流体力学流体力学基本方程

合集下载

流体力学中的三大基本方程

流体力学中的三大基本方程

a 流体质点加速度 在三个坐标轴上的分量表示成:
ax
dx
dt
x
t
x
x
x
y
x
y
z
x
z
ay
d y
dt
y
t
x
y
x
y
y
y
z
y
z
az
dz
dt
z
t
x
z
x
y
z
y
z
z
z
⑷代入牛顿第二定律求得运动方程: 得x方向上的运动微分方程:
dx
dt
dxdydz
p x
dxdydz
fxdxdydz
单位体积流体的运动微分方程:
2 :单位重量流体所具有的动能;
2g
理解:质量为m微团以v 运动,具有mv2/2动能,若用 重量mg除之得v2/2g
三者之和为单位重量流体具有的机械能。
物理意义: 理想、不可压缩流体在重力场中作稳定 流动时,沿流线or无旋流场中流束运动 时,单位重量流体的位能,压力能和动 能之和是常数,即机械能是守恒的,且 它们之间可以相互转换 。
②物理意义:揭示了沿某一根流线运动着 的流体质点速度,位移和压强、密度四者 之间的微分关系。
3.1 伯努利方程积分形式
1.沿流线的积分方程:
gdz 1 dp d 0
2
2
gz
dP
C
设: const
2 gz p C
2
Or
z p 2 C
r 2g
——理想流体微元流束的伯努利方程。
①适用条件:理想流体、不可压缩性流体、稳定 流动、质量力只有重力,且沿某一根流线; ②任选一根流线上的两点:

流体力学-第三讲,流体力学基本方程组

流体力学-第三讲,流体力学基本方程组
23
--------式(5) 为积分形式的动量方程
dui d
pn
dt
n
fid n j jids
(6)
s
ji为应力张量,是对称张量
ji — —i为作用面方向,j 为面力方向
2021/7/22
13
d ui dt
d
f i d
s
n j
jids
(6)
pn n
为应力张量
ji — —i为作用面方向,j 为面力方向
s
pn
则:作用在τ和s上的总质量力和面积力为:
F
fd
(1)
pnds
(2)
s
体积τ内流体的动量为:
ud
(3)
2021/7/22
12
于是动量定理可以写成:
d dt
ud
f d
s
pnds
(4)
把雷诺第二输运方程
d dt
F d
dFd
dt
应用于式(4)
du d
dt
f d
s
pnds
(5)
也可表达为
第三章 流体力学基本方程组
➢ 雷诺输运方程 ➢ 连续性方程 ➢ 运动方程(动量方程) ➢ 能量方程
2021/7/22
1
第一节 雷诺输运方程
一、 随体导数
dF dt
F t
ui
F xi
F t
u
F
以欧拉空间坐标所表示的流体质 点的运动属性对时间的全导数.
二、 雅可比行列式的时间导数 :
dJ ui J uJ
ui
0
(3b)
7
d ivu
u
u

流体力学的基本方程式

流体力学的基本方程式

流体力学的基本方程式流体力学是研究流体力学原理和现象的一门学科。

它主要研究流体的运动和变形规律,包括速度、压力、密度和温度等参数的分布及其相互关系。

流体力学的基本方程式包括连续性方程、动量方程和能量方程。

这些方程式用来描述流体的性质和运动,对于解决流体力学问题至关重要。

下面将逐一介绍这些方程式及其应用。

1. 连续性方程连续性方程描述了流体的质量守恒规律。

它基于质量守恒原理,即在流体中任意一点的质量净流入/流出率等于该点区域内质量的减少率。

连续性方程的数学表达式是:∂ρ/∂t + ∇•(ρV) = 0。

其中,ρ是流体的密度,t是时间,V是流体的流速矢量,∇•表示散度运算符。

连续性方程的应用范围广泛,例如用于描述气象学中的气流动力学、河流的水量和水质传输等。

2. 动量方程动量方程描述了流体的运动规律。

它基于牛顿第二定律,即流体的运动是由外力和内力共同作用的结果。

动量方程的数学表达式是:ρ(∂V/∂t + V•∇V) = -∇P + ∇•τ + ρg。

其中,P是压力,τ是应力张量,g是重力加速度。

动量方程是解决流体流动问题的关键方程,可以用于模拟气象学中的风场、水力学中的水流、航空航天中的气体流动等。

3. 能量方程能量方程描述了流体的能量转换和传递规律。

它基于能量守恒原理,即在流体中任意一点的能量净流入/流出率等于该点区域内能量的减少率。

能量方程的数学表达式是:ρCv(∂T/∂t + V•∇T) = ∇•(k∇T) + Q - P(∇•V) + ρg•V。

其中,Cv是比热容,T是温度,k是热传导系数,Q是体积热源项。

能量方程可用于模拟热传导、对流和辐射现象,例如地下水温场、燃烧室的工作原理等。

流体力学的基本方程式是解决各种流体流动问题的基础,通过对这些方程式的应用,可以揭示流体的行为和性质,为实际工程和科学研究提供指导。

在实际应用中,还可以结合数值模拟和试验数据,进一步分析和预测流体力学问题的解,为工程决策和科学研究提供依据。

《流体力学》Ⅰ主要公式及方程式讲解

《流体力学》Ⅰ主要公式及方程式讲解

《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:β1dρp=-1dVVdp=ρdp 流体的体积弹性系数计算式:E=-VdpdpdV=ρdρ 流体的体积膨胀系数计算式:βdVT=1VdT=-1dρρdT2.等压条件下气体密度与温度的关系式:ρ0t=ρ1+βt,其中β=1273。

3T=±μAdudy 或τ=TduA=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631E)⨯10-4f1∂p⎫x-ρ∂x=0⎪fr-1∂p=0⎫⎪ρ∂r⎪⎪4.欧拉平衡微分方程式: f⎪y-1∂pρ∂y=0⎪⎬和fθ-1∂pρ=0⎬ f1∂p⎪r∂θρ∂z=0⎪⎪⎪⎭f1∂p⎪z-z-ρ∂z=0⎪⎭欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0frdr+fθrdθ+fzdz=06pγ+z=C 或 p1γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz27p=p0+γh,其中p0为自由液面上的压力。

8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式:ax+gz=C;自由液面方程式:ax+gz=0。

注意:p0为自由液面上的压力。

1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r22g-z);等压面方程式:ω2r22-gz=C;自由液面方程式:ω2r22-gz=0。

注意:p0为自由液面上的压力。

10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。

压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)AIxcycA或yD-yc=IxcycA。

当自由液面上的压力为大气压时:yD=yc+矩形截面的惯性矩Ixc计算式:Ixc=圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 6411.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。

【计算流体力学】第1讲-基本方程

【计算流体力学】第1讲-基本方程

1) 围绕(x,y,z)点取一控制体;
任意点 (x, y, z)
x
x
控制体示意图
2) 根据基本定律(质量、动量、能量守恒), 给出控制体内总量(积分量)的变化规律; (总质量、总动量、总能量的变化规律: 积分型方程)
3) 令控制体尺度趋近于0, 得到(x,y,z)点物理量的微分型方程
特点: 控制体不动 (Euler描述)
波音777
波音787
5
CFD 面临的挑战及主要任务:
➢复杂流动的数学模型
湍流的计算模型; 转捩的预测模型; 燃烧及化学反应模型; 噪声模型……
➢ 高精度高效算法
高精度激波捕捉法; 间断有限元法; 大规模代数方程组高效解法 ……
➢ 复杂外形、复杂网格处理方法
自适应网格; 直角网格,浸入边界法; 无网格法; 粒子算法;
微观充分大, 宏观充分小
控制体太小, 有微观波动
103 106 109 1012
1021
1030
控制体内的平均密度随体积变化规律
V (m3)
(x, y, z)
体积为V的 控制体
流动描述方法
描述流体信息:密度、速度、压力、温度等
Euler描述
Lagrange描述
给出每个时刻每个 空间点上的物理量
f f (x, y, z,t) (场)
“切的方向不同,表面上的力也不同”
pn 切3次就够了:垂直x轴, 垂直y轴,垂直z轴各切一次
r px
( pxx ,
pxy ,
pxz )T
r py
( pyx ,
pyy ,
pyz )T
r pz
( pzx ,
pzy ,
pzz )T

《流体力学》流体力学基本方程

《流体力学》流体力学基本方程

2.2 描述流体运动的一些基本概念
2.2.1定常流与非定常流
流场中所有的运动 要素不随时间变化
u u(x, y, z)
(x, y, z)
p p(x, y, z)
u 0 t p 0 t
0
t
流场中有运动 要素随时间变化
u u(x, y, z,t)
(x, y, z,t)
p p(x, y, z,t)
p p(x, y, z,t) (x, y, z,t)
x, y, z ,t--欧拉变量,其中x,y,z与时间t有关。
欧拉法是常用的方法。
5
16 October 2021
欧拉法中的加速度 -- 质点速度矢量对时间的变化率。
a
u t
ux
u x
uy
u y
uz
u z
三个分量:
ax
ux t
ux
ux x
拉格朗日法 从流体质点的运动着手,描述每一个流体质点自始至 终的运动过程。如果知道了所有流体质点的运动规律,那么整个流 体的运动规律也就清楚了。是质点--时间描述法。
质点运动的轨迹
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
ln x t ln y t ln c
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
y x
12
16 October 2021
2. 求迹线
将已知速度分布代入式(2.2.1)可得
dx x t, dy ( y t), dz 0

流体力学-第二章 基本方程

流体力学-第二章 基本方程

h
0
xy
z
经流体柱后侧流入的流体质量应为:
流入质量=
h
0
uy
z
同时,经流体柱前侧流出的质量为:
z
流出质量=
h
0
uy
z
x
h
0
uy
z
x
O
x u u x
x
y
u
h y
x
Chen Haishan NIM NUIST
流出质量减去流入质量 =柱体内质量的减少。
柱体内的净流出量
(流入质量减去流出质量 =柱体内质量的增加)
pnx nx pxx ny pyx nz pzx
pny nx pxy ny pyy nz pzy
pnz
nx pxz
ny pyz
nz pzz
Chen Haishan
NIM NUIST
z
pzz
z
pzx
pz pzy
pxz
px
pxx
pxy
pyy
pyx
py
P Pnz n
Pny
y Pnx o
Chen Haishan NIM NUIST
通过体积分,作用于体积为 的流体块上的质量力:
Fd =作用于流体的质量力
Chen Haishan NIM NUIST
② 表面力
表面力:是指流体内部之间或者流体与其他物体之 间的接触面上所受到的相互作用力。
如流体内部的粘性应力和压力、流体与固体接触面 上的摩擦力等。
x y
n n
cosn, cosn,
x y
nxn n y n
z n cosn, z nzn
Chen Haishan NIM NUIST

流体力学中的三大基本方程

流体力学中的三大基本方程

dx
dt
p x
fx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
16
同理可得y,z方向上的:
dx
dt
x
t
x
x
x
y
x
y
z
x
z
1
p x
fx
dy
dt
y
t
x
y
x
y
y
y
z
y
z
1
p y
fy
dz
dt
z
t
x
z
x
y
z
y
z
z
z
1
p z
fz
17
向量形式:
dr
r f
1
gradp
dt
——理想流体欧拉运动微分方程
式中:
2x
z 2
)
y
t
x
y
x
y
y
y
z
y
z
fy
1
p y
( 2 y
x2
2 y
y 2
2 y )
z 2
19
z
t
x
z
x
y
z
y
z
z
z
fz
1
p z
( 2z
x 2
2z
y 2
2z )
z 2
1.
含有四个未知量(

x
y,完 z整, P的)方程组。
2. 描述了各种量间的依赖关系。
3. 通解、单值条件(几何条件、物理条件、边界条件、初始 条件)→特解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 流束:
流管内的一束运动流体称为流束。
3. 元流:
如果流管的横截面积为dA,这种流管称为微流管,微流管内的流 束称为元流。
4. 总流: 无数元流的总和称为总流。
§3-1 描述流体运动的方法
五.流量:
过流断面:与流线正交的横断面。
对曲面A,(体积)流量 Q: 单位时间内通过过流断面的流体体积。
Q VndA
1 p
as fs s
加速度: as
u t
u
u s
如果流动恒定,则:
as
u
du ds
d ds
u2 2
§3-5 伯努利方程
如果质量力仅为重力:
fs
g cos
g
dz ds
d ds
gz
如果ρ为常数:
as
fs
1
p s
1
dp ds
d ds
p
d ds
u2 2
d ds
gz
d ds
2. 欧拉法:
研究流场空间中某个点的流动参数,并给出这些参 数的分布。
u= u (x, y, z, t), v = v (x, y, z, t), w= (x, y, z, t)
§3-1 描述流体运动的方法
2. 欧拉法:
§3-1 描述流体运动的方法
§3-1 描述流体运动的方法
§3-1 描述流体运动的方法
§3-2 连续性方程
(u) () (w) 0
t x
y
z
对于定常流动(恒定流):
(u) () (w) 0
x
y
z
当ρ=常数时(不可压缩流体):
u w 0
x y z
作业:P106,第6题、第8题。
§3-3 流体运动的微分方程
一. 理想流体的运动微分方程:
理想流体的动压强与液体的静压强的特性一致。
A
平均流速:V = Q / A
§3-1 描述流体运动的方法
六.均匀流、非均匀流、渐变流、急变流:
1. 均匀流与非均匀流:
在给定时刻,流场中各流线都是平行直线的流动称为均匀流; 否之,则为非均匀流。
2. 渐变流与急变流:
在非均匀流中,各流线是接近于平行直线的流动称为渐变 流(或称缓变流);否之,则为急变流。
第三章 流体力学基本方程
本章研究:
流体机械运动的基本力学规律及其在工程 中的初步应用。
思考1
➢ 为什么河道较窄的地方流速较大?
思考2
➢ 高楼顶层的水压为什么较低?
思考3
➢自来水可以爬上几十米的高楼,洪水为什么
不能爬上几米的岸边山坡?
思考4
➢水流速度V2是多少?
§3-1 描述流体运动的方法
描述流体的运动的困难
§3-1 描述流体运动的方法
§3-1 描述流体运动的方法
§3-1 描述流体运动的方法
七.一元流动、二元流动、三元流动:
若流体的流动参数是空间三个坐标和时间的函数,这种流 动称为三元流动;若流动参数是两个坐标和时间的函数, 这种流动称为二元流动;若流动参数是一个坐标和时间的 函数,这种流动称为一元流动。
dx dy dz x 2y 5z
dx1d(2y)d(5z) x 2 2y 5z
dx x
1 2
d(2 y) 2y
dx x
d(5 z) 5 z
由上述两式分别积分,并整理得:
§3-1 描述流体运动的方法
x
y c1

xc2z5c2 0
即流线为曲面 x y c1 和平面 xc2z5c20的交线。
§3-1 描述流体运动的方法
a V u V v V w V t x y z
加速度的投影值:
ax
u t
u
u x
v
u y
w
u z
v v v v ay t u x v y w z
az
w t
u
w x
v
w y
w w z
作业:P52-53,第19题、第21题。
§3-1 描述流体运动的方法
二.恒定流与非恒定流:
ln x ln y C1 xyc
流线过点A(-1,-1) ∴ C =1
流线方程为: x y 1
§3-1 描述流体运动的方法
例2:已知某流场中流速分布为:u = -x, v = 2y, w = 5-z。 求通过点(x,y,z) = (2,4,1)的流线方程。
解:
流线微分方程为: dx dy dz u vw
p
0
积分得: gz p u2 const.
2
沿流线积分
§3-5 伯努利方程
或:z p u2 H const.
2g
这就是重力作用下,理想不可压缩流体恒定流沿流线的伯努利 方程。
Z
和p
:物理意义和几何意义见第二章
u2 :物理意义→单位重量的流体所具有的动能 2g 几何意义→流速水头
V0 (x, y, z,t)
t+Δt 时刻位于(x+Δx, y+Δy, z+Δz, t+Δt),速度为:
V1(x x, y y, z z,t t)
V0和V1的关系为:
V1
V0
V t
t
V x
x
V y
y
V z
z
(泰勒展开式)
§3-1 描述流体运动的方法
用粗体字母表示矢量,则:
加速度: a lim v1 v0 (to) t
§3-1 描述流体运动的方法
描述流体的运动的困难
§3-1 描述流体运动的方法
一.拉格朗日法与欧拉法: 1.拉格朗日法:
§3-1 描述流体运动的方法
一.拉格朗日法与欧拉法: 1.拉格朗日法:
研究每个流体质点的运动情况,并给出其运动轨迹。
设某质点的轨迹为: x=x(a,b,c,t), y=y(a,b,c,t), z=z(a,b,c,t)。 (a,b,c)为质点的初始位置坐标。
§3-1 描述流体运动的方法

§3-1 描述流体运动的方法
§3-1 描述流体运动的方法
例1:已知:u = x + t,v = -y + t, w = 0
求:t = 0 时,经过点A(-1,-1)的流线方程。 解: t = 0时,u=x,v=-y, w= 0 ;代入流线微分方程:
dx dy x y
因此:
d dt
d
dM dt
t
d
A
vndA
对于任一物理量φ(如动量):
d dt
d
t
d
vndA
A
φ——单位体积的某物理量。
§3-2 连续性方程
d dt
d
t
d
vndA
A
即:系统的任一物理量的总变化率等于控制体内该物理量的 时间变化率和该物理量通过控制体表面的净流出率之和。
由于质量守恒,因此:
§3-1 描述流体运动的方法
三.迹线和流线:
迹线:给定质点在一段连续时间内的运动轨迹。
§3-1 描述流体运动的方法
三.迹线和流线:
流线:
§3-1 描述流体运动的方法
三.迹线和流线:
§3-1 描述流体运动的方法
三.迹线和流线:
流线和迹线的区别:
§3-1 描述流体运动的方法
流线微分方程:
设流线微段为:
2. 连续性方程的推导:
系统的流体质量为: M (t) (t)d (t)
质量守恒: 系统的质量在任何时刻都相等。
dM lim M (t t) M (t) 0
dt t0
t
我们选取 t 时刻系统的体积τ 和表面积 A 为控制体的 体积和表面积。
§3-2 连续性方程
dM lim M (t t) M (t) 0
从理想流体中取出边
长分别为dx、dy和dz的微 元平行六面体。设微元 体中心点的速度分量为u、 v和w,其压强为p、密度 为ρ。
x方向: max = F x
dxdydz
ax
f
x
dxdydz
p p x
dx 2
dydz
p
p x
dx 2
dydz
§3-3 流体运动的微分方程
1 p
即: ax fx x
dt t0
t
M (t t) M (t) (t t)d (t)d
(tt)
(t)
(t t)d (t t)d (t)d
(t)
(t)
[(t t) (t)]d (t t)d
(t)
[(t t) (t)]d (t t)vndA t
(t)
A
§3-2 连续性方程
2u z 2
ay
fy
1
p y
2v
x2
2v y2
2v
z 2
az
fz
1
p z
2w x2
2w y2
2w
z 2
在N-S方程中,若 = 0(理想流体),则N-S方程变为
欧拉运动微分方程。
§3-5 伯努利方程
一.理想流体沿流线s的伯努利方程:
1. 方程的推导:
考查理想流体沿流线s的运动方程:
x
dx 2
u
u x
dx 2
dy
(u)
x
dxdy
§3-2 连续性方程
同理,单位时间内y方向净流出的质量为: (v) dxdy
x
因此: dxdy (u) dxdy (v) dxdy 0
t
x
y
即: (u) (v) 0
t x y
三元流动: (u) () (w) 0
t x
y
相关文档
最新文档