陕西师范大学人文地理2005数学真题
2005年考研数学一真题及答案

2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分。
答案写在题中横线上)(1)曲线y=x22x+1的斜渐近线方程为。
【答案】y=12x−14【解析】a=limx→∞yx=limx→∞x2(2x+1)x=12b=limx→∞(y−ax)=limx→∞(x22x+1−12x)=limx→∞−x2(2x+1)=−14所以斜渐近线方程为y=12x−14。
综上所述,本题正确答案是y=12x−14。
【考点】高等数学—一元函数微分学—函数图形的凹凸性、拐点及渐近线(2)微分方程xy′+2y=xlnx满足y(1)=−19的解为。
【答案】y=13xlnx−19x【解析】原方程等价于y′+2yx=lnx 所以通解为y=e−∫2x dx[∫lnx∙e∫2x dx dx+C]=1x2∙[∫x2lnx+C]=13xlnx−19x+C1x2将y(1)=−19代入可得C=0综上所述,本题正确答案是y =13xlnx −19x 。
【考点】高等数学—常微分方程—一阶线性微分方程 (3)设函数u (x,y,z )=1+x 26+y 212+z 218,单位向量n =√3{1,1,1},则ðu ðn |(1,2,3)= 。
【答案】√33。
【解析】 因为 ðu ðx=x 3,ðu ðy =y 6,ðu ðz =z9所以ðuðn |(1,2,3)=13∙√3+13∙√3+13∙√3=√33综上所述,本题正确答案是√33。
【考点】高等数学—多元函数微分学—方向导数和梯度 (4)设Ω是由锥面z =√x 2+y 2与半球面z =√R 2−x 2−y 2围成的空间区域,Σ是Ω的整个边界的外侧,则∬xdydz +ydzdx +Σzdxdy = 。
【答案】2π(1−√22)R 3。
【解析】∬xdydz +ydzdx +zdxdy = Σ∭3dxdydz Ω=3∫ρ2dρ∫sinφdφπ40R 0∫dθ=2π2π(1−√22)R 3综上所述,本题正确答案是2π(1−√22)R 3。
【考研数学】2005年数学一真题、标准答案及解析

=
(5)设 均为3维列向量,记矩阵
, ,
如果 ,那么 2.
【分析】将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.
【详解】由题设,有
= ,
于是有
(6)从数1,2,3,4中任取一个数,记为X,再从 中任取一个数,记为Y,则
= .
【分析】本题涉及到两次随机试验,想到用全概率公式,且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.
(B)可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y).
(C)可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).
(D)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ ]
(11)设 是矩阵A的两个不同的特征值,对应的特征向量分别为 ,则 , 线性无关的充分必要条件是
(A) . (B) . (C) . (D) . [ ]
(12)设A为n( )阶可逆矩阵,交换A的第1行与第2行得矩阵B, 分别为A,B的伴随矩阵,则
(A)交换 的第1列与第2列得 . (B)交换 的第1行与第2行得 .
(C)交换 的第1列与第2列得 . (D)交换 的第1行与第2行得 .
[ ]
(13)设二维随机变量(X,Y)的概率分布为
(3)设函数 ,单位向量 ,则 = .
【分析】函数u(x,y,z)沿单位向量 }的方向导数为:
因此,本题直接用上述公式即可.
【详解】因为 , , ,于是所求方向导数为
=
(4)设 是由锥面 与半球面 围成的空间区域, 是 的整个边界的外侧,则 .
【分析】本题 是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.
2005年高考试题——文数(陕西卷)

2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第I 卷注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上. 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A·B)=P(A)·P(B) 如果事件A 在一次试验中发生的概率是 球的体积公式 P ,那么n 次独立重复试验中恰好发生k 334RVπ=次的概率k n k k n n P P C k P --=)1()( 其中R 表示球的半径一、选择题: 1.设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( ) A . I S I ∩(S 2∪S 3)= B .S 1⊆( I S 2∩ I S 3)C . I S I ∩ I S 2 ∩ I S 3=D .S 1⊆( I S 2∪ I S 3)2.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( )A .8π2B .8πC .4π2D .4π3.已知直线l 过点(-2,0),当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )A .)22,22(-B .)2,2(-C .)42,42(D .)81,81(-4.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A .32 B .33C .34D .235.已知双曲线)0(1222>=-a yax 的一条准线与抛物线x y62-=的准线重合,则该双曲线的离心率为( )A .23B .23C .26D .3326.当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为 ( )A .2B .32C .4D .347.设0>b ,二次函数122-++=a bx ax y 的图象下列之一:则a 的值为( )A .1B .-1C .251--D .251+-8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使x x f 的0)(<取值范围是( )A .)0,(-∞B .),0(+∞C .)3log,(a -∞D .),3(log+∞a9.在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域的面积为( )A .2B .23 C .223 D .210.在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A②2sin sin 0≤+<B A ③1cossin 22=+B A ④C B A 222sincoscos=+其中正确的是( )A .①③B .②④C .①④D .②③ 11.过三棱柱任意两个顶点的直线共15条,其中异面直线有( )A .18对B .24对C .30对D .36对 12.复数=--ii 2123( )A .iB .i -C .i -22D .i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚.3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若正整数m 满足)3010.02.(lg ________,102105121≈=<<-m m m 则 14.9)12(xx -的展开式中,常数项为 .(用数字作答)15.△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m= .16.在正方体ABCD —A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E ,交CC ′于F ,则①四边形BFD ′E 一定是平行四边形.②四边形BFD ′E 有可能是正方形.③四边形BFD ′E 在底面ABCD 内的投影一定是正方形. ④平面BFD ′E 有可能垂直于平面BB ′D.以上结论正确的为 .(写出所有正确结论的编号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设函数)(),0)(2sin()(x f y x f =<<-+=ϕπϕπ图象的一条对称轴是直线.8π=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 与函数)(x f y =的图象不相切.18.(本小题满分12分) 已知四棱锥P —ABCD 的底面为直角梯形,AB//DC ,∠DAB=90°,PA ⊥底面 ABCD ,且PA=AD=DE=21AB=1,M 是PB 的中点.(1)证明:面PAD ⊥面PCD ;(2)求AC 与PB 所成的角;(3)求面AMC 与面BMC 所成二面角的大小.19.(本小题满分12分)设等比数列}{n a 的公比为q ,前n 项和S n >0(n=1,2,…)(1)求q 的取值范围; (2)设,2312++-=n n n a a b 记}{n b 的前n 项和为T n ,试比较S n 和T n 的大小.20.(本小题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑里的种子都没发芽,则这个坑需要补种,假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)21.(本小题满分14分) 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλλλ,证明22μλ+为定值.22.(本小题满分12分) (1)设函数)10)(1(log )1(log)(22<<--+=x x x x x x f ,求)(x f 的最小值;(2)设正数np p p p 2321,,,, 满足12321=++++np p p p , 求证.loglogloglog 222323222121n p p p p p p p p n n -≥++++2005年普通高等学校招生全国统一考试 文科数学(必修+选修I )参考答案一、选择题(本题考查基本知识和基本运算,每小题5分,满分60分)1.C 2.C 3.B 4.D 5.A 6.D 7.C 8.B 9.C 10.B 11.B 12.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.155 14.70 15.100 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分. 解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<-(Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)由知)32sin(π-=x y故函数上图像是在区间],0[)(πx f y =18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力.满分12分. 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD , ∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA , 则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90° 在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PBBE PBE.510arccos所成的角为与PB AC ∴(Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB ,∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角. ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(,5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BNAN ABBNANANB故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21.(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD. (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC .510,cos ,2,5||,2||=>=<=⋅==PB AC PB AC PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角. ).32arccos(.32),cos(.54,530||,530||--=⋅=∴-=⋅==故所求的二面角为BN AN BN AN BN AN BN AN19.本小题主要考查二次函数、方程的根与系数关系,考查运用数学知识解决问题的能力.满分12分.解:(Ⅰ)).3,1(02)(的解集为>+x x f 因而且.0),3)(1(2)(<--=+a x x a x x f.3)42(2)3)(1()(2a x a axx x x a x f ++-=---=①由方程.09)42(06)(2=++-=+a x a ax a x f 得 ②因为方程②有两个相等的根,所以094)]42([2=⋅-+-=∆a a a , 即 .511.01452-===--a a a a 或解得由于51.1,0-==<a a a 将舍去代入①得)(x f 的解析式.535651)(2---=x x x f(Ⅱ)由aa a aa x a a x a ax x f 14)21(3)21(2)(222++-+-=++-=及.14)(,02aa a x f a ++-<的最大值为可得由⎪⎩⎪⎨⎧<>++-,0,0142a a a a 解得 .03232<<+---<a a 或故当)(x f 的最大值为正数时,实数a 的取值范围是).0,32()32,(+----∞20.本小题主要考查相互独立事件和互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力. 满分12分.(Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为81)5.01(3=-,所以甲坑不需要补种的概率为 .875.087811==-(Ⅱ)解:3个坑恰有一个坑不需要补种的概率为 .041.0)81(87213=⨯⨯C (Ⅲ)解法一:因为3个坑都不需要补种的概率为3)87(, 所以有坑需要补种的概率为 .330.0)87(13=-解法二:3个坑中恰有1个坑需要补种的概率为,287.0)87(81213=⨯⨯C 恰有2个坑需要补种的概率为 ,041.087)81(233=⨯⨯C3个坑都需要补种的概率为 .002.0)87()81(0333=⨯⨯C所以有坑需要补种的概率为 .330.0002.0041.0287.0=++21.本小题主要考查等比数列的基本知识,考查分析问题能力和推理能力,满分12分.解:(Ⅰ)由 0)12(21020103010=++-S S S 得 ,)(21020203010S S S S -=-即,)(220121*********a a a a a a +++=+++可得.)(22012112012111010a a a a a a q+++=+++⋅因为0>n a ,所以 ,121010=q 解得21=q ,因而 .,2,1,2111 ===-n qa a nn n(Ⅱ)因为}{n a 是首项211=a 、公比21=q 的等比数列,故.2,211211)211(21nn nnn n n nS S -=-=--=则数列}{n nS 的前n 项和 ),22221()21(2nn n n T +++-+++=).2212221()21(212132++-+++-+++=n nn n n n T前两式相减,得122)212121()21(212+++++-+++=n nn n n T12211)211(214)1(++---+=n nnn n 即 .22212)1(1-+++=-nn n n n n T22.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分14分.(1)解:设椭圆方程为)0,(),0(12222c F b a by ax >>=+则直线AB 的方程为c x y -=,代入12222=+by ax ,化简得02)(22222222=-+-+ba c a cx a xb a .令A (11,y x ),B 22,(y x ),则.,22222222122221ba b a c a x x b a c a x x +-=+=+由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得 ,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴即232222c ba c a =+,所以36.32222a ba cb a =-=∴=,故离心率.36==ac e(II )证明:由(1)知223b a =,所以椭圆12222=+by ax 可化为.33222b yx =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ①由(1)知.21,23,23222221c bc ac x x ===+.0329233)(34))((33832222212121212121222222221=+-=++-=--+=+=+-=cc c c c x x x x c x c x x x y y x x cba b a c a x x又222222212133,33b y x b y x =+=+,代入①得.122=+μλ 故22μλ+为定值,定值为1.。
陕西师范大学(已有10试题)

陕西师范大学政治经济学院马克思主义哲学(原理、原著)2005西方哲学史(含现代外国哲学)2005中国哲学史2005西方哲学(西方哲学史、西方哲学史原著、现代西方哲学)2005伦理学(原理、原著)2005西方伦理学史(含现代外国伦理学)2005政治学原理2005世界政治经济与国际关系2005中共党史2005毛泽东思想与邓小平理论(含原著)2005中国革命和建设史2005社会学概论2005社会现代化概论2005行政管理学原理2005综合(含管理学、政治学)20052003年马克思主义哲学、中国哲学、外国哲学、科学技术哲学专业复试试题2003级硕士研究生马克思主义理论与思想政治教育专业复试试题2003年社会学研究生复试试题2003年政治学理论专业研究生复试试题2003年政治学理论专业同等学力研究生加试试题一:科学社会主义2003年政治学理论专业同等学力研究生加试试题二:马克思主义理论国际商学院西方经济学2005管理学20052003年国际商学院政治经济学硕士研究生复试试题2003年国际商学院国民经济学硕士研究生复试试题教育科学学院现代教育学(包括教育原理、中外教育史)2005心理学(普通心理学、教育心理学)2005心理学理论(含普通心理学、心理学史)2005心理学研究方法(含实验心理学、心理测量学)2005普通心理学2000——2002实验心理学2000——2001中外心理学史2001(此份不完整,缺题)教育学原理2005中国教育史2005外国教育史2005教育心理学2005学前教育学2005教育管理学2005社会心理学(含普通心理学)2005普通教育学(包括教育管理)2005中外教育史(包括普通心理学)2005课程与教学论(现代教学论)专业2003硕士研究生复试试题教育学原理专业2003硕士研究生复试试题教育硕士(教育管理)专业2003硕士研究生复试试题教育史专业2003硕士研究生复试试题教育经济与管理专业2003硕士研究生复试试题基础心理学专业2003硕士研究生复试试题教育经济与管理专业2003硕士研究生(同等学力考生)加试《普通心理学、教育管理学》试题教育经济与管理专业2003硕士研究生(同等学力考生)加试《教育学》试题新闻与传播学院教育技术学(含教学设计)2005计算机网络(含程序设计)2005,2010(2010为回忆版)新闻传播理论与新闻史2005新闻业务(采、写、编、评、广播电视)2005新闻传播理论与历史2010(回忆版)新闻传播实务2010(回忆版)2003年教育技术学专业硕士生复试综合试题体育学院教育学2005运动生理学2005体育概论2005体育社会学基本理论2005运动生物化学2005运动训练学20052003年硕士研究生运动人体科学专业运动生理学复试试题2003年运动人体科学运动生物化学复试试题2003年研究生体育教育训练学专业《运动训练学》复试题2003年研究生体育教育训练学专业运动生理复试题2003年教育硕士《学校体育学》复试试题文学院文学综合(含中国古代文学、中国现当代文学、世界文学、文艺理论)2010(回忆版)语言综合(含古代汉语、现代汉语)2010(回忆版)美学原理2005中外美学史2005宗教学原理2005中外文化史2005教育学2005语文教学论2005文学理论2005中外文学史(中国部分只考古代,外国部分全部)2005语言学概论2005现代汉语2002,2005(其中2002年试卷内容不完整)中国播音学2005综合考试(新闻理论、语言学、语法)2005古代汉语(汉语言文字学专业)2005古代汉语(中国古代文学专业)2005古典文献学2005中国古代文学与古代汉语2005中国古代文学史2005中国现当代文学2005文学理论与外国文学2005文学理论(含比较文学理论)2005中国文学2005文学理论与比较文学2005世界文学2005现代文学2003当代文学2003文艺理论2003外国文学2003先秦两汉六朝文学2001文化理论2001中西哲学史2001,2010(2010为回忆版)文史哲经典文献知识2001元明清文学20012003年比较文学与世界文学硕士研究生同等学力加试考题2003年比较文学与世界文学硕士研究生专业课世界文学复试(笔试)考题2003年中国古典文献学专业研究生复试试题2003年硕士研究生语文教学论复试试卷2003年汉语言文字学专业硕士研究生复试题2003年语言学与应用语言学专业语言学概论专业复试题2003年文艺学专业复试试题2003年中国古代文学专业复试试题2003年中国古代文学专业同等学力加试试题一2003年中国古代文学专业同等学力加试试题二2003年硕士研究生复试《美学》专业试题2003年硕士研究生复试同等学力《美学》专业加试试题一2003年硕士研究生复试同等学力《美学》专业加试试题二2003年中国现当代文学专业硕士研究生复试题(笔试)外语学院二外日语2005——2006二外法语2005二外俄语2005二外德语2005专业英语(教育硕士专业)2005基础英语(教育硕士专业)2005基础英语(英语语言文学、外国语言学及应用语言学专业)2005综合课A(语言学、教学法、英汉互译)2006综合课A(英美文学、西方文化、英汉互译)2005综合课B(语言学、英语教学法)2005教育学20052003年外国语言学及应用语言学硕士研究生入学考试复试试题2003年英语教育硕士复试试题艺术学院教育学2005音乐教育学2005中外音乐史2005中外声乐史2005音乐分析及和声复调2005中国古代音乐文献2005中外舞蹈史2005舞蹈教学法(包括芭蕾教学法、中国民间舞教学法、中国古典舞教学法)2005 中外美术史2005中国画历代名作评析2005美术评论(名家名作评析:中国近现代部分、外国近代部分)2005艺术设计史2005设计作品分析2005美学原理新编20052003年攻读音乐学硕士学位研究生复试题民族器乐理论与演奏(陕西秦筝乐派)2003年攻读音乐学硕士学位研究生复试题音乐教育学(声乐艺术)2003年攻读音乐学硕士学位研究生复试题音乐教育学(中国古代音乐文献)环发中心中国通史2005中国自然地理2005中国地理学史20052003年历史地理专业硕士生入学复试试题西北民族中心民族学概论2005中国民族史2005艺术学概论20052003年中国少数民族史专业硕士研究生复试试题(综合)2003年中国少数民族史专业硕士研究生(同等学力)加试试题历史文化学院中国古代史(考古学及博物馆学专业)2005中国考古学2005中国古代史(史学类各专业)2004——2005古汉语与古文献知识2005历史文选2005中国近现代史2005世界通史2005世界近现代史2005古籍知识2003年复试试题中国古代史2003年复试试题文化史、思想史、经济史2003年复试试题历史学概论2003年复试试题中国古代文化史综合题2003年复试试题世界史2003年复试试题数学与信息科学学院教育学2005数学分析与高等代数2005数学分析2003,2005(答案有:2003)高等代数2005——2006数科院2003年研究生各专业复试试题物理学与信息技术学院教育学2005普通物理(力学、电磁学部分)2005高等数学(微积分与线性代数)2005热力学、统计物理2005量子力学(凝聚态物理、生物物理学专业)2005量子力学(光学专业)2005普通物理2005电磁学2005普通生物学2005物理学2005生物化学2005细胞生物学2005光学2005综合课(微机原理、C程序设计)20052003年光学、光学工程、天体物理专业硕士生复试试题(量子力学)2003年课程与教学论(物理)研究生入学复试《物理教学论》试题2003年声学专业硕士生复试《理论力学》试题化学与材料科学学院教育学2005化学教学论2005物理化学(含结构化学)2005分析化学(含仪器分析)2005有机化学2005普通物理2005普通化学20052003年硕士研究生复试无机化学试题2003年分析化学专业硕士研究生复试试题2003年硕士研究生复试物理化学试题2003年硕士研究生复试有机化学试题旅游与环境学院教育学2005中国地理(含自然地理和人文地理)2005高等数学2005自然地理学2005人文地理学2005地理信息系统2005环境学概论2005地貌学2005生态学2005旅游学(含旅游管理学、旅游资源与开发)20052003年自然地理专业硕士入学复试题2003年人文地理硕士复试《旅游资源学》笔试题2003地图学与地理信息系统专业《遥感与地图学》试题2003年旅游管理专业研究生面试试题2003年环境科学专业硕士生入学复试题2003年(地理)教育硕士复试题生命科学学院教育学2005生物教学论2005植物学2005生物化学2005动物学2005细胞生物学2005动物生理学2005普通生物学2005生态学20052003生科院研究生各专业复试细胞生物学试题2003生物课程与教学论硕士研究生复试试题食品工程系高等数学2005食品微生物学20052003年食品工程系硕士复试考试题(果品蔬菜加工学试题)2003年食品科学专业同等学力考生加试试题一:食品工程原理2003年食品科学专业同等学力考生加试试题二:营养与食品卫生学计算机科学学院高等数学2005数据结构20052003年硕士生入学复试数据结构试题继续教育学院现代教育学(包括教育原理、中外教育史)2005成人教育学(成人教育学、成人教育管理学)2005新闻出版科学研究所(学报)传播学(传播学理论、编辑出版学)2005综合课(新闻学原理含中国编辑出版史)2005。
2005考研数学一真题及答案解析

2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点(C)恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数(C)()F x 是周期函数()f x ⇔是周期函数 (D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D)222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ (C)01=λ (D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B(C)交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰.(2)求函数)(y ϕ的表达式.(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =1001,02x y x <<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln ,且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ] 【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可.【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SXn nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy dr r d dr r d ⎰⎰⎰⎰+=20213132cos sin 2cos sin ππθθθθθθ=.834381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)0,S S '==所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x =++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,应用零点定理,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线3l=++⎰Cy x xydydx y 4222)(ϕ-++⎰+314222)(l l y x xydydx y ϕ022)(3242=++⎰+l l y x xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ①243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0. (II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:③ ④⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。
陕西师范大学历年人文地理考研真题

陕西师范人文地理真题2013年陕西师范大学人文地理考研真题(这是我自己回忆的)一、名词解释1.城市地域结构2.敞田制3.行为文化4.地缘政治5.人口容量二、简答题7. 什么是农业区位论,农业区位论的内容及几个圈层的内容?8.简述地理环境决定论,文化决定论,和谐论及其之间的差别?9. 简述城市与乡村的区别?10.简述人本主义方法论及其特点和影响?11.简述二战后世界工业的转移趋势及北美工业带和欧洲工业带。
三、论述题12.论述我国人口空间分布的特点及其影响因素?四、案例分析(20分)材料:以延安红色文化为例,可能涉及文化产业相关知识(具体的内容很多不再详述)。
大体要求是以文化地理的内容及方法论,红色文化地理的要素、内涵及其价值功能(此题书本内容涉及不多没记清)。
2012年人文地理一、名词解释(共20分)1、政治整合2、聚落3、第五产业4、北美工业带5、地中海农业二、简答(共90分)1、以亚洲为例,分析宗教在空间上的相互影响2、实证主义方法论的优缺点3、文化整合4、人文地理学的研究对象和内容5、旅游地文化及其特征6、以机械工业为例,分析影响工业分布的因素三、论述(共40分)1、分析城市化、基本内涵和动力机制2、以中国人口转变为例,用人口转变理论分析人口转变模式,并分析人口稳定增长和适度人口的意义2011年人文地理一.名词解释1.迁移农业2. 第五产业3. 农业区位论4.功能文化区5.逆城市化二.简答题1. 简述环境感知论2. 简述文化地理学的人地关系图示3. 简述政治地理过程4. 语言的传播特性5. 城市的职能分类6. 钢铁工业,纺织业,汽车制造业的工业区位变化7.三.论述题1.结合实例分析区域文化与区域经济发展的关系2.世界(中国,记不清了)的城市化特征(其中2010年的为图片形式的)09年人文地理一、名词解释:1.人文地理学2.景观3.聚落4.人口过程5.政治地理单元二、简答1.简述民俗的内涵型特征2.简述赣方言的形成于特征3.旅游资源及其形成条件三、论述1.论述环境与城市区位选择的关系2.现代农业的类型及其特征2008年人文地理一、名词解释1.精神文化2.乡土文化区3.民族4.希伯来语5.道教二、简答1.中国人口分布的特征2.语言的本质特征3.世界人类种族群类及其分布三、论述1.简述影响工业分布的因素2.简述城市内部主要地域结构模型的内容2007人文地理一、名词解释1.形式文化区2. 种族3.民族4.旅游资源5.语言二、简答1.比较生物适应和文化适应的相同点2.简述民俗的主要特点三、论述1.城市地域结构的形成动力2.简述影响人口分布的自然因素2005年人文地理学一简答题1简述和谐论的含义2环境感知的含义3人口分布的规律性.简述影响人口分布的因素.4第一产业,第二产业,第三产业的含义5简述农业起源论6什么是宗教,宗教产生的原因7从人口即作为生产者又作为消费者来分析8民俗的特征和特点二论述题----旅游对区域城市的影响.三案例分析题----试用案例分析人本主义方法论的优缺点。
考研数学一真题解析 2005

,即
方法二:排除法
以2阶方阵为例,设
,则
由此可见,交换的第1列与第2列得,排除ABD,选C
(13)设二维随机变量 的概率分布为
X
Y
0
1
0
0.4
1
已知随机事件
与
0.1 相互独立,则
(A)
(B)
(C)
(D)
【考点分析】:二维离散型随机变量的概率分布,事件独立性定义
【求解方法】:由二维随机变量概率和为1和事件
是偶函
数
(C) 是周期函数
是周期函数 (D) 是单调函数
是单
调函数
【考点分析】:函数的奇偶性、周期性、单调性与其原函数奇偶 性、周期性、单调性的关系 【求解过程】:
方法一:排除法 令,显然是偶函数,但不是奇函数,排除B 令,显然是周期函数,但不是周期函数,排除C 令,显然是单调函数,但不是单调函数,排除D
其中为常数,所以有,即证。 (2)由(1),有,又
所以在右半平面上有
(5.19)
(5.20)
(5.21)
解得。 (20) 已知二次型的秩为. (1)求的值 (2)求正交变换,把化成标准型 (3)求方程的解 【考点】二次型与矩阵 【思路】先列出对应该二次型的矩阵,根据秩为2的条件即可求得第
一问,第二问只需将系数矩阵对角化,第三问可以在第二问的基础上先 求出标准型的解再用变换得到 的解
【考点】曲线积分
【思路】对第一问,为了应用题目给的条件,考虑过上的任意两点 作过原点的分段光滑曲线曲线,且将分成两个部分,即可用所给的条件 证明。第二问只需应用第一问的条件,令解关于的微分方程即可。
【题解】(1)如上一部分所述,作如图所示的分段光滑曲线,则 有
考研数学一真题含解析

考研数学一真题含解析 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为_____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为.____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X,再从X ,,2,1 中任取一个数,记为Y,则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A)处处可导.(B)恰有一个不可导点.(C)恰有两个不可导点.(D)至少有三个不可导点.[](8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B )F(x)是奇函数⇔f(x)是偶函数.(C)F(x)是周期函数⇔f(x)是周期函数. (D)F(x)是单调函数⇔f(x)是单调函数.[](9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有(A)2222y u x u ∂∂-=∂∂.(B )2222yu x u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂.(D)222x u y x u ∂∂=∂∂∂.[] (10)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数の隐函数z=z(x,y). (B) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y). (D) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z).[](11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A)01≠λ.(B)02≠λ.(C)01=λ.(D)02=λ.[](12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B,**,B A 分别为A,B の伴随矩阵,则(A) 交换*A の第1列与第2列得*B .(B)交换*A の第1行与第2行得*B . (C)交换*A の第1列与第2列得*B -.(D)交换*A の第1行与第2行得*B -.[](13)设二维随机变量(X,Y)の概率分布为 XY01已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=,b=(B)a=,b= (C)a=,b=(D)a=,b=[](14)设)2(,,,21≥n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B)).(~22n nS χ(C))1(~)1(--n t SXn (D)).1,1(~)1(2221--∑=n F X X n n i i [] 三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++の最大整数.计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分⎰'''+302.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: (I )存在),1,0(∈ξ使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cy x xydydx y ϕ;(II )求函数)(y ϕの表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2. (I )求a の值;(II )求正交变换Qy x =,把),,(321x x x f 化成标准形; (III )求方程),,(321x x x f =0の解. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O,求线性方程组Ax=0の通解..(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为求:(I )(X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2の概率密度).(z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I )i Y の方差n i DY i ,,2,1, =; (II )1Y 与n Y の协方差).,(1n Y Y Cov2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为.4121-=x y【分析】本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'の通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可.【详解】原方程等价为x y xy ln 2=+', 于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33.【分析】函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}の方向导数为: γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为 )3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2.【分析】将B 写成用A 右乘另一矩阵の形式,再用方阵相乘の行列式性质进行计算即可.【详解】由题设,有=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,于是有.221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X,再从X ,,2,1 中任取一个数,记为Y,则}2{=Y P =4813. 【分析】本题涉及到两次随机试验,想到用全概率公式,且第一次试验の各种两两互不相容の结果即为完备事件组或样本空间の划分.【详解】}2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分.每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A)处处可导.(B)恰有一个不可导点.(C)恰有两个不可导点.(D)至少有三个不可导点.[C] 【分析】先求出f(x)の表达式,再讨论其可导情形. 【详解】当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(B) F(x)是偶函数⇔f(x)是奇函数. (B )F(x)是奇函数⇔f(x)是偶函数.(C)F(x)是周期函数⇔f(x)是周期函数. (D)F(x)是单调函数⇔f(x)是单调函数.[A]【分析】本题可直接推证,但最简便の方法还是通过反例用排除法找到答案. 【详解】方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即)()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰x dt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1,则取F(x)=x+1,排除(B)、(C);令f(x)=x,则取F(x)=221x ,排除(D);故应选(A).(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有(A)2222y u x u ∂∂-=∂∂.(B )2222yu x u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂.(D)222x u y x u ∂∂=∂∂∂.[B] 【分析】先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是)()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yux u ∂∂=∂∂,应选(B).(10)设有三元方程1ln =+-xz e y z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(E) 只能确定一个具有连续偏导数の隐函数z=z(x,y). (F) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (G) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y). (H) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z).[D]【分析】本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xz e y z xy ,分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应の隐函数.【详解】令F(x,y,z)=1ln -+-xz e y z xy ,则z e y F xz x +=',yzx F y -=',x e y F xz z +-='ln , 且2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F .由此可确定相应の隐函数x=x(y,z)和y=y(x,z).故应选(D).(11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A)01≠λ.(B)02≠λ.(C)01=λ.(D)02=λ.[B]【分析】讨论一组抽象向量の线性无关性,可用定义或转化为求其秩即可. 【详解】方法一:令0)(21211=++αααA k k ,则022211211=++αλαλαk k k ,0)(2221121=++αλαλk k k .由于21,αα线性无关,于是有当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二:由于⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关の充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B,**,B A 分别为A,B の伴随矩阵,则(B) 交换*A の第1列与第2列得*B .(B)交换*A の第1行与第2行得*B . (C)交换*A の第1列与第2列得*B -.(D)交换*A の第1行与第2行得*B -. [C]【分析】本题考查初等变换の概念与初等矩阵の性质,只需利用初等变换与初等矩阵の关系以及伴随矩阵の性质进行分析即可.【详解】由题设,存在初等矩阵12E (交换n 阶单位矩阵の第1行与第2行所得),使得B A E =12,于是12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y)の概率分布为XY01已知随机事件}0{=X 与}1{=+Y X 相互独立,则(B) a=,b=(B)a=,b= (C)a=,b=(D)a=,b=[B]【分析】首先所有概率求和为1,可得a+b=,其次,利用事件の独立性又可得一等式,由此可确定a,b の取值.【详解】由题设,知a+b=又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P ,即a=))(4.0(b a a ++,由此可解得a=,b=,故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(B) )1,0(~N X n (B)).(~22n nS χ(C))1(~)1(--n t S Xn (D)).1,1(~)1(2221--∑=n F X X n n i i[D] 【分析】利用正态总体抽样分布の性质和2χ分布、t 分布及F 分布の定义进行讨论即可.【详解】由正态总体抽样分布の性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SXn nS X ,可排除(C);而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为∑=-n i in X X 222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++の最大整数.计算二重积分⎰⎰++Ddxdy y x xy .]1[22【分析】首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】令}0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D . 则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).【分析】先求收敛半径,进而可确定收敛区间.而和函数可利用逐项求导得到.【详解】因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数の收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,由于 (0)0,(0)0,S S '== 所以 2001()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰又21221(1),(1,1),1n nn x xx x∞-=-=∈-+∑ 从而22()2()1x f x S x x=++ (17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分⎰'''+302.)()(dx x f x x【分析】题设图形相当于已知f(x)在x=0の函数值与导数值,在x=3处の函数值及一阶、二阶导数值.【详解】由题设图形知,f(0)=0,2)0(='f ;f(3)=2,.0)3(,2)3(=''-='f f 由分部积分,知=dx x f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明: (I )存在),1,0(∈ξ使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】第一部分显然用闭区间上连续函数の介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】(I )令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0,F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ使得0)(=ξF ,即ξξ-=1)(f .(II )在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同の点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Lyx xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cy x xydydx y ϕ;(II )求函数)(y ϕの表达式.【分析】证明(I )の关键是如何将封闭曲线C 与围绕原点の任意分段光滑简单闭曲线相联系,这可利用曲线积分の可加性将C 进行分解讨论;而(II )中求)(y ϕの表达式,显然应用积分与路径无关即可.【详解】(I ) l 2CoX l 3如图,将C 分解为:21l l C +==++⎰Cyx xydydx y 4222)(ϕ-++⎰+314222)(l l yx xydydx y ϕ022)(3242=++⎰+l l yx xydydx y ϕ.(II )设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++② 比较①、②两式の右端,得435()2,()4()2. y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2. (I )求a の值;(II )求正交变换Qy x =,把),,(321x x x f 化成标准形; (III )求方程),,(321x x x f =0の解.【分析】(I )根据二次型の秩为2,可知对应矩阵の行列式为0,从而可求a の值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换;(III )利用第二步の结果,通过标准形求解即可.③ ④【详解】(I )二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型の秩为2,知0200011011=-++-=a a a a A ,得a=0.(II )这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A ,可求出其特征值为0,2321===λλλ. 解0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得: 令[]321ααα=Q ,即为所求の正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y +(III )由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数). 从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O,求线性方程组Ax=0の通解.【分析】AB=O,相当于告之B の每一列均为Ax=0の解,关键问题是Ax=0の基础解系所含解向量の个数为多少,而这又转化为确定系数矩阵A の秩.【详解】由AB=O 知,B の每一列均为Ax=0の解,且.3)()(≤+B r A r (1)若k 9≠,则r(B)=2,于是r(A)1≤,显然r(A)1≥,故r(A)=1.可见此时Ax=0の基础解系所含解向量の个数为3-r(A)=2,矩阵B の第一、第三列线性无关,可作为其基础解系,故Ax=0の通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2)若k=9,则r(B)=1,从而.2)(1≤≤A r1)若r(A)=2,则Ax=0の通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2)若r(A)=1,则Ax=0の同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为求:(I )(X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2の概率密度).(z f Z【分析】求边缘概率密度直接用公式即可;而求二维随机变量函数の概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应の概率密度.【详解】(I )关于X の边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x 关于Y の边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y(II )令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ; 2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3)当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为:.2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求の概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I )i Y の方差n i DY i ,,2,1, =; (II )1Y 与n Y の协方差).,(1n Y Y Cov【分析】先将i Y 表示为相互独立の随机变量求和,再用方差の性质进行计算即可;求1Y 与n Y の协方差),(1n Y Y Cov ,本质上还是数学期望の计算,同样应注意利用数学期望の运算性质.【详解】由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=nij j i i i X n X n D X X D DY ]1)11[()( =∑≠+-n i j j i DXn DX n 221)11( =.1)1(1)1(222n n n n n n -=-⋅+- (II ))])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +- =22121)(][20X E X D X X X E n n j j +++-∑= =.112nn n -=+-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西师范大学
2005年攻读硕士研究生学位研究生入学考试专业课试题 专业名称:自然地理学、人文地理学、地图学与地理信息系统、第四纪地质学、环境科学、水土保持与荒漠化防治
考试科目名称:高等数学 科目代码:343
注意事项:
1.
请将答案直接做到答题纸上,做在试题纸上无效。
2. 除答题纸上规定的位置外,不得在卷面上出现姓名、准考证号或其它标志,否则按违纪处 3. 本试题共 2 页,满分150分,考试时间180分钟.
一、计算下列极限(30分)
1. ⎪⎪⎭
⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++∞→122213131311lim n n n n n 2. ()20
2arctan sin lim x dt t x n ⎰∞→
3. ∑=∞→⎪⎭
⎫ ⎝⎛+n k n n k n 11sin 1lim 4. ()⎪⎪⎭
⎫ ⎝⎛++++∞→x x x x x ln sin 1347lim 5. ()a x x e a e x a
x 333301lim --→ 二、计算下列导数(30分)
1. 1
=x dx dy ,其中t x t t y 51,1cos 23+=++= 2. ()
x f ',其中,⎪⎩⎪⎨⎧=≠=0,00,1sin )('3x x x x x f 3. ''02332))sin ((dt x t x x x ⎰+++
4. ,dx
dy 其中,3422y x x y x -=+
5. 0
22)sin !(=+x n n n x n x dx d 三、计算下列积分(30分)
1.
⎰+dx x x x ))sin(cos sin (sin 2.
⎰-++++11
234)12345(dx x x x x 3. dx x x x x ))1ln((24511
2+++⎰- 4. ⎰--++2004
200420022005)(sin 3
dx x xe x x 5.
dxdy y x y x ⎰⎰
≤++12222)cos( 四、解答下列各题(30分)
1. 求函数∑∞
=++=12!1)(n n n x x x f 的定义域并求其导数
2. 已知某平面曲线在其上任意一点(x,y )处的切线斜率为)1ln()123(232+++++x x x x x 且过原点,且这个曲线方程。
3. 求由曲线)1(cos 12π≤≤+=x x y 与x 轴围成的面积
五、证明下列命题(30分)
1. 证明:对任意正整数n ,方程1=+x x n 有且只有一正根n
x 且1lim =∞→n i n x 2. 设函数)(x f 在[π-,π]上有连续的倒数,⎰-=ππnxdx x f a n
sin )(,证明:正数∑∞=12n n
a 收敛
3. 设⎪⎪⎩
⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧∉⎭⎬⎫⎩⎨⎧∈= 31,21,1,231,21,1,1)(x x x f ,证明:在上可积且在[0,1]上可积且积分为2。