不等式基本不等式辅导讲义(含详细解答)
(完整版)不等式及其基本性质知识点复习及例题讲解

不等式的概念及其基本性质一、知识点复习:1. 用 不等号 连接起来的式子叫不等式;常见的不等号有“>,≥,<,≤,≠”。
2.不等式的基本性质:(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
如果a b >,那么c b c a +>+,c b c a ->-;(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
如果)0(>>c b a ,那么ac bc >,a b c c>; (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
如果)0(<>c b a ,那么bc ac <,cb c a <; (4)如果a b >,那么b a <;(5)如果a b >,b c >,那么a c >。
二、经典题型分类讲解:题型1:考察不等式的概念1. (2017春金牛区校级月考)式子:①02>;②14≤+y x ;③03=+x ;④7-y ;⑤35.2>-m 。
其中不等式有( )A 、1个B 、2个C 、3个D 、4个题型2:考察不等式的性质2.(2017连云港四模)已知b a >,下列关系式中一定正确的是( )A 、22b a <B 、b a 22<C 、22+<+b aD 、b a -<-3. 若0a b <<,则下列式子:12a b +<+ ,1a b > , a b ab +< , 11a b<,其中正确的有( )A 、1个B 、2个C 、3个D 、4个4.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >5.(2016秋太仓市校级期末)如果10<<x ,则下列不等式成立的是( )A 、x x x 12<<B 、x x x 12<<C 、21x x x <<D 、x x x <<21 题型3:利用不等式的性质确定字母的取值范围6. 已知关于x 的不等式2)1(>-x a 两边都除以a -1,得ax -<12,试化简:21++-a a 。
基本不等式教学讲义

基本不等式教学讲义ZHI SHI SHU LI 知识梳理 ) 1.重要不等式a 2+b 2≥2ab (a ,b ∈R )(当且仅当a =b 时等号成立). 2.基本不等式ab ≤a +b2(均值定理)(1)基本不等式成立的条件:a >0,b >0;(2)等号成立的条件:当且仅当a =b 时等号成立;(3)其中a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.3.利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值),那么当x =y 时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值),那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)ZHONG YAO JIE LUN重要结论 ) 常用的几个重要不等式(1)a +b ≥2ab (a >0,b >0).(当且仅当a =b 时取等号) (2)ab ≤(a +b 2)2(a ,b ∈R ).(当且仅当a =b 时取等号)(3)(a +b 2)2≤a 2+b 22(a ,b ∈R ).(当且仅当a =b 时取等号)(4)b a +ab ≥2(a ,b 同号).(当且仅当a =b 时取等号). (5)21a +1b≤ab ≤a +b2≤a 2+b 22(a ,b >0当且仅当a =b 时取等号).SHUANG JI ZI CE双基自测) 1.下列结论正确的个数为( B ) (1)函数y =x +1x 的最小值为2.(2)x >0,y >0是x y +yx ≥2的充要条件.(3)若a >0,则a 3+1a 2的最小值为2a .(4)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ). (5)当x ∈(0,π2)时,函数f (x )=sin x +4sin x ≥4.A .0B .1C .2D .3[解析] (1)、(2)、(3)、(5)都不正确,(4)正确,故选B . 2.已知a ,b ∈R +,且a +b =1,则ab 的最大值为( B ) A .1 B .14C .12D .22[解析] 因为a ,b ∈R +,所以1=a +b ≥2ab ,所以ab ≤14,当且仅当a =b =12时等号成立.故选B .3.(2018·陕西渭南期中)已知x >0,则函数y =4x +x 的最小值是( D )A .-18B .18C .16D .4[解析] 因为x >0,所以y =4x +x ≥2x ·4x =4,当且仅当x =2时取等号,所以函数y =4x+x 的最小值是4,故选D . 4.若x <0,则x +1x ( D )A .有最小值,且最小值为2B .有最大值,且最大值为2C .有最小值,且最小值为-2D .有最大值,且最大值为-2[解析] 因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x =-1时,等号成立,所以x +1x≤-2. 5.(教材改编)若f (x )=x +1x -2(x >2)在x =n 处取得最小值,则n =( B )A .52B .3C .72D .4[解析] 由f (x )=x +1x -2=(x -2)+1x -2+2≥4,当且仅当x -2=1x -2>0,即x =3时,取得等号,故选B .6.(2017·江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是30. [解析] 总费用为4x +600x ×6=4(x +900x )≥4×2900=240,当且仅当x =900x ,即x =30时等号成立.考点1 利用基本不等式求最值——多维探究角度1 配凑法求最值例1 (1)(2018·天津月考)已知a ,b 是正数,且4a +3b =6,则a (a +3b )的最大值是( C ) A .98B .94C .3D .9(2)已知x >54,则y =4x +14x -5的最小值为7,此时x =32.[解析] (1)∵a >0,b >0,4a +3b =6,∴a (a +3b )=13·3a (a +3b )≤13(3a +a +3b 2)2=13×(62)2=3,当且仅当3a =a +3b ,即a =1,b =23时,a (a +3b )的最大值是3.(2)∵x >54,∴4x -5>0.y =4x +14x -5=4x -5+14x -5+5≥2+5=7.当且仅当4x -5=14x -5,即x =32时上式“=”成立.即x =32时,y min =7.[易错警示] 求最值时忽视两项和或积为定值致错利用基本不等式求最值,在保证各项为正数的情况下,必须考虑两项和或两项积为定值,本题解答易忽视两项和为定值的条件,即错误解法为:a (a +3b )≤(a +a +3b2)2,当且仅当a =a +3b ,且4a +3b =6,即a =32,b =0时,a (a +3b )的最大值为94,从而错选B .[引申]把本例(2)中x >54,改为x <54,则y =4x +14x -5的最大值为3,此时x =1.[解析] 因为x <54,所以5-4x >0,则y =4x +14x -5=-(5-4x +15-4x)+5≤-2(5-4x )15-4x+5=-2+5=3.当且仅当5-4x =15-4x ,即x =1时,等号成立.故y =4x -2+14x -5的最大值为3.此时x =1.名师点拨 ☞拼凑法求最值的技巧(1)用均值定理求最值要注意三个条件:一正、二定、三相等.“一正”不满足时,需提负号或加以讨论,“二定”不满足时,需变形,“三相等”不满足时,可利用函数单调性. (2)求乘积的最值.同样要检验“一正、二定、三相等”,如例(2)的关键是变形,凑出积为常数.角度2 换元法求最值例2 求函数y =x -1x +3+x -1的最大值.[解析] 令t =x -1≥0,则x =t 2+1,所以y =t t 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0时,即x >1时,y =1t +4t+1,因为t +4t ≥24=4(当且仅当t =2时取等号),所以y =1t +4t +1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).角度3 常数代换法求最值例3 (2018·辽宁师大附中期中)若正数x ,y 满足3x +y =5xy ,则4x +3y 的最小值为( C ) A .245B .285C .5D .6[解析] ∵x >0,y >0,3x +y =5xy , ∴3y +1x=5. ∴4x +3y =15(3y +1x )(4x +3y )=15(13+12x y +3y x )≥15(13+212x y ·3y x )=5.(当且仅当x =12,y =1时取等号).∴4x +3y 的最小值为5,故选C .名师点拨 ☞常数代换法的技巧(1)常数代换法就是利用常数的变形以及代数式与“1”的积、商都是自身的性质,通过代数式的变形构造和式或积式为定值,然后利用基本不等式求最值.(2)利用常数代换法求解最值应注意:①条件的灵活变形,常数化成1是代数式等价变形的基础;②利用基本不等式求最值时“一正、二定、三相等”的检验,否则容易出现错解. 〔变式训练1〕(1)(角度1)已知0<x <1,则x (4-3x )取得最大值时x 的值为23.(2)(角度1)(2018·山东临沂期中)设x >0,y >0,x +y =5,则1x +4y +1的最小值为32.(3)(角度2)函数y =x 2+2x -1(x >1)(4)(角度3)(2018·内蒙古集宁月考)已知a >0,b >0且a +2b =1,则2a +1b 的最小值为( A )A .8B .5C .4D .6[解析] (1)x (4-3x )=13(3x )(4-3x ),∵x <1,∴4-3x >0,∴x (4-3x )≤13[3x +(4-3x )2]2=43,最小值为43,此时3x =4-3x 即x =23.(2)解法一:∵x >0,y >0,x +y =5,∴x +(y +1)=6,∴1x +4y +1=16 [x +(y +1)](1x +4y +1 )=16 (5+y +1x +4x y +1 )≥16 (5+2y +1x ·4x y +1 )=32(当且仅当y +1=2x 即x =2,y =3时取等号)∴1x +4y +1的最小值为32.解法二:∵x >0,y >0,x +y =5, ∴1x +4y +1=1x +46-x =6+3x -x 2+6x , 令x +2=t ,则x =t -2(t >0), 从而1x +4y +1=3t -t 2+10t -16=310-(t +16t). ∵t +16t≥2t ·16t=8(当且仅当t =4时取等号), ∴0<10-(t +16t )≤2,∴310-(t +16t )≥32,∴1x +4y +1≥32(当且仅当x =2,y =3时取等号), ∴1x +4y +1的最小值为32. (3)y =x 2+2x -1=(x 2-2x +1)+2x -2+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.(4)∵a +2b =1,∴2a +1b =(2a +1b )(a +2b )=4+4b a +ab≥4+24b a ·a b =8,当且仅当4b a =ab且a +2b =1,即a =12,b =14时取等号,∴2a +1b的最小值为8,故选A .考点2 利用基本不等式求参数的范围——师生共研例4 若正数a ,b 满足ab =a +b +3,求: (1)ab 的取值范围; (2)a +b 的取值范围.[解析] (1)∵ab =a +b +3≥2ab +3, 令t =ab >0,∴t 2-2t -3≥0,∴(t -3)(t +1)≥0.∴t ≥3即ab ≥3,∴ab ≥9,当且仅当a =b =3时取等号. (2)∵ab =a +b +3,∴a +b +3≤(a +b2)2.今t =a +b >0,∴t 2-4t -12≥0,∴(t -6)(t +2)≥0. ∴t ≥6即a +b ≥6,当且仅当a =b =3时取等号. [答案] (1)[9,+∞) (2)[6,+∞)名师点拨 ☞利用方程的思想是解决此类问题的常规解法.另外,本例第二问也可用如下方法求解:由已知b =a +3a -1>0,∴a -1>0,∴a +b =a +a +3a -1=a +a -1+4a -1=a +1+4a -1=(a -1)+4a -1+2≥6.〔变式训练2〕(2018·齐鲁教科研协作体模拟)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是4. [解析] 解法一:∵x >0,y >0,x +2y +2xy =8. ∴(2y +1)(x +1)=9且x +1>0,2y +1>0 ∴x +2y =(2y +1)+(x +1)-2≥2(2y +1)·(x +1)-2=4.(当且仅当x =2,y =1时取等号)∴x +2y 的最小值为4.解法二:∵x >0,y >0,∴2xy ≤(2y +x 2)2=(2y +x )42(当且仅当x =2,y =1时取等号)又x +2y +2xy =8, ∴x +2y +(x +2y )42≥8∴(x +2y -4)(x +2y +8)≥0 ∴x +2y -4≥0,即x +2y ≥4 (当且仅当x =2,y =1时取等号) ∴x +2y 的最小值为4.解法三:∵x >0,y >0,x +2y +2xy =8 ∴x =8-2y 1+2y =92y +1-1,∴x +2y =92y +1+(2y +1)-2≥292y +1·(2y +1)-2=4(当且仅当y =1时取等号) ∴x +2y 的最小值为4.秒杀解法:x +2y +2xy =8,即x +2y +x ·2y =8.由条件及结论关于x 、2y 的对称性知当x =2y =2时x +2y 取最小值为4.考点3 利用基本不等式解决实际问题——师生共研例5 (2018·山东寿光期末)已知正四棱柱的底面边长为a ,高为h ,其所有顶点都在球O 的球面上,若该正四棱柱的侧面积为4,则球O 的表面积的最小值为22π.[解析] 正四棱柱的侧面积为4ah =4,故ah =1.体对角线长为外接球O 的直径,所以2R =a 2+a 2+h 2=2a 2+h 2≥22a 2h 2≥22,所以R ≥222,当且仅当2a 2=h 2时等号成立,则球O 的表面积为4πR 2≥4π×224=22π,所以球O 的表面积的最小值为22π.名师点拨 ☞应用基本不等式解决实际问题的步骤:①仔细阅读题目,深刻理解题意;②找出题目中的数量关系,并设出未知数,并用它表示其它的量,把要求最值的量设为函数;③利用基本不等式求出最值;④再还原成实际问题,作出解答.特别强调的一点是,当利用基本不等式时,若等号成立的条件不具备,则利用函数的单调性求解. 〔变式训练3〕(2018·云南师大附中月考)高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第n 层楼时,上下楼造成的不满意度为n ,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第n 层楼时,环境不满意度为8n ,则同学们认为最适宜的教室应在( B )A .2楼B .3楼C .4楼D .8楼[解析] 解法一:由题意知,同学们总的不满意度y =n +8n≥2n ·8n =42,当且仅当n =8n,即n =22≈3时,不满意度最小,所以同学们认为最适宜的教室应在3楼. 解法二:代入法,分别n =2,3,4,8,比较n +8n的大小,即选C .基本不等式的综合应用例6 (1)(2018·辽宁丹东五校协作体联考)已知函数f (x )=|ln x |.若0<a <b ,且f (a )=f (b ),则a +4b 的取值范围是( B ) A .(4,+∞) B .[4,+∞) C .(5,+∞)D .[5,+∞)(2)(2018·安徽淮南一中等五校联考)已知正项等比数列{a n }(n ∈N *)满足a 5=a 4+2a 3.若存在两项a m ,a n 使得a m a n =8a 1,则1m +9n 的最小值为( B )A .1B .2C .3D .4[解析] (1)由题意知ln a =-ln b ,即ln(ab )=0, ∴ab =1,∴a +4b ≥24ab =4(当且仅当a =2,b =12时取等号)故选B .(2)由等比数列的性质可知q 2-q -2=0(q 为等比数列的公比),∴q =2,a m a n =8a 1⇒a 21q m +n -2=64a 21,∴m +n -2=6即m +n =8,又m 、n ∈N *,∴1m +9n =18·(m +n )(1m +9n )=18(10+nm+9m n )≥18(10+2n m ·9m n )=2.(当且仅当m =2,n =6时取等号).∴1m +9n的最小值是2.故选B .名师点拨 ☞基本不等式的综合问题的解法:利用相关知识确定某等量关系,在此条件下用基本不等式求解某些最值问题. 〔变式训练4〕(1)(2018·甘肃嘉峪关一中模拟)已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)-3=0互相垂直,则ab 的最大值等于( B ) A .0 B .2 C .4D .2(2)(2018·河北衡水中学调研五)若在函数f (x )=ax 2+bx (a >0,b >0)的图象上点(1,f (1))处的切线斜率为2,则8a +bab 的最小值是( B )A .10B .9C .8D .32[解析] (1)由题意知a 2+(b -2)(b +2)=0,即a 2+b 2=4. ∴ab ≤a 2+b 22=2(当且仅当a =b =2或-2时取等号)故选B .(2)由题意知f ′(x )=2ax +b ,又f ′(1)=2,∴2a +b =2, ∴8a +b ab =1a +8b =12(2a +b )(1a +8b ), =12(10+b a +16a b )≥12(10+2b a ·16ab)=9 (当且仅当a =13,b =43时取等号),故选B .。
基本不等式完整版(非常全面)

28基本不等式专题辅导222、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab3、基本不等式的两个重要变形 (1)若 a,b R *,则2总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值;a b6、柯西不等式(1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有:22 2 2 2 22(a 1 a 2a 3 )(柑b ?b 3 ) (aQ a ?b 2 a s b s )(3) 设a 1,a 2, ,a n 与db, ,b 是两组实数,则有222p222佝 a 2a . )(0b 2 b n )(日山 a 2b 2a nb n )一、知识点总结 1、基本不等式原始形式 二、题型分析题型一:利用基本不等式证明不等式(1)若 a,b R ,则 a 2b 22ab1、设a,b 均为正数,证明不等式:、.ab 二(2)右 a, b R ,则 aba,b,c 为两两不相等的实数,(2)若 a, b R ,则 abb 2ab bc ca4、求最值的条件:“一正, 二定,三相等”5、常用结论1(1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”)x1 (2)若 x 0,则 X -2 (当且仅当 x 1时取“=”)X(3)若 ab 0,则--2 (当且仅当a b 时取“=”)b a2 2(4)若 a, b R ,则 ab(旦 b)2 a b2 2(5)若 a, b R ,贝U1. a ab ba 2b 2 v ------1 122(1 已知aa,b,ca )(1 1, 求证:b)(1 c) 8abca, b, c R4 2x 46、( 2013年新课 标H 卷数学(理)选修4— 5 :不等式选 讲 设a,b,c 均为正数,且a b c 1,证明:(i) ab bc ca 1 3;(2 , 2 2a b c , n)1.b c a7、( 2013年江苏卷(数学) 选修4— 5 :不等式选u 讲已知 a b 0,求证:2a 3 b 3 2ab 2 a 2b 题型二:利用不等式求函数值域1、求下列函数的值域(1)y 3x22x(2) y x(4 x)1(3) y x(x 0)x(4) y1 x —(x 0)x题型三:利用不等式求最值(一)(凑项)1、已知x 2,求函数y2x 4 2x 4的最小值;变式1 :已知x 2,求函数y2x4 2x 4的最小值;变式2:已知x 2,求函数y 2x的最大值;题型四:利用不等式求最值(二)(凑系数)1、当LI ,…一时,求y x(82x)的最大值;3、求函数y 2x 15 2x(- x -)的最大值;2 2(提示:平方,利用基本不等式)变式1:当「I —.二时,求y 4x(8 2x)的最大值;变式:求函数y . 4x 3 11 4x(3 x W)的最大值;443变式2:设0 x ,求函数y 4x(32x)的最大值。
基本不等式-解析版

基本不等式-解析版在初等数学中,基本不等式是我们解决不等式问题的重要工具之一。
它通过对不等式式子的性质进行分析,帮助我们得到更精确的解答。
本文将详细解析基本不等式的相关概念和解题方法,希望能为读者提供全面的理解和应用。
一、不等式的定义与性质不等式是数学中的一种关系表达式,用于表示两个数量的大小关系。
与等式不同,不等式存在"大于"(>)、"小于"(<)、"大于等于"(≥)和"小于等于"(≤)等多种符号。
我们常常需要根据不等式的性质来判断其解的范围。
例如,对于不等式3x + 2 > 7,我们可以通过移项、化简等操作得到其解为x > 1。
这里的解x > 1表示所有满足不等式的x的取值范围。
根据不等式的性质,我们可以总结出以下几点:1. 若a > b,且c > 0,则ac > bc;2. 若a > b,且c < 0,则ac < bc;3. 若a > b,c > 0,则a/c > b/c(前提是除数c不为0);4. 若a > b,c < 0,则a/c < b/c(前提是除数c不为0);5. 若a > b,c > d,则a + c > b + d。
通过这些性质,我们可以在解决不等式问题时进行合理的推导和转化,得到更加准确的答案。
二、基本不等式1. 一元一次不等式一元一次不等式指的是只有一个未知数x,并且该未知数的最高次数为1的不等式。
其一般形式为ax + b > 0或ax + b < 0。
解决一元一次不等式时,我们需要根据系数a的正负及未知数的系数b的大小,分别进行讨论和求解。
例如,对于不等式2x - 1 > 5,我们可以先将其转化为2x > 6,然后得到x > 3。
因此,该不等式的解为x > 3。
专题18 基本不等式(解析版)

专题18 基本不等式(解析版)基本不等式(解析版)不等式是数学中一种常见的关系表达形式,通常用来描述数值之间的大小关系。
基本不等式是指一些在数学中常用的不等式,这些不等式经过解析和推导后,可以得到一些有用的性质和结论。
本文将介绍一些常见的基本不等式,并探讨它们在数学中的应用。
一、一元一次不等式首先我们来看一元一次不等式。
一元一次不等式是指只包含一个未知数的一次函数不等式。
其中最常见的类型是形如ax + b > 0的一元一次不等式。
解这类不等式的方法与求一元一次方程类似,需要对x的取值范围进行分析,得出不等式的解集。
二、一元二次不等式一元二次不等式是指包含一个未知数的二次函数不等式。
解决一元二次不等式时,一种常见的方法是将其转化为标准形式,并利用一元二次方程的性质来解决。
同时要注意一元二次不等式在两边乘以负数时,不等号需反向转换。
三、绝对值不等式绝对值不等式是指包含绝对值符号的不等式。
解绝对值不等式通常需要将不等式分为两种情况进行讨论,一种是当绝对值内的表达式大于等于0,另一种是当绝对值内的表达式小于0。
这样可以得到两个关于未知数x的不等式,再根据这两个不等式解出x的取值范围。
四、加减平均不等式加减平均不等式是数学中常见的一种基本不等式。
它表示若有若干个数a1、a2、……、an,则它们的算术平均数大于等于几何平均数,并等号在且仅在这些数全相等的情况下成立。
也就是说,对于非负数a1、a2、……、an,有(a1+a2+……+an)/n ≥ (a1⋅a2⋅……⋅an)^(1/n)。
五、柯西-施瓦茨不等式柯西-施瓦茨不等式是一种在数学分析和线性代数中常用的不等式。
对于两个n维向量a=(a1,a2,…,an)和b=(b1,b2,…,bn),柯西-施瓦茨不等式可以表示为|(a1b1+a2b2+…+anbn)|≤√(a1^2+a2^2+…+an^2)⋅√(b1^2+b2^2+…+bn^2)。
柯西-施瓦茨不等式的应用领域很广,包括向量空间中的内积、数列中的收敛性等。
不等式-基本不等式辅导讲义(含详细解答)

例题1证明 ∵x >0,y >0,z >0,∴y x +z x ≥2 yz x >0,x y +z y ≥2 xzy >0, x z +y z ≥2 xyz >0, ∴⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭⎪⎫x z +y z ≥ 8 yz ·xz ·xyxyz=8.当且仅当x =y =z 时等号成立.训练1解:∵x ,y 都是正数 ∴yx >0,x y >0,x 2>0,y 2>0,x 3>0,y 3>0(1)xyy x x y y x ⋅≥+2=2即x y y x +≥2.(2)x +y ≥2xy >0 x 2+y 2≥222y x >0 x 3+y 3≥233y x >0∴(x +y )(x 2+y 2)(x 3+y 3)≥2xy ·222y x ·233y x =8x 3y 3即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3.例题2解析 (1)由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4yx -3. 又x ,y ,z 为正实数,∴x y +4yx ≥4, 当且仅当x =2y 时取等号,此时z =2y 2. ∴2x +1y -2z =22y +1y -22y 2=-⎝ ⎛⎭⎪⎫1y 2+2y=-⎝ ⎛⎭⎪⎫1y -12+1,当1y =1,即y =1时,上式有最大值1.(2)∵x >0,y >0,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫2x +2y = 4+2⎝ ⎛⎭⎪⎫x y +y x ≥4+4x y ·yx =8.当且仅当x y =yx ,即x =y =4时取等号. 答案 (1)B (2)D训练2解析 (1)由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x=1,y=12时,等号成立),∴3x+4y的最小值是5.(2)由x>0,y>0,得4x2+9y2+3xy≥2×(2x)×(3y)+3xy(当且仅当2x=3y时等号成立),∴12xy+3xy≤30,即xy≤2,∴xy的最大值为2.答案(1)C(2)C解析由32+x+32+y=1可化为xy=8+x+y,∵x,y均为正实数,∴xy=8+x+y≥8+2xy(当且仅当x=y时等号成立),即xy-2xy-8≥0,解得xy≥4,即xy≥16,故xy的最小值为16.答案 D课堂练习1、解析因为ab>0,即ba>0,ab>0,所以ba+ab≥2ba×ab=2.答案 C2、解析由题意1a+1b=a+ba+a+bb=2+ba+ab≥2+2ba×ab=4,当且仅当ba=ab,即a=b=12时,取等号,所以最小值为4.答案 C3、解析y=x-4+9x+1=x+1+9x+1-5,由x>-1,得x+1>0,9x+1>0,所以由基本不等式得y=x+1+9x+1-5≥2(x+1)×9x+1-5=1,当且仅当x+1=9x+1,即(x+1)2=9,所以x+1=3,即x=2时取等号,所以a=2,b=1,a+b=3.答案 C4、解析(1+2a)(1+b)=5+2a+b≥5+22ab=9.当且仅当2a=b,即a=1,b =2时取等号.答案9解析 ∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y 4,即当x =32,y=2时取等号. 答案 3解析 ∵y =a 1-x 恒过点A (1,1),又∵A 在直线上,∴m +n =1.而1m +1n =m +n m +m +n n =2+n m +m n ≥2+2=4,当且仅当m =n =12时,取“=”,∴1m +1n 的最小值为4. 答案 4课后作业1、答案 C2、答案 A解析 由题意知,a <0,b a =-56,-1a =16,∴a =-6,b =5.∴x 2-5x +6<0的解是(2,3).3、答案 C解析 作出可行域如图所示 .由于2x +y =40、x +2y =50的斜率分别为-2、-12,而3x +2y =0的斜率为-32,故线性目标函数的倾斜角大于2x +y =40的倾斜角而小于x +2y =50的倾斜角,由图知,3x +2y =z 经过点A (10,20)时,z 有最大值,z 的最大值为70.4、答案 A解析 x -1x ≥2⇔x -1x -2≥0⇔-x -1x≥0⇔x +1x ≤0⇔⎩⎪⎨⎪⎧x (x +1)≤0x ≠0⇔-1≤x <0. 5、答案 A解析 ∵ab -(a +b )=1,ab ≤(a +b 2)2,∴(a +b 2)2-(a +b )≥1,它是关于a +b 的一元二次不等式,解得a +b ≥2(2+1)或a +b ≤2(1-2)(舍去). ∴a +b 有最小值2(2+1).又∵ab -(a +b )=1,a +b ≥2ab ,∴ab -2ab ≥1,它是关于ab 的一元二次不等式, 解得ab ≥2+1,或ab ≤1-2(舍去), ∴ab ≥3+22,即ab 有最小值3+2 2.6、答案 A 解析不等式表示的平面区域如图所示阴影部分,当直线ax +by =z (a >0,b >0)过直线x -y +2=0与直线3x -y -6=0的交点(4,6)时,目标函数z =ax +by (a >0,b >0)取得最大值12,即4a +6b =12,即2a +3b =6,而2a +3b =(2a +3b )·2a +3b 6=136+(b a +a b )≥136+2=256(a =b=65时取等号).7、答案 [-1,0]解析 由f (x )=2x 2-2ax -a -1的定义域为R .可知2x 2-2ax -a ≥1恒成立,即x 2-2ax -a ≥0恒成立,则Δ=4a 2+4a ≤0,解得-1≤a ≤0.8答案 3解析 由x -2y +3z =0,得y =x +3z 2,将其代入y 2xz,得x 2+9z 2+6xz 4xz ≥6xz +6xz 4xz =3,当且仅当x =3z 时取“=”,∴y 2xz的最小值为3.。
(完整版)不等式基本概念讲义

第五章不等式一、不等式的定义:1、一般地,用不等号表示不相等关系的式子叫做不等式,常见的不等号有“〉”“<”“≤”“≥”及“≠”五种.2、不等号所表示的意义特征3、常见的符号表示:(1)a是正数表示为a>0,a是负数表示为a〈0,(2)a是非负数表示为a≥0,a是非正数表示为a≤0,(3)a,b同号表示为ab〉0,a,b是异号表示为ab〈0。
例1、在下列各式中,是不等式的有__________①—3x〉0; ②4x+3y〉0;③x=4;④a+b+c;⑤x+y=7;⑥1〉8;⑦2≠2提示:判断一个式子是不是不等式从形式上看,只要这个式子是用不等号连接的就是不等式(不管对错)例2、数学表达式中:①a2≥0;②5p—6q〈0;③x—6=0;④7x+7y-1>9;⑤x≠3;⑥800,是不等式的有_____________二、不等式的解与解集1、不等式的解:能使不等式成立的未知数的值叫做不等式的解(不等式的解是一个具体的数值)2、不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集.(不等式的解集是一个集合,一个范围,包含不等式的每一个解)3、解不等式:求不等式解集的过程叫做解不等式。
例1、判断下列说法是否正确,并说明理由(1)x=3是不等式3x≥9的解集()(2)不等式3x≥9的解为3()(3)x=3是不等式3x≥9的一个解( )(4)x≥3是不等式3x≥9的解()(5)不等式3x≥9的解集是x≥3( )三、不等式解集的表示方法(1)一般形式:用x〉a,或x<a或x≥a或x≤a的形式表示出来的形式。
(2)数轴表示法(最容易理解的方法):不等式的解集表示的是未知数的取值范围,所以不等式的解可以表示在数轴上。
注意!!!用数轴表示不等式的解集是首先要“两定”:①定边界点(注意是实心还是空心)有等号需要的是实心圆点,没有等号用空心圆圈;②定方向:大于号开口向右,小于号开口向左。
第2节 基本不等式--2025年高考数学复习讲义及练习解析

第二节基本不等式1.基本不等式:ab ≤a +b 2.(1)基本不等式成立的条件:01a >0,b >0.(2)等号成立的条件:当且仅当02a =b 时,等号成立.(3)其中03a +b2叫做正数a ,b 的算术平均数,04ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 205≥2ab (a ,b ∈R ).(2)b a +ab 06≥2(a ,b同号).(3)(a ,b ∈R ).(a ,b ∈R ).以上不等式等号成立的条件均为09a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当10x =y 时,和x +y 有最小值112P .(简记:积定和最小)(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当12x =y 时,积xy 有最大值1314S 2.(简记:和定积最大)注意:(1)利用基本不等式求最值应满足三个条件“一正、二定、三相等”,其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)形如y =x +ax (a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.1.连续使用基本不等式求最值要求每次等号成立的条件要一致.2.若a >0,b >0,则21a +1b ≤ab ≤a +b2≤a 2+b 22,当且仅当a =b 时,等号成立.3.常见求最值的模型模型一:mx +nx≥2mn (m >0,n >0,x >0),当且仅当x =nm时,等号成立;模型二:mx +n x -a =m (x -a )+nx -a +ma ≥2mn +ma (m >0,n >0,x >a ),当且仅当x -a =n m时,等号成立;模型三:xax 2+bx +c =1ax +b +c x ≤12ac +b(a >0,c >0,x >0),当且仅当x =ca时,等号成立;模型四:x (n -mx )=mx (n -mx )m ≤1m ·>0,n >0,0<x 当且仅当x =n 2m时,等号成立.4.三个正数的均值不等式:若a ,b ,c >0,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.1.概念辨析(正确的打“√”,错误的打“×”)(1)y =x +1x 的最小值是2.()(2)|b a +a b |≥2.()(3)已知0<x <12,则x (1-2x )的最大值为18.()(4)函数f (x )=sin x +4sin x 的最小值为4.()答案(1)×(2)√(3)√(4)×2.小题热身(1)设a >0,则9a +1a 的最小值为()A .4B .5C .6D .7答案C 解析9a +1a≥29a ·1a =6,当且仅当9a =1a ,即a =13时,等号成立.(2)矩形两边长分别为a ,b ,且a +2b =6,则矩形面积的最大值是()A .4 B.92C.322D .2答案B解析依题意,可得a >0,b >0,则6=a +2b ≥2a ·2b =22·ab ,当且仅当a =2b 时取等号,所以ab ≤628=92,即矩形面积的最大值为92.故选B.(3)(2024·河南郑州高三模拟)已知实数a >0,b >0,a +b =2,则1a +ab 的最小值为________.答案12+2解析1a +a b =12×a +b a +a b =12+b 2a +a b ≥12+2b 2a ·a b =12+2,当且仅当b 2a =ab,即a =22-2,b =4-22时,等号成立.(4)(人教A 必修第一册习题2.2T1(2)改编)函数y =x (3-2x )(0≤x ≤1)的最大值是________.答案98解析因为0≤x ≤1,所以3-2x >0,所以y =12·2x ·(3-2x )≤122x +(3-2x )22=98,当且仅当2x =3-2x ,即x =34时取等号.(5)(人教A 必修第一册复习参考题2T5改编)已知a ,b >0,且ab =a +b +3,则ab 的取值范围为________.答案[9,+∞)解析因为a,b>0,所以ab-3=a+b≥2ab,于是ab-2ab-3≥0,解得ab≤-1(舍去)或ab≥3,所以ab≥9,当且仅当a=b=3时,等号成立,所以ab的取值范围是[9,+∞).考点探究——提素养考点一利用基本不等式求最值(多考向探究)考向1配凑法求最值例1(1)(2024·福建福州四校高三期中联考)已知0<x<2,则y=x4-x2的最大值为() A.2B.4C.5D.6答案A解析因为0<x<2,所以y=x4-x2=x2(4-x2)≤x2+(4-x2)2=2,当且仅当x2=4-x2,即x=2时,等号成立,即y=x4-x2的最大值为2.故选A.(2)函数y=x2+3x+3x+1(x<-1)的最大值为()A.3B.2C.1D.-1答案D解析y=x2+3x+3x+1=(x+1)2+(x+1)+1x+1=--(x+1)+1-(x+1)+1≤-1=-1,当且仅当x+1=1x+1=-1,即x=-2时,等号成立.故选D.【通性通法】配凑法求最值的关键点【巩固迁移】1.函数y =3x ()A .8B .7C .6D .5答案D解析因为x >13,所以3x -1>0,所以y =3x +43x -1=(3x -1)+43x -1+1≥2(3x -1)·43x -1+1=5,当且仅当3x -1=43x -1,即x =1时,等号成立,故函数y =3x 值为5.故选D.2.(2023·浙江杭州高三教学质量检测)已知a >1,b >1,且log 2a =log b 4,则ab 的最小值为()A .4B .8C .16D .32答案C解析∵log 2a =log b 4,∴12log 2a =log b 4,即log 2a =2log 24log 2b ,∴log 2a ·log 2b =4.∵a >1,b >1,∴log 2a >0,log 2b >0,∴log 2(ab )=log 2a +log 2b ≥2log 2a ·log 2b =4,当且仅当log 2a =log 2b =2,即a =b =4时取等号,所以ab ≥24=16,当且仅当a =b =4时取等号,故ab 的最小值为16.故选C.考向2常数代换法求最值例2(1)已知0<x <1,则9x +161-x 的最小值为()A .50B .49C .25D .7答案B解析因为0<x <1,所以9x +161-x =(x +1-x )25+9(1-x )x+16x 1-x ≥25+29(1-x )x ·16x 1-x =49,当且仅当9(1-x )x=16x 1-x ,即x =37时,等号成立,所以9x +161-x 的最小值为49.故选B.(2)已知a >0,b >0,a +2b =3,则1a +1b 的最小值为()A.223B.233C .1+223D .1+233答案C解析因为a +2b =3,所以13a +23b =1,+23b =13+23+a 3b +2b 3a≥1+2a 3b ·2b3a=1+223,当且仅当a 3b =2b3a ,即a =3(2-1),b =3(2-2)2时,等号成立.故选C.【通性通法】常数代换法求最值的基本步骤【巩固迁移】3.若正实数x ,y 满足2x +y =9,则-1x -4y 的最大值是()A.6+429B .-6+429C .6+42D .-6-42答案B解析因为1x +4y =19x +y )+y x +8x y+6+429,当且仅当y x =8xy ,即x =9(2-1)2,y =9(2-2)时,等号成立,所以-1x -4y ≤-6+429.故选B.4.(2024·湖北荆门三校高三联考)已知实数a ,b 满足lg a +lg b =lg (a +2b ),则2a +b 的最小值是()A .5B .9C .13D .18答案B解析由lg a +lg b =lg (a +2b ),可得lg (ab )=lg (a +2b ),所以ab =a +2b ,即2a +1b =1,且a >0,b >0,则2a +b =(2a +b 5+2b a +2ab ≥5+22b a ·2a b =9,当且仅当2b a =2ab,即a =b =3时,等号成立,所以2a +b 的最小值为9.故选B.考向3消元法、换元法求最值例3(1)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是()A.14B.45C.255D .2答案B解析因为5x 2y 2+y 4=1,所以x 2=1-y 45y 2,又x 2≥0,所以y 2∈(0,1],所以x 2+y 2=y 2+1-y 45y2=4y 4+15y 2=y 2≥15×24y 2·1y 2=45,当且仅当4y 2=1y 2,即y 2=12,x 2=310时取等号,所以x 2+y 2的最小值是45.故选B.(2)(2024·浙江嘉兴第一中学高三期中)若x >0,y >0,且1x +1+1x +2y=1,则2x +y 的最小值为()A .2B .23C.12+3D .4+23答案C解析设x +1=a ,x +2y =b ,则x =a -1,y =b -a +12,且a >0,b >0,则1a +1b =1,2x +y=2(a -1)+b -a +12=3a +b 2-32,而3a +b =(3a +b 4+3a b +ba ≥4+23a b ·ba=4+23,当且仅当3a b =ba ,即a =3+33,b =3+1时,等号成立,则2x +y ≥4+232-32=12+ 3.故选C.【通性通法】当所求最值的代数式中变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.【巩固迁移】5.(2023·江苏南京高三调研)设a ≥0,b ≥0,且2a +b =1,则ab 的最小值为__________.答案解析因为2a +b =1,所以a =(b -1)24,所以a b =(b -1)24b=b 4+14b -12≥2b 4·14b-12=0,当且仅当a =0,b =1时取等号.6.(2024·湖北襄阳五中高三质量检测)若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是________.答案223-12解析设u =2-2a ,v =2-b ,则a =2-u 2,b =2-v ,则u +v =3(u >0,v >0),所以a 2-2a +b2-b=1-12u u+2-v v =1u +2v -32=13(u +v 32+v u +-32+321+223-32=223-12,当且仅当v =6-32,u =32-3时,等号成立,所以a 2-2a +b 2-b 的最小值为223-12.考向4“和”“积”互化求最值例4(多选)设a >1,b >1,且ab -(a +b )=1,那么()A .a +b 有最小值22+2B .a +b 有最大值22-2C .ab 有最大值3-22D .ab 有最小值3+22答案AD解析∵a >1,b >1,∴ab -1=a +b ≥2ab ,当a =b 时取等号,即ab -2ab -1≥0,解得ab ≥2+1,∴ab ≥(2+1)2=3+22,∴ab 有最小值3+2 2.又ab ,当a =b 时取等号,∴1=ab -(a +b )-(a +b ),即(a +b )2-4(a +b )≥4,则[(a +b )-2]2≥8,解得a +b -2≥22,即a +b ≥22+2,∴a +b 有最小值22+2.故选AD.【通性通法】“和”“积”互化求最值的方法(1)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值.(2)如果条件中含有两个变量的和与积的形式,可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解,或者通过构造一元二次方程,利用根的分布解决问题.【巩固迁移】7.正实数x ,y 满足4x 2+y 2+xy =1,则xy 的最大值为________,2x +y 的最大值为________.答案152105解析∵1-xy =4x 2+y 2≥4xy ,∴5xy ≤1,∴xy ≤15,当且仅当y =2x ,即x =1010,y =105时取等号.∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,∴(2x +y )2-1=3xy =32·2x ·y,即(2x +y )2-1≤38(2x +y )2,∴(2x +y )2≤85,∴2x +y ≤2105,当且仅当2x =y ,即x =1010,y=105时取等号.考点二基本不等式的综合应用例5(2024·河南濮阳外国语学校模拟)若对任意正数x ,不等式2x 2+4≤2a +1x恒成立,则实数a 的取值范围为()A .[0,+∞) B.-14,+∞C.14,+∞ D.12,+∞答案B解析依题意得,当x >0时,2a +1≥2x x 2+4=2x +4x恒成立,又x +4x ≥4,当且仅当x =2时取等号,所以2x +4x 的最大值为12,所以2a +1≥12,解得实数a 的取值范围为-14,+故选B.【通性通法】1.利用基本不等式求参数的值或范围时,要观察题目的特点,先确定是恒成立问题还是有解问题,再利用基本不等式确定等号成立的条件,最后通过解不等式(组)得到参数的值或范围.2.当基本不等式与其他知识相结合时,往往是为其他知识提供一个应用基本不等式的条件,然后利用常数代换法求最值.【巩固迁移】8.在等腰三角形ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则△ABC 面积的最大值是()A .6B .12C .18D .24答案A解析设AB =AC =2m ,BC =2n ,因为∠ADB =π-∠CDB ,所以m 2+9-4m 26m =-m 2+9-4n 26m,整理得m 2=9-2n 2.设△ABC 的面积为S ,则S =12BC =12×2n ×4m 2-n 2=3n 4-n 2=3n 2(4-n 2)≤3×n 2+4-n 22=6,当且仅当n =2时,等号成立.故选A.考点三基本不等式的实际应用例6网店和实体店各有利弊,两者的结合将在未来一段时期内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2022年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.答案37.5解析由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.【通性通法】利用基本不等式解决实际应用问题的技巧【巩固迁移】9.一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为m g ,则()A .m >10B .m =10C .m <10D .以上都有可能答案A解析由于天平两臂不等长,可设天平左臂长为a ,右臂长为b ,则a ≠b ,设先称得黄金为xg ,后称得黄金为y g ,则bx =5a ,ay =5b ,∴x =5a b ,y =5b a ,∴x +y =5a b +5ba=5×2a b ·b a =10,当且仅当a b =ba,即a =b 时,等号成立,但a ≠b ,等号不成立,即x +y >10.因此顾客实际购得的黄金克数m >10.故选A.课时作业一、单项选择题1.当x <0时,函数y =x +4x ()A .有最大值-4B .有最小值-4C .有最大值4D .有最小值4答案A解析y =x +4x=-(-x )-4,当且仅当x =-2时,等号成立.故选A.2.(2023·陕西咸阳高三模拟)已知x >0,y >0,若2x +y =8xy ,则xy 的最小值是()A.18B.14C.24D.22答案A解析因为2x +y ≥22xy ,所以8xy ≥22xy ,解得xy ≥18,当且仅当2x =y ,即x =14,y =12时,等号成立.故选A.3.已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为()A .13B .12C .9D .6答案C解析由椭圆的定义可知,|MF 1|+|MF 2|=2a =6.由基本不等式可得|MF 1|·|MF 2|=9,当且仅当|MF 1|=|MF 2|=3时,等号成立.故选C.4.(2024·浙江绍兴第一中学高三期中)已知直线ax +by -1=0(ab >0)过圆(x -1)2+(y -2)2=2024的圆心,则1a +1b 的最小值为()A .3+22B .3-22C .6D .9答案A解析由圆的方程知,圆心为(1,2).∵直线ax +by -1=0(ab >0)过圆的圆心,∴a +2b =1(ab >0),∴1a +1b =(a +2b )=3+a b +2ba≥3+2a b ·2b a=3+当且仅当a b =2ba,即a =2b ,∴1a +1b的最小值为3+2 2.故选A.5.(2023·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是()A .第一种方案更划算B .第二种方案更划算C .两种方案一样D .无法确定答案B解析设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则第一种方案:两次加油的平均价格为40x +40y 80=x +y 2>xy ,第二种方案:两次加油的平均价格为400200x +200y =2xyx +y <xy ,故无论油价如何起伏,第二种方案都比第一种方案更划算.故选B.6.(2023·浙江杭州调研)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为()A .4 B.92C.2D .22答案D 解析由m 2-amn +2n 2≥0得m 2+2n 2≥amn ,即a ≤m 2+2n 2mn=m n +2n m 恒成立,因为m n +2nm≥2m n ·2n m =22,当且仅当m n =2nm,即m =2n 时取等号,所以a ≤22,故实数a 的最大值为2 2.故选D.7.(2024·浙江名校协作体高三模拟)设x ,y 为正实数,若2x +y +2xy =54,则2x +y 的最小值是()A .4B .3C .2D .1答案D解析因为x ,y 为正实数,且54=2x +y +2xy =(2x +1)(y +1)-1,令m =2x +1,n =y +1,则mn =94,所以2x +y =m +n -2≥2mn -2=1,当且仅当m =n ,即y =12,x =14时取等号.故选D.8.(2024·湖北襄阳第四中学高三适应性考试)若a ,b ,c 均为正数,且满足a 2+2ab +3ac +6bc =1,则2a +2b +3c 的最小值是()A .2B .1C.2D .22答案A解析因为a 2+2ab +3ac +6bc =1,所以a (a +2b )+3c (a +2b )=(a +2b )(a +3c )=1,又a ,b ,c 均为正数,(a +2b )(a +3c )=(2a +2b +3c )24,当且仅当a +2b =a +3c =1时取等号,所以(2a+2b+3c)24≥1,即2a+2b+3c≥2.故选A.二、多项选择题9.下列四个函数中,最小值为2的是()A.y=sin xxB.y=ln x+1ln x(x>0,x≠1)C.y=x2+6 x2+5D.y=4x+4-x 答案AD解析对于A,因为0<x≤π2,所以0<sin x≤1,则y=sin x+1sin x≥2,当且仅当sin x=1sin x,即sin x=1时取等号,故y=sin x x2,符合题意;对于B,当0<x<1时,ln x<0,此时y=ln x+1ln x为负值,无最小值,不符合题意;对于C,y=x2+6x2+5=x2+5+1x2+5,设t=x2+5,则t≥5,则y≥5+15=655,其最小值不是2,不符合题意;对于D,y=4x+4-x=4x+14x≥24x·14x=2,当且仅当x=0时取等号,故y=4x+4-x的最小值为2,符合题意.故选AD.10.(2024·湖北部分名校高三适应性考试)已知正实数a,b满足ab+a+b=8,下列说法正确的是()A.ab的最大值为2B.a+b的最小值为4C.a+2b的最小值为62-3D.1a(b+1)+1b的最小值为12答案BCD解析对于A,因为ab+a+b=8≥ab+2ab,即(ab)2+2ab-8≤0,解得0<ab≤2,则ab≤4,当且仅当a=b=2时取等号,故A错误;对于B,ab+a+b=8≤(a+b)24+(a+b),即(a+b)2+4(a+b)-32≥0,解得a+b≤-8(舍去),a+b≥4,当且仅当a=b=2时取等号,故B正确;对于C,由题意可得b(a+1)=8-a,所以b=8-aa+1>0,解得0<a<8,a+2b=a+2·8-a a +1=a +18a +1-2=a +1+18a +1-3≥2(a +1)·18a +1-3=62-3,当且仅当a +1=18a +1,即a =32-1时取等号,故C 正确;对于D ,因为1a (b +1)+1b =181a (b +1)+1b [a (b +1)+b ]=182+b a (b +1)+a (b +1)b ≥18+2)=12,当且仅当b a (b +1)=a (b +1)b ,即b =4,a =45时取等号,故D 正确,故选BCD.11.已知a >0,b >0,且a +b =1,则()A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D.a +b ≤2答案ABD解析对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD.三、填空题12.(2023·山东滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案3解析当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.13.(2024·河北衡水中学高三第三次综合素养评价)已知实数a >b >1,满足a +1a -1≥b +1b -1,则a +4b 的最小值是________.答案9解析由已知条件,得a -b ≥1b -1-1a -1=(a -1)-(b -1)(b -1)(a -1)=a -b (b -1)(a -1),∵a -b >0,∴1≥1(b -1)(a -1),又a -1>0,b -1>0,∴(b -1)(a -1)≥1,∴a +4b =(a -1)+4(b -1)+5≥2(a -1)·4(b -1)+5=9,-1=4(b -1),-1)(a -1)=1,=3,=32时,等号成立.14.(2023·湖北荆宜三校高三模拟)已知正数a ,b 满足a +3b +3a +4b =18,则a +3b 的最大值是________.答案9+36解析设t =a +3b ,则3a +4b =18-t ,所以t (18-t )=(a +3b 15+9b a +4ab≥15+29b a ·4ab=27,当且仅当2a =3b 时取等号.所以t 2-18t +27≤0,解得9-36≤t ≤9+36,即a +3b 的最大值是9+36,当且仅当2a =3b ,即a =3+6,b =2+263时取等号.15.(2024·浙江名校联盟高三上学期第一次联考)已知正实数x ,y 满足1x +4y +4=x +y ,则x+y 的最小值为()A.13-2B .2C .2+13D .2+14答案C解析因为正实数x ,y 满足1x +4y+4=x +y ,等式两边同乘以x +y ,可得(x +y )2=4(x +y )+5+y x +4xy≥4(x +y )+5+2y x ·4xy =4(x +y )+9,所以(x +y )2-4(x +y )-9≥0,因为x +y >0,所以x +y ≥2+13,当且仅当y =2x 时,等号成立.因此x +y 的最小值为2+13.故选C.16.已知点E 是△ABC 的中线BD 上的一点(不包括端点),若AE →=xAB →+yAC →,则2x +1y 的最小值为()A .4B .6C .8D .9答案C解析设BE →=λBD →(0<λ<1),∵AE →=AB →+BE →=AB →+λBD →=AB →+λ(AD →-AB →)=(1-λ)AB →+λ2AC →,∴x =1-λ,y =λ2(x >0,y >0),∴2x +1y =21-λ+2λ=-λ)+λ]=4+2λ1-λ+2(1-λ)λ≥4+22λ1-λ·2(1-λ)λ=8,当且仅当2λ1-λ=2(1-λ)λ,即λ=12时取等号,故2x +1y 的最小值为8.故选C.17.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案BC解析由x 2+y 2-xy =1得(x +y )2-1=3xy ≤,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1得x 2+y 2-1=xy ,又x 2+y 2≥2x 2·y2=2|xy |,所以|x 2+y 2-1|≤x2+y 22即-x 2+y 22≤x 2+y 2-1≤x 2+y 22,所以23≤x 2+y 2≤2,当且仅当x =y =±1时,x 2+y 2=2,当x =33,y =-33或x =-33,y =33时,x 2+y 2=23,所以C 正确,D 错误.故选BC.18.(多选)(2024·湖北襄阳第五中学高三月考)若a >b >0,且a +b =1,则()A .2a +2b ≥22B .2a +ab ≥2+22C .(a 2+1)(b 2+1)<32D .a 2a +2+b 2b +1≥14答案BD解析因为a >b >0,且a +b =1,所以0<b <12,12<a <1.对于A ,因为2a +2b ≥22a ·2b =22a +b=22,当且仅当a =b =12时取等号,但a >b >0,所以等号取不到,故A 错误;对于B ,因为b a >0,a b >0,由基本不等式,得2a +a b =2a +2b a +a b =2+2b a +a b ≥2+22b a ·ab=2+22,当且仅当2b a =a b ,即a =2-2,b =2-1时,等号成立,所以2a +ab≥2+22,故B 正确;对于C ,因为a +b =1,所以(a 2+1)(b 2+1)=a 2b 2+a 2+b 2+1=a 2b 2+(a +b )2-2ab +1=a 2b 2-2ab +2=(ab -1)2+1,其中ab ≤(a +b )24=14,当且仅当a =b 时取等号,但a >b >0,所以等号取不到,所以0<ab <14,(a 2+1)(b 2+1)=(ab -1)2+1故C 错误;对于D ,a 2a +2+b 2b +1=[(a +2)-2]2a +2+[(b +1)-1]2b +1=(a +2)+4a +2-4+(b +1)+1b +1-2=4a +2+1b +1-2,因为a +b=1,所以a +2+b +1=4,故a +24+b +14=1,所以4a +2+1b +1==1+14+b +1a +2+a +24(b +1)≥54+2b +1a +2·a +24(b +1)=94,当且仅当b +1a +2=a +24(b +1),即a =23,b =13时,等号成立,所以a 2a +2+b 2b +1=4a +2+1b +1-2≥94-2=14,故D 正确.故选BD.19.(2024·湖北百校高三联考)已知正数x ,y 满足3x +4y =4,则y是________.答案1解析因为x ,y 是正数,所以=y xy +3+y 2xy +1=1x +3y +12x +1y,且x +3y +2x +1y =3x +4y =4,所以y=14+3y +2x·=+2x +1y x +3y +≥14×(2+2)=1,当且仅当2x +1y x +3y =x +3y 2x +1y,即x =45,y =52,等号成立,所以y 1.20.(2023·广东深圳高三二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的底线宽AB =72码,球门宽EF =8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P ,使得∠EPF 最大,这时候点P 就是最佳射门位置.当攻方球员甲位于边线上的点O 处(OA =AB ,OA ⊥AB )时,根据场上形势判断,有OA →,OB →两条进攻线路可供选择.若选择线路OA →,则甲带球________码时,到达最佳射门位置;若选择线路OB →,则甲带球________码时,到达最佳射门位置.答案72-165722-165解析若选择线路OA →,设AP =t ,其中0<t ≤72,AE =32,AF =32+8=40,则tan ∠APE =AEAP=32t ,tan ∠APF =AF AP =40t ,所以tan ∠EPF =tan(∠APF -∠APE )=tan ∠APF -tan ∠APE 1+tan ∠APF tan ∠APE=40t -32t 1+1280t 2=8t 1+1280t2=8t +1280t ≤82t ·1280t =520,当且仅当t =1280t ,即t =165时,等号成立,此时OP =OA -AP =72-165,所以若选择线路OA →,则甲带球72-165码时,到达最佳射门位置;若选择线路OB →,以线段EF 的中点N 为坐标原点,BA →,AO →的方向分别为x ,y 轴正方向建立如图所示的空间直角坐标系,则B (-36,0),O (36,72),F (-4,0),E (4,0),k OB =7236+36=1,直线OB 的方程为y =x +36,设点P (x ,x +36),其中-36<x ≤36,tan ∠AFP =k PF =x +36x +4,tan ∠AEP =k PE =x +36x -4,所以tan ∠EPF =tan(∠AEP -∠AFP )=tan ∠AEP -tan ∠AFP1+tan ∠AEP tan ∠AFP=x +36x -4-x +36x +41+x +36x -4·x +36x +4=8(x +36)x 2-161+(x +36)2x 2-16=8(x +36)+x 2-16x +36,令m =x +36∈(0,72],则x =m -36,所以x +36+x 2-16x +36=m +(m -36)2-16m =2m +1280m -72≥22m ·1280m72=3210-72,当且仅当2m =1280m,即m =810,即x =810-36时,等号成立,所以tan ∠EPF =82m+1280m-72≤83210-72=1410-9,当且仅当x=810-36时,等号成立,此时|OP|=2·|36-(810-36)|=722-165,所以若选择线路OB→,则甲带球722-165码时,到达最佳射门位置.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题1
证明 ∵x >0,y >0,z >0,
∴y x +z x ≥2 yz x >0,x y +z y ≥2 xz y >0, x z +y z ≥2 xy
z >0,
∴⎝ ⎛⎭⎪⎫y x +z x ⎝ ⎛⎭⎪⎫x y +z y ⎝ ⎛⎭
⎪⎫x z +y z ≥ 8 yz ·xz ·xy xyz
=8. 当且仅当x =y =z 时等号成立.
训练1
解:∵x ,y 都是正数 ∴y x >0,x
y >0,x 2>0,y 2>0,x 3>0,y 3>0 (1)x
y y x x y y x ⋅≥+2=2即x y y x +≥2. (2)x +y ≥2
xy >0 x 2+y 2≥222y x >0 x 3+y 3≥23
3y x >0 ∴(x +y )(x 2+y 2)(x 3+y 3)≥2xy ·222y x ·233y x =8x 3y 3
即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3
.
例题2
解析 (1)由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2,
∴xy z =xy x 2-3xy +4y 2=1x y +4y x
-3. 又x ,y ,z 为正实数,∴x y +4y x ≥4,
当且仅当x =2y 时取等号,此时z =2y 2. ∴2x +1y -2z =22y +1y -22y 2=-⎝ ⎛⎭
⎪⎫1y 2+2y
=-⎝ ⎛⎭
⎪⎫1y -12+1,当1y =1,即y =1时,上式有最大值1. (2)∵x >0,y >0,∴x +y =(x +y )·⎝ ⎛⎭
⎪⎫2x +2y = 4+2⎝ ⎛⎭⎪⎫x y +y x ≥4+4x y ·y x =8. 当且仅当x y =y x ,即x =y =4时取等号.
答案 (1)B (2)D
训练2
解析 (1)由x +3y =5xy 可得15y +35x =1,
∴3x +4y =(3x +4y )⎝ ⎛⎭
⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立),
∴3x +4y 的最小值是5.
(2)由x >0,y >0,得4x 2+9y 2+3xy ≥2×(2x )×(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.
答案 (1)C (2)C 解析 由32+x +32+y
=1可化为xy =8+x +y ,∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16.
答案 D
课堂练习
1、解析 因为ab >0,即b a >0,a b >0,所以b a +a b
≥2b a ×a b
=2. 答案 C
2、解析 由题意1a +1b =a +b a +a +b b =2+b a +a b ≥2+2
b a ×a b =4,当且仅当b a =a b ,即a =b =12
时,取等号,所以最小值为4. 答案 C
3、解析 y =x -4+9x +1=x +1+9x +1-5,由x >-1,得x +1>0,9x +1
>0,所以由基本不等式得y =x +1+
9
x +1-5≥2(x +1)×9
x +1-5=1,当且仅当x +1=9x +1
,即(x +1)2=9,所以x +1=3,即x =2时取等号,所以a =2,b =1,a +b =3.
答案 C
4、解析 (1+2a )(1+b )=5+2a +b ≥5+22ab =9.当且仅当2a =b ,即a =1,b =2时取等号.
答案 9
解析 ∵x >0,y >0且1=x 3+y 4≥2
xy 12,∴xy ≤3.当且仅当x 3=y 4,即当x =32,y
=2时取等号.
答案 3
解析 ∵y =a 1-x 恒过点A (1,1),又∵A 在直线上,
∴m +n =1.而1m +1n =m +n m +m +n n =2+n m +m n ≥2+2=4,当且仅当m =n =12时,取“=”,∴1m +1n 的最小值为4.
答案 4
课后作业
1、答案 C
2、答案 A
解析 由题意知,a <0,b a =-56,-1a =16
, ∴a =-6,b =5.
∴x 2-5x +6<0的解是(2,3).
3、答案 C
解析 作出可行域如图所示 .
由于2x +y =40、x +2y =50的斜率分别为-2、-12,而3x +2y =0的斜率为-32
,故线性目标函数的倾斜角大于2x +y =40的倾斜角而小于x +2y =50的倾斜角,由图知,3x +2y =z 经过点A (10,20)时,z 有最大值,z 的最大值为70.
4、答案 A
解析 x -1x ≥2⇔x -1x -2≥0⇔-x -1x ≥0 ⇔x +1x ≤0⇔⎩⎨⎧ x (x +1)≤0x ≠0
⇔-1≤x <0.
5、答案 A
解析 ∵ab -(a +b )=1,ab ≤(a +b 2
)2, ∴(a +b 2
)2-(a +b )≥1, 它是关于a +b 的一元二次不等式,
解得a +b ≥2(2+1)或a +b ≤2(1-2)(舍去).
∴a +b 有最小值2(2+1).
又∵ab -(a +b )=1,a +b ≥2ab ,
∴ab -2ab ≥1,它是关于ab 的一元二次不等式, 解得ab ≥2+1,或ab ≤1-2(舍去),
∴ab ≥3+22,即ab 有最小值3+2 2.
6、答案 A
解析
学习好资料 欢迎下载
不等式表示的平面区域如图所示阴影部分,当直线ax +by =z (a >0,b >0)过直线x -y +2
=0与直线3x -y -6=0的交点(4,6)时,目标函数z =ax +by (a >0,b >0)取得最大值12,
即4a +6b =12,即2a +3b =6,而2a +3b =(2a +3b )·2a +3b 6=136+(b a +a b )≥136+2=256
(a =b =65
时取等号).
7、答案 [-1,0]
解析 由f (x )=2x 2-2ax -a -1的定义域为R .
可知2x 2-2ax -a ≥1恒成立,即x 2-2ax -a ≥0恒成立,则Δ=4a 2+4a ≤0,解得-1≤a ≤0.
8答案 3
解析 由x -2y +3z =0,得y =x +3z 2,将其代入y 2
xz
, 得x 2+9z 2+6xz 4xz ≥6xz +6xz 4xz =3,当且仅当x =3z 时取“=”,∴y 2xz
的最小值为3.。