构和分配算法。

3. 通过编写程序,实现内存分配和回收功能。

二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:GCC编译器三、实验原理1. 内存分配的基本原理操作系统内存分配是指操作系统根据程序运行需要,将物理内存分配给程序使用的过程。

内存分配算法主要包括以下几种:(1)首次适应算法(First Fit):从内存空间首部开始查找,找到第一个满足条件的空闲区域进行分配。

(2)最佳适应算法(Best Fit):在所有满足条件的空闲区域中,选择最小的空闲区域进行分配。

(3)最坏适应算法(Worst Fit):在所有满足条件的空闲区域中,选择最大的空闲区域进行分配。

2. 动态分区分配方式动态分区分配方式是指操作系统在程序运行过程中,根据需要动态地分配和回收内存空间。

动态分区分配方式包括以下几种:(1)固定分区分配:将内存划分为若干个固定大小的分区,程序运行时按需分配分区。

(2)可变分区分配:根据程序大小动态分配分区,分区大小可变。

(3)分页分配:将内存划分为若干个固定大小的页,程序运行时按需分配页。

四、实验内容1. 实现首次适应算法(1)创建空闲分区链表,记录空闲分区信息,包括分区起始地址、分区大小等。

(2)编写分配函数,实现首次适应算法,根据程序大小查找空闲分区,分配内存。

(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。

2. 实现最佳适应算法(1)创建空闲分区链表,记录空闲分区信息。

(2)编写分配函数,实现最佳适应算法,根据程序大小查找最佳空闲分区,分配内存。

(3)编写回收函数,回收程序所占用的内存空间,更新空闲分区链表。

3. 实验结果分析(1)通过实验,验证首次适应算法和最佳适应算法的正确性。

(2)对比两种算法在内存分配效率、外部碎片等方面的差异。

五、实验步骤1. 创建一个动态内存分配模拟程序,包括空闲分区链表、分配函数和回收函数。

内存管理实验报告

内存管理实验报告

内存管理实验报告内存管理实验报告引言内存管理是计算机系统中非常重要的一部分,它负责管理计算机系统的内存资源,为程序的运行提供必要的支持。

本次实验旨在探究不同的内存管理策略对计算机系统性能的影响,以及如何优化内存管理以提高系统效率。

一、实验背景计算机系统中的内存是用于存储程序和数据的关键资源。

在多道程序设计环境下,多个程序需要共享有限的内存资源,因此需要一种有效的内存管理策略来分配和回收内存空间。

本次实验中,我们将研究并比较两种常见的内存管理策略:固定分区和动态分区。

二、实验过程1. 固定分区固定分区是将内存划分为固定大小的若干区域,每个区域可以容纳一个程序。

在实验中,我们将内存划分为三个固定大小的区域,并将三个不同大小的程序加载到内存中进行测试。

通过观察程序的运行情况和内存利用率,我们可以评估固定分区策略的优缺点。

2. 动态分区动态分区是根据程序的大小动态地分配内存空间。

在实验中,我们将使用首次适应算法来实现动态分区。

首次适应算法将按照程序的大小从低地址开始查找可以容纳该程序的空闲分区,并分配给程序使用。

通过观察动态分区策略下的内存利用率和碎片情况,我们可以评估该策略的优劣。

三、实验结果1. 固定分区在固定分区策略下,我们观察到每个程序都能够顺利运行,但是内存利用率较低。

由于每个程序都需要占用一个固定大小的分区,当程序大小与分区大小不匹配时,会出现内存浪费的情况。

此外,固定分区策略也存在无法分配较大程序的问题。

2. 动态分区在动态分区策略下,我们观察到内存利用率较高,碎片情况也较少。

由于动态分区可以根据程序的大小动态分配内存空间,因此可以更加高效地利用内存资源。

然而,动态分区策略也存在着内存分配和回收的开销较大的问题。

四、实验总结通过本次实验,我们对固定分区和动态分区两种内存管理策略进行了比较和评估。

固定分区策略适用于程序大小已知且固定的情况,但会导致内存浪费;而动态分区策略可以更加灵活地分配内存空间,但会增加内存分配和回收的开销。

Linux内存管理报告

Linux内存管理报告

Linux内存管理实验一、实验内容:1.利用boches 观测linux0.11 下的GDT 表和LDT 表内容。

2.利用bochs 观测linux0.11 下的内存地址映射过程以及分页机制的实现。

3.利用bochs修改虚拟地址所对应的物理内存中存放的数值,观测程序运行情况的变化。

二、Linux内存管理机制分析1. 物理内存使用划分:为了有效使用物理内存,Linux将内存划分为几个功能区域,其中包括:内核模块区,高速缓冲区,主内存区,如下图:2.地址映射:逻辑地址:该地址是指由程序产生并与代码段相关的偏移地址,分段分页机制对于程序员是透明的,程序员仅需和逻辑地址打交道。

线性地址:是指由逻辑地址到物理地址之间变换的中间层地址。

程序代码会产生逻辑地址(即段内偏移地址),加上相应的段基址就产生了一个线性地址。

若启用分页机制,那么线性地址还要经过一系列变换生成物理地址,若没有启用分页机制,则线性地址就是物理地址(在实地址模式下,线性地址就是物理地址,但是线性地址加大了系统的不安全因素)。

物理地址:是指出现在cpu外部地址总线上的寻址物理内存的地址信号,即地址变换的最终结果。

当采用分页机制时,线性地址通过页目录,页表中的项来变换成物理地址,否则线性地址就直接是物理地址。

3. 段描述符和段选择符:段描述符:i386虚模式下的地址是32位,而段寄存器却只有16位,因此处理器要求系统在内存中创建一系列的表来存放每个段的首地址。

这些表中的内容用来描述一个段的信息,因此这些表叫段描述符表,包括(GDT:全局描述符表,LDT:局部描述符表,IDT:中断描述符表)表中的内容就称为段描述符。

而程序的逻辑地址就是用段和段内的偏移地址表示。

在linux中,程序的逻辑地址到线性地址的变换就是使用了cpu的全局描述符表GDT和局部描述符表LDT。

由GDT映射的地址空间称为全局地址空间,由LDT 映射的地址空间称为局部地址空间,其中LDT是GDT的二级表,即GDT 中存储了LDT的地址。

内存管理实验报告

内存管理实验报告

内存管理实验报告实验名称:内存管理实验目的:掌握内存管理的相关概念和算法加深对内存管理的理解实验原理:内存管理是操作系统中的一个重要模块,负责分配和回收系统的内存资源。

内存管理的目的是高效地利用系统内存,提高系统的性能和稳定性。

实验过程:1.实验环境准备本实验使用C语言编程,要求安装GCC编译器和Linux操作系统。

2.实验内容实验主要包括以下几个部分:a.基本内存管理创建一个进程结构体,并为其分配一定大小的内存空间。

可以通过C语言中的指针操作来模拟内存管理的过程。

b.连续分配内存算法实现两种连续分配内存的算法:首次适应算法和最佳适应算法。

首次适应算法是从低地址开始寻找满足要求的空闲块,最佳适应算法是从所有空闲块中选择最小的满足要求的块。

c.非连续分配内存算法实现分页和分段两种非连续分配内存的算法。

分页是将进程的虚拟地址空间划分为固定大小的页面,然后将页面映射到物理内存中。

分段是将进程的地址空间划分为若干个段,每个段可以是可变大小的。

3.实验结果分析使用实验中的算法和方法,可以实现对系统内存的高效管理。

通过比较不同算法的性能指标,我们可以选择合适的算法来满足系统的需求。

具体而言,连续分配内存算法中,首次适应算法适用于内存中有大量小碎片的情况,可以快速找到满足要求的空闲块。

最佳适应算法适用于内存中碎片较少的情况,可以保证最小的内存浪费。

非连续分配内存算法中,分页算法适用于对内存空间的快速分配和回收,但会带来一定的页表管理开销。

分段算法适用于对进程的地址空间进行分段管理,可以灵活地控制不同段的权限和大小。

实验中还可以通过性能测试和实际应用场景的模拟来评估算法的性能和适用性。

实验总结:本实验主要介绍了内存管理的相关概念和算法,通过编写相应的代码实现了基本内存管理和连续分配、非连续分配内存的算法。

通过实际的实验操作,加深了对内存管理的理解。

在实验过程中,我们发现不同算法适用于不同情况下的内存管理。

连续分配算法可以根据实际情况选择首次适应算法或最佳适应算法。

操作系统存储管理实验报告

操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的本次实验的目的是通过编写一段程序,实现对内存的分配和回收操作,并验证算法的正确性和性能。

二、实验内容1.实现首次适应算法首次适应算法是一种动态分配的内存管理算法,通过从低地址往高地址内存块,找到第一个满足需求的空闲块进行分配。

具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,根据需求大小找到第一个合适的空闲块,并在其前后设置相应的标志位;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。

2.实现最佳适应算法最佳适应算法是一种动态分配的内存管理算法,通过整个内存空间,找到最小的满足需求的空闲块进行分配。

具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,遍历整个内存空间,找到满足需求且大小最小的空闲块进行分配;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。

三、实验结果1.首次适应算法经过测试,首次适应算法能够正确地进行内存的分配和回收操作,并且算法的性能良好。

尽管首次适应算法在分配过程中可能会产生碎片,但是由于它从低地址开始,可以在较短的时间内找到满足需求的空闲块。

在实际应用中,首次适应算法被广泛采用。

2.最佳适应算法经过测试,最佳适应算法能够正确地进行内存的分配和回收操作,并且算法的性能较好。

最佳适应算法会整个内存空间,找到大小最小的满足需求的空闲块。

因此,在分配过程中不会产生很多的碎片,但是算法的执行时间较长。

四、实验总结通过本次实验,我们成功地实现了首次适应算法和最佳适应算法,并对算法的正确性和性能进行了验证。

两种算法在内存的分配和回收过程中都表现出良好的性能,可广泛应用于实际场景中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内存管理实验报告信息科学与技术学院实验报告课程名称: 实验项目: 实验地点:指导教师: 日期:实验类型:(验证性实验综合性实验设计性实验)专业: 计算机外包班级: 14外三姓名: 周鹏飞学号: 1414104033 一、实验目的及要求通过此次实验,加深对内存管理的认识,进一步掌握内存的分配,回收算法的思想。

二、实验仪器、设备或软件Windows操作系统PC一台;VC++6.0三、实验内容及原理原理:设计程序模拟内存的动态分区内存管理方法。

内存空闲区使用空闲分区表进行管理,采用最先适应算法从空闲分区表中寻找空闲区进行分配,内存回收时不考虑与相邻空闲分区的合并。

假定系统的内存共640k,初始状态为操作系统本身占用40k.t1时刻,为作业A,B,C分配80k,60k,100k的内存空间;t2时刻作业B完成;t3时刻为作业D分配50k的内存空间;t4时刻作业C,A完成;t5时刻作业D完成。

要求编程序分别输出t1,t2,t3,t4,t5时刻内存的空闲区的状态。

实验内容:#include<stdio.h>#include<stdlib.h>#define maxPCB 6 //最大进程数#define maxPart 6 //最大空闲分区数#define size 10 //不再切割剩余分区的大小typedef struct PCB_type{char name;//进程名int address;//进程所占分区首地址int len;//进程所占分区的长度int valid;//PCB标识符(有效,无效)}PCB;Typedef struct seqlist //进程信息队列{PCB PCBelem[maxPCB];// maxPCB为为系统中允许的最多进程数int total; //系统中实际的进程数}PCBseql;//分区类型的描述typedef struct Partition{int address;//分区起址int len;//分区的长度int valid;//有标识符(有效,无效)}Part;//内存空闲分区表(顺序表)描述typedef struct Partlist //空白分区链{Part Partelem[maxPart];//maxPart为系统中可能的最多空闲分区数 int sum;//系统中世纪的分区数}Partseql;//全局变量PCBseql *pcbl;//进程队列指针Partseql *part1;//空闲队列指针#intclude “MainManager.h”void initpcb() //初始化进程表vpcb1{int i;pcb1->PCBelem[0].address=0;pcb1->PCBelem[0].len=0;pcb1->PCBelem[0].name=’s’;pcb1->PCBelem[0].valid=1;pcb1->total=0;for(i=1;i<maxPCB;i++){pcb1->PCBelem[0].name=’\0’;pcb1->PCBelem[0].address=0;pcb1->PCBelem[0].len=0;pcb1->PCBelem[0]. valid =0;}}void initpart() //初始化空闲分区表vpart1{int I;pcb1->PCBelem[0].address=40;pcb1->PCBelem[0].len=600;pcb1->PCBelem[0]. valid =1;for(i=1;i<maxPart;i++){pcb1->PCBelem[0].address=0;pcb1->PCBelem[0].len=0;pcb1->PCBelem[0]. valid =0;}part1->sum=1;}void request(char name,int len) //进程name请求len大小的内存{int i,j,k;int address;for(i=0;i<partl->sum;i++){if(partl->Partelem[i].len>=len){address=partl->Partelem[i].address;if(partl->Partelem[i].len-len>=size){partl->Partelem[i].address+=len;partl->Partelem[i].len-=len;partl->Partelem[i].valid=1;}else{for(j=i;j<maxPart-1;j++){partl->Partelem[j]=partl->Partelem[j+1];partl->Partelem[j].valid=0;partl->Partelem[j].address=0;partl->Partelem[j].len=0;partl->sum--;}for (k=0;k<maxPCB;k++){if (pcbl->PCBelem[k].valid==0){pcbl->PCBelem[k].address=address;pcbl->PCBelem[k].len=len;pcbl->PCBelem[k].name=name;pcbl->PCBelem[k].valid=1;pcbl->total++;break;}}break;}else printf(“内存紧张,暂时不予分配,请等候!”);}}void release(char name) //回收name进程所占的内存空间{int i;for(i=0;i<maxPCB;i++){if(pcb1->PCBelem[i].name==ame){if (pcb1->PCBelem[i].valid==0)printf(“%c进程非运行进程,无法结束!”,name);else{pcb->PCBelem[i].valid=0;pcb->total--;part->Partelem[part1->sum].address=pcb1->PCBelem[i].address;part1->Partelem[part1->sum].valid=1;part1->sum++;}}}}void print()//输出内存空闲分区{int i;printf(“当前的进程有:\n”);printf(“name address length\n”);for(i=1;i<maxPCB;i++){if(pcb1->PCBelem[i].name,pcb1->PCBelem[i].address,pcb->PCBelem[i]. len);}printf(“当前的空闲分区有:\n”);printf(“address length\n”);for(i=0;i<maxPart;i++){if(part1->Partelem[i].valid==1)printf(“%d %d\n”,part1->Partelem[i].address,part1->Partelem[i].len );}}void main(){char ch;char pcbname;int pcblen;PCBseql pcb;Partseql pcb;Pcb1=%part;initpcb();initpart();printf(“\t*********************MENU***********************\n”);printf(“\t***************** Enter:r 请求分配内存*******************\n”)printf(“\t***************** Enter:s 进程结束*******************\n”)printf(“\t***************** Enter:p 打印分配情况*******************\n”)printf(“\t***************** Enter:e 退出*******************\n”)ch=get char();fflush(stdin);while(ch!=’e’){switch(ch){case’r’:printf(“请输入请求进程的name,len:”);scanf(“%c %d”,&pcbname,&pcblen);fflush(stdin);request(pcbname,ocblen);break;case’s’:printf(“请输入要结束进程的name:”);scanf(“%c”,&pcbname);fflush(stdin);request(pcbname);break;case’p’:printf();break;case’e’:exit(0);}ch=getchar();fflush(stdin);}}四、实验步骤(或过程)五、实验结论1、实验结果2、分析讨论六、指导教师评语及成绩。

相关文档
最新文档