电磁场与电磁波_静电场边值问题

合集下载

谢处方《电磁场与电磁波》(第4版)课后习题-第3章 静态电磁场及其边值问题的解【圣才出品】

谢处方《电磁场与电磁波》(第4版)课后习题-第3章 静态电磁场及其边值问题的解【圣才出品】

第3章 静态电磁场及其边值问题的解(一)思考题3.1 电位是如何定义的?中的负号的意义是什么?答:由静电场基本方程▽×E=0和矢量恒等式可知,电场强度E 可表示为标量函数φ的梯度,即式中的标量函数φ称为静电场的电位函数,简称电位;式中负号表示场强方向与该点电位梯度的方向相反。

3.2“如果空间某一点的电位为零,则该点的电场强度也为零”,这种说法正确吗?为什么?答:不正确。

因为电场强度大小是该点电位的变化率。

3.3“如果空间某一点的电场强度为零,则该点的电位为零”,这种说法正确吗?为什么?答:不正确。

此时该点电位可能是任一个不为零的常数。

3.4 求解电位函数的泊松方程或拉普拉斯方程时,边界条件有何意义?答:边界条件起到给方程定解的作用。

3.5 电容是如何定义的?写出计算电容的基本步骤。

答:两导体系统的电容为任一导体上的总电荷与两导体之间的电位差之比,即其基本计算步骤:①根据导体的几何形状,选取合适坐标系;②假定两导体上分别带电荷+q和-q;③根据假定电荷求出E;④由求得电位差;⑤求出比值3.6 多导体系统的部分电容是如何定义的?试以考虑地面影响时的平行双导线为例,说明部分电容与等效电容的含义。

答:多导体系统的部分电容是指多导体系统中一个导体在其余导体的影响下,与另一个导体构成的电容。

计及大地影响的平行双线传输线,如图3-1-1所示,它有三个部分电容C11、C12和C22,导线1、2间的等效电容为;导线1和大地间的等效电容为;导线2和大地间的等效电容为图3-1-13.7 计算静电场能量的公式和之间有何联系?在什么条件下二者是一致的?答:表示连续分布电荷系统的静电能量计算公式,虽然只有ρ≠0的区域才对积分有贡献,但不能认为静电场能量只存在于有电荷区域,它只适用静电场。

表示静电场能量存在于整个电场区域,所有E≠0区域对积分都有贡献,既适用于静电场,也用于时变电磁场,当电荷分布在有限区域内,闭合面S无限扩大时,有限区内的电荷可近似为点电荷时,二者是一致的。

电磁场与电磁波6静态场边值问题的求解

电磁场与电磁波6静态场边值问题的求解
n 1
( An ' cos K n x Bn ' sin K n x)(Cn ' chKn y Dn ' shKn y )
n 1
4)利用给定边界条件确定积分常数,最终得到电位函数的解。 a ) y轴 x 0 0 y a 0
b ) x轴 y 0 0 x a 0 0 C0 0 Cn 0 Cn c) x a 0 y a 0 B0 0 Bn 0
400
1 n n sin xsh y n1 nshn a a

接地金属槽内的等位线分布
(n 1, 3, 5 )
三、分离变量法:柱坐标系中
电位微分方程在圆柱坐标系中的展开式为
1 1 2 2 2 0 r 2 2 r r r r z
( ) A sin m B cosm
考虑到 k m,以及变量 的方程式,则前述方程可表示为
1 d dR m 2 1 d 2 Z 0 r 2 2 Rr dr dr r Z dz
三、分离变量法:柱坐标系中
上式左边第一项仅为变量 r 的函数,第二项仅为变量 z 的函数,因
(6 )
(7 )
1 d 21 2 K n 1 dx2
1 d 2 2 2 K n 2 dy2
Kn 2 0
(8)
3)解常微分方程,将各特解线性叠加得通解。
1 ( x) 2 ( y) ( A0 B0 x)(C0 D0 y)
( An chKn x Bn shKn x)(Cn cos K n y Dn sin K n y )
1 d 2 2 k d 2

电磁场与电磁波第三章静态场及其边值问题的解PPT课件

电磁场与电磁波第三章静态场及其边值问题的解PPT课件

解法的优缺点
分离变量法的优点是简单易行,适用于具有多个变量 的偏微分方程。但是,该方法要求边界条件和初始条
件相互独立,且解的形式较为复杂。
有限差分法的优点是简单直观,适用于各种形状的求 解区域。但是,该方法精度较低,且对于复杂边界条
件的处理较为困难。
有限元法的优点是精度较高,适用于各种形状的求解 区域和复杂的边界条件。但是,该方法计算量大,且
05 实例分析
实例一:简单电场的边值问题求解
总结词
通过一个简单的电场边值问题,介绍如 何运用数学方法求解静态场的边值问题 。
VS
详细描述
选取一个简单的电场模型,如平行板电容 器间的电场,通过建立微分方程和边界条 件,采用有限差分法或有限元法进行数值 求解,得出电场分布的解。
实例二:复杂电场的边值问题求解
恒定磁场与准静态场的定义与特性
恒定磁场
磁场强度不随时间变化的磁场。
准静态场
接近静态场的动态场,其特性随 时间缓慢变化。
特性
恒定磁场与准静态场均不产生电 磁波,具有空间稳定性和时间恒
定性。
恒定磁场与准静态场的边值问题
边值问题
描述场域边界上物理量(如电场强度、磁场强度)的约束条件。
解决边值问题的方法
静电屏蔽
在静电屏蔽现象中,静态 场用于解释金属屏蔽壳对 内部电荷或电场的隔离作 用。
高压输电
在高压输电线路中,静态 场用于分析电场分布和绝 缘性能。
02 边值问题的解法
定义与分类
定义
边值问题是指在一定的边界条件下,求解微分方程或积分方程的问题。在电磁场理论中,边值问题通常涉及到电 场、磁场和波的传播等物理量的边界条件。
特性
空间均匀性

电磁场与电磁波 第4章 静态场的边值问题

电磁场与电磁波 第4章  静态场的边值问题
像电荷 q’ 应位于球内。由对 称性, q’ 在球心与 q 的连线上。
设 q’ 距球心为b,则 q 和 q’ 在球外 任一点(r,,)处产生的电位为
第四章 静态场的边值问题
1 ( q q) 4π 0 R R
1(
q
4π 0 r 2 d 2 2rd cos
q
)
r 2 b2 2rb cos
径为a 的圆的反演点。
第四章 静态场的边值问题
将式(4-2-3)代入(4-2-2),可得球外任意点(r,,)的电位
q (
1
a
)
4π 0 r 2 d 2 2rd cos d r 2 b2 2rb cos
(4-2-5)
若导体球不接地且不带电,则当球外放置点电荷 q 后,它的
电位不为零,球面上净电荷为零。此情形下,为满足边界条件,
第四章 静态场的边值问题
第四章 静态场的边值问题
在给定的边界条件下求解泊松方程或拉普拉斯方程称为边 值问题。根据场域边界面上所给定的边界条件的不同,边值问 题通常分为 3 类:
第一类边值问题,给定位函数在场域边界面上的值; 第二类边值问题,给定位函数在场域边界面上的法向导数值; 第三类边值问题又称混合边值问题,一部分边界面上给定的 是位函数值,另一部分边界面上给定的是位函数的法向导数 值。
4.3.1 直角坐标系中的分离变量
直角坐标系中,标量拉普拉斯方程为
2 2 2
0 x2 y2 z2
(4-3-1)
第四章 静态场的边值问题
设 (x,y,z) = X (x)Y(y)Z(z),代入方程(4-3-1),整理可得
1 X
d2 X dx2
1 Y
d 2Y dy2
1 Z
d2Z dz2

电磁场与电磁波理论部分题解

电磁场与电磁波理论部分题解

电磁场与电磁波理论部分题解第⼆章、宏观电磁现象的基本规律2.2、已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度)0(/)(0a a v ≤≤=ρρρρρ。

试求总电量Q 。

解:总电量为200200032la dz d d adv Q l a v πρ?ρρρρρπ===2.3、半径为0R 的球⾯上均匀分布着电荷,总电量为Q 。

当球以⾓速度ω绕某⼀直径(z 轴)旋转时,求其表⾯上的⾯电流密度。

解:⾯电荷密度为24R Qs πρ=⾯电流密度为02004sin sin 4sin R Q R R QR v j s s s πθωθωπθωρρ===?=2.6、两个带电量分别为0q 和02q 的点电荷相距为d ,另有⼀带电量为0q 的点电荷位于其间,为使中间的点电荷处于平衡状态,试求其位置。

当中间的点电荷带电量为0q -时,结果⼜如何?解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。

由库仑定律,实验电荷受02q 的排斥⼒为21241x q F πε=实验电荷受0q 的排斥⼒为22)(41x d q F -=πε要使实验电荷保持平衡,21F F =,那么22)(41241x d q x q -=πεπε即得到d d x 585.0122=+=如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=只是这时实验电荷与0q 和02q 不是排斥⼒,⽽是吸引⼒。

2.7 边长为a 的正⽅形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。

解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。

由库仑定律,实验电荷受02q 的排斥⼒为012214πq F x ε=实验电荷受0q 的排斥⼒为02214π()- 要使实验电荷保持平衡,21F F =,那么00222114π4π()q q x d x εε=-即得到d d x 585.0122=+=如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。

电磁场与电磁波名词解释复习

电磁场与电磁波名词解释复习

安培环路定律1)真空中的安培环路定綁在真空的磁场中,沿任总回路取乃的线积分.其值等于真空的磁导率乘以穿过该回路所限定面枳上的电流的代数和。

即in di=^i kk=l2)•般形式的安培环路定律在任总磁场中•磁场强度〃沿任一闭合路径的线积分等于穿过该回路所包鬧而积的自由电流(不包括醱化电流)的代数和。

即B (返回顶端)边值问题1)静电场的边值问题静电场边值问题就是在给定第一类、第二类或第三类边界条件下,求电位函数®的泊松方程(沪卩=一%)或拉普拉斯方程(gp=O)定解的问題。

2)恒定电场的边值问题在恒定电场中,电位函数也满足拉普拉斯方程。

很多恒定电场的问題,都可归结为在一定条件下求竝普拉斯方程(▽?信=° )的解答,称之为恒定电场的边值问题o3)恒定磁场的边值问题(1)磁矢位的边值问题磁矢位在媒质分界面上满足的衔接条件和它所满足的微分方程以及场域上给定的边界条件一起构成了描述恒定磁场的边值问题°对于平行平而磁场,分界而上的衔接条件是* 1 3A 1 dAn磁矢位*所满足的微分方程V2A = -pJ(2)磁位的边值问题在均匀媒质中.磁位也满足拉普拉斯方程。

磁位拉普拉斯方程和磁位在媒质分界面上满足的衔接条件以及场域上边界条件一起构成了用磁位描述恒定磁场的边值问題。

磁位满足的拉普拉斯方程= °两种不同媒质分界浙上的衔接条件边界条件1.静电场边界条件在场域的边界面s上给定边界条件的方式有:第•类边界条件(狄里赫利条件,Dirichlet)已知边界上导体的电位第二类边界条件(聂以曼条件Neumann)已知边界上电位的法向导数(即电荷而密度或电力线)第三类边界条件已知边界上电位及电位法向导数的线性组合5静电场分界而上的衔接条件% "和场*二丘"称为静迫场中分界面上的衔接条件。

前者表明.分界而两侧的电通壮密度的法线分址不连续,其不连续虽就等于分界面上的自由电荷血•密度:后者表明分界而两侧电场强度的切线分址连续。

电磁场与电磁波--电磁场的边界条件

电磁场与电磁波--电磁场的边界条件

cos(15
108
t)
20
cos(15108
t)]
erx80cos(15108t) V/m
r E2
(0,
t
r ex
80
cos(15
108t)r exAcos(15
108
t)
)
V/m
V/m
z=0
r ez 媒质2
r ex
媒质1
2.7 电磁场的边界条件
利用两种电介质分界面上电场强度的切向分量连续的边界条件
电介质与自由空间 的分界面
rr r
r
rrr
ez {ex E1x ey E1y ez E1z [ex 2 y ey 5x ez (3 z)]} z0
r
r
ey (E1x 2 y) ex (E1y 5x) 0
则得
E1x 2 y, E1y 5x
r E2
r ex
2y
r ey 5z
r ez
r D
的法向分量连续
r B 的法向分量连续
r E 的切向分量连续
r H
的切向分量连续
1=0
ern
媒质1
媒质2
2
r D
、Br
的法向分量连续
2.7 电磁场的边界条件
2. 理想导体表面上的边界条件
D
• 理想导体:电导率为无限大的导电媒质 • 特征:电磁场不可能进入理想导体内 • 理想导体表面上的边界条件
r
r
l
rr H1 H2
r et
dl
r D
r
lim
h0
J dS
S
S
t
dS
媒质1
r r en Δl

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档