高二数学 必修三第一、二章综合练习
(压轴题)高中数学必修三第一章《统计》检测(包含答案解析)

一、选择题1.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[]10,14,[]15,19,[]20,24,[]25,29,[]30,34的爱看比例分别为10%,18%,20%,30%,%t .现用这5个年龄段的中间值x 代表年龄段,如12代表[]10,14,17代表[]15,19,根据前四个数据求得x 关于爱看比例y 的线性回归方程为( 4.68)%y kx =-,由此可推测t 的值为( )A .33B .35C .37D .392.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为193.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差4.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表: 价格x (元) 4 6 8 10 12 销售量y (件)358910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.75.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .816.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和677.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)22-∞-.A .①②③B .①③④C .①②④D .②③④8.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定9.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元11.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定12.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数据的方差为______.16.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.17.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
北师大版高中数学必修三第一章《统计》测试卷(包含答案解析)(1)

一、选择题1.某班统计一次数学测验的平均分与方差,计算完毕才发现有位同学的分数还未录入,只好重算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x =,221s s = B .1x x =,221s s < C .1x x =,221s s >D .1x x <,221s s =2.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,83.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18554.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差5.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( )A .26B .27C .28D .296. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日7.下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份 8.①45化为二进制数为(2)101101;②一个总体含有1000个个体(编号为0000,0001,…,0999),采用系统抽样从中抽取一个容量为50的样本,若第一个抽取的编号为0008,则第六个编号为0128; ③已知a ,b ,c 为ABC ∆三个内角A ,B ,C 的对边,其中3a =,4c =,6A π=,则这样的三角形有两个解.以上说法正确的个数是( ) A .0B .1C .2D .39.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油10.已知x,y的取值如表:x 2678y若x,y之间是线性相关,且线性回归直线方程为,则实数a的值是A.B.C.D.11.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为A.12 B.14 C.16 D.1812.从存放号码分别为1,2, ,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是()A.0.53 B.0.5 C.0.47 D.0.37二、填空题13.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____14.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..15.已知数据(1,2,3,4,5)i x i =的平均值为a ,数列2{()}i x a -为等差数列,且3||0.1x a -=________.16.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.17.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
(人教版B版2017课标)高中数学必修第一册 第二章综合测试卷(附答案)03

第二章综合测试一、单选题(本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.二次三项式22x bx c ++分解因式为2(3)(1)x x -+,则,b c 的值分别为( ) A .3,1 B .62--, C .64--, D .4,6--2.不等式(1)0x -的解集是( ) A .{|1}x x >B .{|1}x x ≥C .{|12}x x x =-≥或 D .{| 2 1}x x x -=≤或3.已知a b c 、、是ABC △的三条边,且满足22a bc b ac +=+,则ABC △一定是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形4.已知13a b -+<<且24a b -<<,则23a b +的取值范围是( )A .1317,22⎛⎫- ⎪⎝⎭B .711,22⎛⎫- ⎪⎝⎭C .713,22⎛⎫- ⎪⎝⎭D . 913,22⎛⎫- ⎪⎝⎭5.已知01b a <+<,若关于x 的不等式22()()x b ax ->的解集中的整数恰有3个,则( ) A .10a -<<B .01a <<C .13a <<D .36a <<6.在R 上定义运算:(1)x y x y ⊗=-,若x ∃∈R 使得()()1x a x a -⊗+>成立,则实数a 的取值范围是( ) A .13,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭UB .13,22⎛⎫- ⎪⎝⎭ C .31,22⎛⎫- ⎪⎝⎭D .31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U7.某车间分批生产某种产品,每批的生产准备费用为800元若每批生产x 件,则平均仓储时间为8x天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A .60件 B .80件 C .100件 D .120件8.若两个正实数,x y 满足141x y +=,且不等式234yx m m +-<有解,则实数m 的取值范围是( ) A .(1,4)-B .(,1)(4,)-∞-+∞UC .(4,1)-D .(,0)(3,)-∞+∞U9.已知不等式20x bx c ++>的解集为|21{}x x x >或< ,则不等式210cx bx ++≤的解集为( ) A .1,12⎛⎫⎪⎝⎭B .1,(1,)2⎛⎫-∞+∞ ⎪⎝⎭UC .1,[1,)2⎛⎤-∞+∞ ⎥⎝⎦UD .1,12⎡⎤⎢⎥⎣⎦二、多选题(本大题共3小题,每小题5分,共15分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分) 10.下列不等式推理正确的是( ) A .若x y z >>,则xy yz >B .若110a b<<,则2ab b >C .若,a b c d >>,则ac bd >D .若22a x a y >,则x y >E .若0a b >>,0c >,则a c b c --> 11.已知a b a <<,则( )A 11a b> B .1ab <C .1a b> D .22a b > E .2a ab >12.若正实数,a b 满足1a b +=,则下列说法正确的是( )A .14ab ≥B C .114a b+≥ D .2212a b +≥三、填空题(本大题共4小题,每小题5分,共20分。
(压轴题)高中数学必修三第一章《统计》测试(有答案解析)

一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若统计员计算无误,则数字x 应该是( )A .5B .4C .3D .23.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s <>4.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+5.采用系统抽样的方法从400人中抽取20人做问卷调查,为此将他们随机编号为1,2,3…,400.适当分组后在第一组采用随机抽样的方法抽到的号码为5,则抽到的20人中,编号落入区间[201,319]内的人员编号之和为( ) A .600B .1225C .1530D .18556.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③B .①③④C .①②④D .②③④7.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( )A .2,5B .5,5C .5,8D .8,88.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为A .y = x-1B .y = x+1C .y =88+12x D .y = 1769.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16010.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .3011.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变12.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .18二、填空题13.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也.”,清代·段玉裁《说文解字注》:“三十年为一世.按父子相继曰世”.“一世”又叫“一代”,到了唐朝,为了避李世民的讳,“一世”方改为“一代”,当代中国学者测算“一代”平均为25年.另据美国麦肯锡公司的研究报告显示,全球家庭企业的平均寿命其实只有24年,其中只有约30%的家族企业可以传到第二代,能够传到第三代的家族企业数量为总量的13%,只有5%的家族企业在第三代后还能够继续为股东创造价值.根据上述材料,可以推断美国学者认为“一代”应为__________年.14.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=15.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份A 的含量x (单位:g )与药物功效y (单位:药物单位)之间具有关系:(20)y x x =-.检测这种药品一个批次的5个样本,得到成份A 的平均值为8g ,标准差为2g ,估计这批中成药的药物功效的平均值为__________药物单位.16.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..17.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.18.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取_______名学生.19.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
(压轴题)高中数学必修三第一章《统计》检测题(含答案解析)(1)

一、选择题1.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件2.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .163.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .724.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生5.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④6.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为37.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .918.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位9.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .1810.已知某企业上半年前5个月产品广告投入与利润额统计如下:由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元B .96.5万元C .95.25万元D .97.25万元11.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .1112.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为( ) A .112种B .100种C .90种D .80种二、填空题13.用系统抽样方法从400名学生中抽取容量为20的样本,将400名学生随机地编号为1~400,按编号顺序平均分为20个组.若第1组中用抽签的方法确定抽出的号码为11,则第17组抽取的号码为________.14.对具有线性相关关系的变量x ,y 有一组观测数据()(),1,2,3,,8i i x y i =,其回归直线方程是12y x a =+,且8116i i x ==∑,8148i i y ==∑,则实数a =__________.15.通过市场调查,得到某种产品的资金投入x (单位:万元)与获得的利润y (单位:万元)的数据,如表所示:根据表格提供的数据,用最小二乘法求线性回归直线方程为0.36ˆˆybx =-,现投入资金15万元,求获得利润的估计值(单位:万元)为_____________.16.已知某市A 社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.17.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.18.总体由编号为01,02,⋅⋅⋅,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.19.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.20.已知一组数据x ,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.2020年1月末,新冠疫情爆发,经过全国人民的努力,2月中旬,疫情得到了初步的控制,湖北省以外地区的每日新增确诊人数开始减少,某同学针对这个问题,选取他在统计学中学到的一元线性回归模型,作了数学探究:他于2月17日统计了2月7日至16日这十天湖北省以外地区的每日新增确诊人数,表格如下: 日期 2.7 2.8 2.9 2.10 2.11 2.12 2.132.14 2.15 2.16代号x 123 45 6 78910新增确诊人数y558 509444381 377 312 267221166 115y x y x 计算出: 5.5,335x y ==,()()1013955iii x x y y =--=-∑,()210182.5ii x x =-=∑(1)请你帮这位同学计算出y 与x 的线性回归方程(精确到0.1),然后根据这个方程估计湖北省以外地区新增确诊人数为零时的大概日期;附:回归方程y bx a =+中斜率和截距的最小二乘法估计公式分别为:()()()1012101iii ii x x y y b x x ==--=-∑∑,a y bx =-(2)实际上2月17日至2月22日的新增确诊人数如下:出评价.22.据统计某品牌服装专卖店一周内每天获取得纯利润y (百元)与每天销售这种服装件数x (百件)之间有如下一组数据.该专卖店计划在国庆节举行大型促销活动以提高该品牌服装的知名度,为了检验服装的质量,现从厂家购进的500件服装中抽取60件进行检验,(服装进货编号为001-500). (1)利用随机数表抽样本时,如果从随机数表第8行第2列的数开始按三位数连贯向右读取,试写出最先检测的5件服装的编号;(2)求该专卖店每天的纯利y 与每天销售件数x 之间的回归直线方程.(精确到0.01) (3)估计每天销售1200件这种服装时获多少纯利润? 附表:(随机数表第7行至第9行)84421 75331 57245 50688 77047 44767 21763 35025 83921 20676 63016 47859 16955 56719 98105 07185 12867 35807 44395 23879 33211 23429 78645 60782 52420 74438 15510 01342 99660 27954 参考数据:721280i i x==∑,72145309i i y ==∑,713487i i i x y ==∑.参考公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-23.某市为了解疫情过后制造业企业的复工复产情况,随机调查了100家企业,得到这些企业4月份较3月份产值增长率x 的频率分布表如下:企业数13 40 35 8 4(1)估计制造业企业中产值增长率不低于60%的企业比例及产值负增长的企业比例; (2)求制造业企业产值增长率的平均数与方差的估计值(同一组中的数据用该组区间的中点值为代表).24.为了解某小卖部冷饮销量与气温之间的关系,随机统计并制作了6天卖出的冷饮的数量与当天最高气温的对照表: 气温()x ℃ 27 29 30 32 33 35 数量y121520272836(1)画出散点图,并求出y 关于x 的线性回归方程;(2)根据天气预报,某天最高气温为36.6℃,请你根据这些数据预测这天小卖部卖出的冷饮数量.附:一组数据11(,)x y ,22(,)x y ,,(,)n n x y 的回归直线y a bx =+的斜率和截距的最小二乘估计为()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆa y bx=- 25.某学校高一100名学生参加数学竞赛,成绩均在40分到100分之间.学生成绩的频率分布直方图如图:(1)估计这100名学生分数的中位数与平均数;(精确到0.1)(2)某老师抽取了10名学生的分数:12310,,,...,x x x x ,已知这10个分数的平均数90x =,标准差6s =,若剔除其中的100和80两个分数,求剩余8个分数的平均数与标准差.(参考公式:221nii xnx s n=-=∑(3)该学校有3座构造相同教学楼,各教学楼高均为20米,东西长均为60米,南北宽均为20米.其中1号教学楼在2号教学楼的正南且楼距为40米,3号教学楼在2号教学楼的正东且楼距为72米.现有3种型号的考试屏蔽仪,它们的信号覆盖半径依次为35,55,105米,每个售价相应依次为1500,2000,4000元.若屏蔽仪可在地下及地上任意位置安装且每个安装费用均为100元,求让各教学楼均被屏蔽仪信号完全覆盖的最小花费.(参考数据:22221044100,19236864,11012100===)26.在社会实践活动中,“求知”小组为了研究某种商品的价格x (元)和需求量y (件)之间的关系,随机统计了11月1日至11月5日该商品价格和需求量的情况,得到如下资料: 日期 11月1日 11月2日 11月3日 11月4日 11月5日 x (元) 14 16 18 20 22 y (件)1210743该小组所确定的研究方案是:先从这五天中选取2天数据,用剩下的3天数据求线性回归方程,再对被选取的2天数据进行检验.(1)若选取的是11月1日与11月5日两天数据,请根据11月2日至11月4日的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2件,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.2.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.3.B解析:B 【分析】由(0.00500.00750.01000.0125)201a ++++⨯=,求出a ,计算出数据落在区间[90,110)内的频率,即可求解.【详解】由(0.00500.00750.01000.0125)201a ++++⨯=, 解得0.015a =,所以数据落在区间[90,110)内的频率为0.015200.3⨯=, 所以数据落在区间[90,110)内的频数2000.360⨯=, 故选B. 【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.4.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.5.B解析:B 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.6.D解析:D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差7.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.8.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C.【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.9.C解析:C【解析】【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在高三年级中抽取的人数.【详解】 根据题意得,用分层抽样在各层中的抽样比为421105020=, 则在高三年级抽取的人数是14001625⨯=人, 故选C.【点睛】该题所考查的是有关分层抽样的问题,在解题的过程中,需要明确无论采用哪种抽样方法,都必须保证每个个体被抽到的概率是相等的,所以注意成比例的问题. 10.C解析:C【解析】【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可【详解】()19.59.39.18.99.79.35x =⨯++++= ()19289898793905y =⨯++++= 代入到回归方程为7.5ˆyx a =+,解得20.25a = 7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。
(新教材人教A版)高二数学选择性必修第三册同步练习 二项式系数的性质 提高练(原卷版)

6.3.2 二项式系数的性质 -B 提高练一、选择题1.(2021·首都师范大学附属中学高二期末)在2nx ⎫⎪⎭的展开式中,只有第5项的二项式系数最大,则展开式中的常数项为( )A .112-B .112C .1120-D .1120 2.(2021·全国高二专题练习)已知2012(1)n n n x a a x a x a x +=+++⋅⋅⋅+,01216n a a a a +++⋅⋅⋅+=,则自然数n 等于( )A .6B .5C .4D .3 3.(2021·江西九江一中高二月考)在n a x x ⎛⎫+ ⎪⎝⎭的展开式中,只有第六项的二项式系数最大,且所有项的系数和为0,则含6x 的项系数为( )A .45B .-45C .120D .-120 4.(2021·全国高二单元测)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,则b a 的值为( )A .1285B .2567C .5125D .1287 5.(多选题)(2021·江苏南通市·高二月考)若2n x ⎛ ⎝的展开式中第6项的二项式系数最大,则n 的可能值为( )A .9B .10C .11D .12 6.(多选题)(2021·湖南衡阳市八中高二月考)关于20201)及其展开式,下列说法正确的是( )A .该二项展开式中二项式系数和是1-B .该二项展开式中第七项为610072020C x C .该二项展开式中不含有理项D .当100x =时,)20201除以100的余数是1二、填空题 7.(2021·福建厦门双十中学高二月考)如果3nx ⎛⎫+ ⎝的展开式中各项系数之和为4096,则展开式中x 的系数为________.8.(2021·全国高二专题练)若()()202122021012202112x a a x a x a x x R -=++++∈,则20211222021222a a a +++的值为________.9.(2021·河南南阳中学高二月考)在1)n x 的展开式中,各项系数的和为p ,二项式系数之和为q ,且q 是p 与48-的等差中项,则正整数n 的值为___________. 10.(2021·湖北黄冈市高二期末)若函数20212021()(1sin )(1sin )f x x x =++-,其中6π≤x ≤23π,则()f x 的最大值为_______. 三、解答题11.(2021·江苏省苏州第十中学校高二期中)已知在n 的展开式中,_________(填写条件前的序号)条件①第5项的系数与第3项的系数之比是14:3; 条件②第2项与倒数第3项的二项式系数之和为55; 条件③22110n n n C C -+-=.(1)求展开式中二项式系数最大的项;(2)求展开式中含5x 的项.12.(2021·全国高二单元测)已知(31)n x -的展开式中第2项与第5项的二项式系数相等,求212n x x ⎛⎫- ⎪⎝⎭的展开式中: (1)所有二项式系数之和;(2)二项式系数最大的项;(3)系数的绝对值最大的项.。
(新教材人教A版)高二数学选择性必修第三册同步练习 分类变量与列联表 提高练(解析版)

8.3 分类变量与列联表 ---B 提高练一、选择题1.(2021·全国高二课时练)在一次独立性检验中,得出列联表如下:且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .200 B .720 C .100 D .180 【答案】B 【详解】由题意知a ab +与c c d+基本相等,由列联表知2001000与180180a +基本相等,2001801000180a=+,解得720a =.故选:B 2.(2021·江苏高二专题练习)为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算得x 2=7.01,则认为“喜欢乡村音乐与性别有关系”的把握约为( )A .0.1%B .1%C .99%D .99.9% 【答案】C【详解】易知x 2=7.01>6.635,对照临界值表知,有99%的把握认为喜欢乡村音乐与性别有关系. 故选:C3.(2021·江苏盐城市高二月考)某词汇研究机构为对某城市人们使用流行语的情况进行调查,随机抽取了200人进行调查统计得下方的22⨯列联表.则根据列联表可知( )参考公式:独立性检验统计量22()()()()()n ad bcXa b c d a c b d-=++++,其中n a b c d=+++.下面的临界值表供参考:A.有95%的把握认为“经常用流行用语”与“年轻人”有关系B.没有95%的把握认为“经常用流行用语”与“年轻人”有关系C.有97.5%的把握认为“经常用流行用语”与“年轻人”有关系D.有97.5%的把握认为“经常用流行用语”与“年轻人”没有关系【答案】A【详解】22200(25152535)4.167 3.8411604050150X⨯⨯-⨯==>⨯⨯⨯,根据临界值知有95%的把握认为经常用流行语与年轻人有关系,故选:A4.(2021·河南信阳市高二月考)某医疗研究所为了检验新开发的流感疫苗对流感的预防作用,根据1000名注射了疫苗的人与另外1000名未注射疫苗的人半年的感冒记录作出如下的22⨯的列联表,并提出假设:oH“这种疫苗不能起到预防流感的作用”’则下列说法正确是()附:22()()()()()n ad bcXa b c d a c b d-=++++.A.这种疫苗能起到预防流感的有效率为99%;B.若某人未使用该疫苗,则他在半年中有超过99%的可能性得流感;C.有1%的把握认为“这种疫苗能起到预防流感的作用”;D.有99%的把握认为“这种疫苗能起到预防流感的作用”.【答案】D【详解】222()2000(200740260800)=10.164 6.635 ()()()()100010004601540n ad bcXa b c d a c b d-⨯-⨯=≈> ++++⨯⨯⨯,由临界值表可知,有99%的把握认为“这种疫苗能起到预防流感的作用”,故选:D5.(多选题)(2021·山东泰安一中高二月考)为了增强学生的身体素质,提高适应自然环境、克服困难的能力,某校在课外活动中新增了一项登山活动,并对“学生喜欢登山和性别是否有关”做了一次调查,其中被调查的男女生人数相同,得到如图所示的等高条形统计图,则下列说法中正确的有()附:()()()()()22n ad bca b c d a c b dχ-=++++,其中n a b c d=+++.A.被调查的学生中喜欢登山的男生人数比喜欢登山的女生人数多B.被调查的女生中喜欢登山的人数比不喜欢登山的人数多C.若被调查的男女生均为100人,则有99%的把握认为喜欢登山和性别有关D.无论被调查的男女生人数为多少,都有99%的把握认为喜欢登山和性别有关【答案】AC【详解】因为被调查的男女生人数相同,由等高条形统计图可知,喜欢登山的男生占80%,喜欢登山的女生占30%,所以A 正确,B 错误;设被调查的男女生人数均为n ,则由等高条形统计图可得22⨯列联表如下:由公式可得()2220.80.70.30.2501.10.999n n n n n n n n n n χ⨯⨯-⨯==⨯⨯⨯. 当100n =时,250006.63599χ=>,所以有99%的把握认为喜欢登山和性别有关; 当10n =时,2500 6.63599χ=<,所以没有99%的把握认为喜欢登山和性别有关,显然2χ的值与n 的取值有关,所以C 正确,D 错误.故选:AC.6.(多选题)(2021·全国高二专题练)在一次恶劣气候的飞行航程中,调查男女乘客在机上晕机的情况,如下表所示:则下列说法正确的是( )附:参考公式:()()()()()22n ad bc a c b d a b c d χ-=++++ ,其中n a b c d =+++. 独立性检验临界值表A .11126n n n ++> B .2 2.706χ<C .有90%的把握认为,在恶劣气候飞行中,晕机与否跟男女性别有关D .没有理由认为,在恶劣气候飞行中,晕机与否跟男女性别有关 【答案】ABD【详解】由列联表数据,知1112211122211261528156284646n n n n n n n n n n +++++++=⎧⎪+=⎪⎪+=⎪⎨+=⎪⎪+=⎪+=⎪⎩,得11221121213182719n n n n n +++=⎧⎪=⎪⎪=⎨⎪=⎪⎪=⎩ ∴11121246627919n n n ++==>=,即A 正确∴2246(1213615)0.77518281927χ⨯⨯-⨯=≈⨯⨯⨯< 2.706,即B 正确且没有理由认为,在恶劣气候飞行中,晕机与否跟男女性别有关;即D 正确,故选:ABD 二、填空题7.(2021·河南濮阳市高二期末)下表是不完整的22⨯列联表,其中3a c =,2b d =,则a =______.【答案】15【详解】由题意得5512055a b c d +=⎧⎨+=-⎩,又3a c =,2b d =,所以255365a d a d +=⎧⎨+=⎩,解得15a =. 8. (2021·山东高二专题练习)为了判断某高中学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P (x 2≥3.841)≈0.05,P (x 2≥6.635)≈0.01.根据表中数据,得到x 2=250(1320107)23272030⨯⨯-⨯⨯⨯⨯≈4.844,则认为选修文科与性别有关系出错的概率约为________. 【答案】0.05【详解】因为x 2≈4.844>3.841,而P (x 2≥3.841)≈0.05,故认为选修文科与性别有关系出错的概率约为0.05. 9.(2021·江苏高二专题练习)某卫生机构对366人进行健康体检,有阳性家族史者糖尿病发病的有16例,不发病的有93例,有阴性家族史者糖尿病发病的有17例,不发病的有240例,认为糖尿病患者与遗传有关系的概率约为________.参考数据:P (x 2≥3.841)≈0.05,P (x 2≥6.635)≈0.01. 【答案】95%【详解】列出2×2列联表:所以随机变量x 2的值为x 2=2366(162401793)10925733333⨯⨯-⨯⨯⨯⨯≈6.067>3.841,而P (x 2≥3.841)≈0.05, 所以在犯错误的概率不超过0.05的前提下,即有95%的把握认为糖尿病患者与遗传有关. 10.(2021·河南郑州市高二)假设有两个分类变量X 和Y ,它们的可能取值分别为{}12,x x 和{}12,y y ,其22⨯列联表如表,对于以下数据,对同一样本能说明X 和Y 有关系的可能性最大的一组为______. ①9,8,7,6a b c d ==== ②9,7,6,8a b c d ====③8,6,9,7a b c d ==== ④6,7,8,9a b c d ====【答案】② 【详解】对于选项A,69872ad bc -=⨯-⨯=;对于选项B,896730ad bc -=⨯-⨯=;对于选项C,87692ad bc -=⨯-⨯=;对于选项D,69872ad bc -=⨯-⨯=;由ad bc-越大,说明X 和Y 有关系的可能性越大.三、解答题11.(2020·江苏南京市高三期中)在20人身上试验某种血清对预防感冒的作用,把他们一年中是否患感冒的人数与另外20名未用血清的人是否患感冒的人数作比较,结果如下表所示.(1)从上述患过感冒的人中随机选择4人,以进一步研究他们患感冒的原因.记这4人中使用血清的人数为X ,试写出X 的分布列;(2)有多大的把握得出“使用该种血清能预防感冒”的结论?你的结论是什么?请说明理由. 附:对于两个研究对象Ⅰ(有两类取值:类A ,类B )和Ⅱ(有两类取值:类1,类2)统计数据的一个2×2列联表:有22()()()()()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++. 临界值表(部分)为【详解】(1)因为使用血清的人中感冒的人数为3,未使用血清的人中感冒的人数为6,一共9人,从这9人中选4人,其中使用血清的人数为X ,则随机变量X 的可能值为0,1,2,3.因为0436495(0)42C CP X C ===,13364910(1)21C C P X C ===, 2236495(2)14C C P X C ===,3136491(3)21C C P X C ===, 所以随机变量X 的分布列为(2)将题中所给的2×2列联表进行整理,得提出假设0H :是否使用该种血清与感冒没有关系.根据2χ公式,求得2240(176314) 1.29032020319χ⨯⨯-⨯=≈⨯⨯⨯.因为当0H 成立时,“20.708χ≥”的概率约为0.40,“21.323χ≥”的概率约为0.25,所以有60%的把握认为:是否使用该种血清与感冒有关系,即“使用该种血清能预防感冒”,得到这个结论的把握不到75%. 由于得到这个结论的把握低于90%,因此,我的结论是:没有充分的证据显示使用该种血清能预防感冒,也不能说使用该种血清不能预防感冒.12.(2021·江苏南通高二月考)学生视力不良问题突出,是教育部发布的我国首份《中国义务教育质量监测报告》中指出的众多现状之一.习近平总书记作出重要指示,要求全社会都要行动起来,共同呵护好孩子的眼睛,让他们拥有一个光明的未来.为了落实总书记指示,掌握基层情况,某单位调查了某校学生的视力情况,随机抽取了该校100名学生(男生50人,女生50人),统计了他们的视力情况,结果如下:(1)是否有90%的把握认为近视与性别有关? 附:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.(2)如果用这100名学生中男生和女生近视的频率分别代替该校男生和女生近视的概率,且每名学生是否近视相互独立.现从该校学生中随机抽取4人(2男2女),设随机变量X 表示4人中近视的人数,试求X 的分布列及数学期望()E X . 【详解】(1)根据22⨯列联表中的数据可得22100(25302520)100 1.01 2.7065050455599χ⨯⨯-⨯=≈<⨯⨯⨯=,根据临界值表可知,没有90%的把握认为近视与性别有关; (2)由题意可知男生近视的概率为12,女生近视的概率为35,X 的可能取值为0,1,2,3,4,则 220022121(0)2525P X C C ⎛⎫⎛⎫==⋅⋅⋅=⎪ ⎪⎝⎭⎝⎭, 22210021222121231(1)252555P X C C C C ⎛⎫⎛⎫⎛⎫==⋅⋅⋅+⋅⋅⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,22222200211222222121312337(2)2525255100P X C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅⋅=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,22221122222123133(3)2552510P X C C C C ⎛⎫⎛⎫⎛⎫==⋅⋅⋅⋅+⋅⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,222222139(4)25100P X C C ⎛⎫⎛⎫==⋅⋅⋅=⎪ ⎪⎝⎭⎝⎭, 所以X 的分布列如下:于是X 的数学期望为11373911()01234255100101005E X =⋅+⋅+⋅+⋅+⋅=. 35。
高中数学人教A版必修三章节综合测评 第二章《统计》3 含解析

章末综合测评(三) 概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4℃时结冰. A .1 B .2 C .3D .4【解析】 ①在明年运动会上,可能获冠军,也可能不获冠军.②李凯不一定被抽到.③任取一张不一定为1号签.④在标准大气压下水在4℃时不可能结冰,故①②③是随机事件,④是不可能事件.【答案】 C2.下列说法正确的是( )A .甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场 B .某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C .随机试验的频率与概率相等D .天气预报中,预报明天降水概率为90%,是指降水的可能性是90%【解析】 概率只是说明事件发生的可能性大小,其发生具有随机性.故选D.【答案】 D3.(2016·开封高一检测)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( )A.16 B .13 C.12D .23【解析】 给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P =26=13.故选B.【答案】 B4.在区间[-2,1]上随机取一个数x ,则x ∈[0,1]的概率为( ) A.13 B .14 C.12D .23【解析】 由几何概型的概率计算公式可知x ∈[0,1]的概率P =1-01-(-2)=13.故选A. 【答案】 A5.1升水中有1只微生物,任取0.1升化验,则有微生物的概率为()A.0.1 B.0.2C.0.3 D.0.4【解析】本题考查的是体积型几何概型.【答案】 A6.(2016·天水高一检测)从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()A.A与C互斥B.B与C互斥C.任何两个均互斥D.任何两个均不互斥【解析】互斥事件是不可能同时发生的事件,所以B与C互斥.【答案】 B7.某人从甲地去乙地共走了500 m,途中要过一条宽为x m的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能找到的概率为45,则河宽为()A.100 m B.80 m C.50 m D.40 m【解析】设河宽为x m,则1-x500=45,所以x=100.【答案】 A8.从一批羽毛球中任取一个,如果其质量小于4.8 g 的概率是0.3,质量不小于4.85 g 的概率是0.32,那么质量在[4.8,4.85)范围内的概率是( )A .0.62B .0.38C .0.70D .0.68【解析】 记“取到质量小于4.8 g ”为事件A ,“取到质量不小于4.85 g ”为事件B ,“取到质量在[4.8,4.85)范围内”为事件C .易知事件A ,B ,C 互斥,且A ∪B ∪C 为必然事件.所以P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.3+0.32+P (C )=1,即P (C )=1-0.3-0.32=0.38.【答案】 B9.如图1,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ) 【导学号:28750071】图1A.14 B .13 C.12D .23【解析】 点E 为边CD 的中点,故所求的概率P =△ABE 的面积矩形ABCD 的面积=12.【答案】 C10.将区间[0,1]内的均匀随机数x 1转化为区间[-2,2]内的均匀随机数x ,需要实施的变换为( )A .x =x 1*2B .x =x 1*4C .x =x 1*2-2D .x =x 1*4-2【解析】 由题意可知x =x 1*(2+2)-2=4x 1-2. 【答案】 D11.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( )A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 1【解析】 先后抛掷两颗骰子的点数共有36个基本事件:(1,1),(1,2),(1,3),…,(6,6),并且每个基本事件都是等可能发生的.而点数之和为12的只有1个:(6,6);点数之和为11的有2个:(5,6),(6,5);点数之和为10的有3个:(4,6),(5,5),(6,4),故P 1<P 2<P 3.【答案】 B12.在5件产品中,有3件一等品和2件二等品,从中任取2件,则下列选项中以710为概率的事件是( )A .恰有1件一等品B .至少有一件一等品C .至多有一件一等品D .都不是一等品【解析】 将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P 1=610,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P 2=310,其对立事件是“至多有一件一等品”,概率为P 3=1-P 2=1-310=710.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).13.一个袋子中有5个红球,3个白球,4个绿球,8个黑球,如果随机地摸出一个球,记A ={摸出黑球},B ={摸出白球},C ={摸出绿球},D ={摸出红球},则P (A )=________;P (B )=________;P (C ∪D )=________.【解析】 由古典概型的算法可得P (A )=820=25,P (B )=320,P (C ∪D )=P (C )+P (D )=420+520=920.【答案】 25 320 92014.在区间(0,1)内任取一个数a ,能使方程x 2+2ax +12=0有两个相异实根的概率为________.【解析】 方程有两个相异实根的条件是Δ=(2a )2-4×1×12=4a 2-2>0,解得|a |>22,又a ∈(0,1),所以22<a <1,区间⎝ ⎛⎭⎪⎫22,1的长度为1-22,而区间(0,1)的长度为1,所以方程有两个相异实根的概率为1-221=2-22.【答案】 2-2215.甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图2所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是________.图2【解析】 由题意可知从甲、乙两组中各随机选取一名同学,共有9种选法,其中这两名同学的成绩相同的选法只有1种,故所求概率P =19.【答案】 1916.(2016·合肥高一检测)甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且a、b∈{0,1,2,…,9}.若|a-b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为________.【解析】此题可化为任意从0~9中取两数(可重复)共有10×10=100种取法.若|a-b|≤1分两类,当甲取0或9时,乙只能猜0、1或8、9共4种,当甲取2~8中的任一数字时,分别有3种选择,共3×8=24种,所以P=24+410×10=725.【答案】7 25三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2015·陕西高考)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)在4月份任取一天,估计西安市在该天不下雨...的概率;(2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨...的概率. 【解】 (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为2630=1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78.18.(本小题满分12分)对某班一次测验成绩进行统计,如下表所示:(1)求该班成绩在[80,100]内的概率; (2)求该班成绩在[60,100]内的概率.【解】 记该班的测试成绩在[60,70),[70,80),[80,90),[90,100]内依次为事件A ,B ,C ,D ,由题意知事件A ,B ,C ,D 是彼此互斥的.(1)该班成绩在[80,100]内的概率是P (C ∪D )=P (C )+P (D )=0.25+0.15=0.4.(2)该班成绩在[60,100]内的概率是P (A ∪B ∪C ∪D )=P (A )+P (B )+P (C )+P (D )=0.17+0.36+0.25+0.15=0.93.19.(本小题满分12分)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?(2)规定:若x+y≥10,则小王赢;若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由. 【导学号:28750072】【解】(1)由于x,y取值为1,2,3,4,5,6,则以(x,y)为坐标的点有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个,即以(x,y)为坐标的点共有36个.(2)满足x+y≥10的点有:(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个,所以小王赢的概率是636=1 6,满足x+y≤4的点有:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个,所以小李赢的概率是636=1 6,则小王赢的概率等于小李赢的概率,所以这个游戏规则公平.20.(本小题满分12分)(2014·天津高考)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.【解】(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.21.(本小题满分12分)(2014·四川高考)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.【解】 (1)由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.22.(本小题满分12分)把参加某次铅球投掷的同学的成绩(单位:米)进行整理,分成以下6个小组:[5.25,6.15),[6.15,7.05),[7.05,7.95),[7.95,8.85),[8.85,9.75),[9.75,10.65],并绘制出频率分布直方图,如图3所示是这个频率分布直方图的一部分.已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.规定:投掷成绩不小于7.95米的为合格.图3(1)求这次铅球投掷成绩合格的人数;(2)你认为这次铅球投掷的同学的成绩的中位数在第几组?请说明理由;(3)若参加这次铅球投掷的学生中,有5人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加相关部门组织的经验交流会,已知a、b两位同学的成绩均为优秀,求a、b两位同学中至少有1人被选到的概率.【解】(1)∵第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14.∴参加这次铅球投掷的总人数为70.14=50.根据规定,第4、5、6组的成绩均为合格,人数为(0.28+0.30+0.14)×50=36.(2)∵成绩在第1、2、3组的人数为(0.04+0.10+0.14)×50=14,成绩在第5、6组的人数为(0.30+0.14)×50=22,参加这次铅球投掷的总人数为50,∴这次铅球投掷的同学的成绩的中位数在[7.95,8.85)内,即第4组.(3)设这次铅球投掷成绩优秀的5人分别为a、b、c、d、e,则选出2人的所有可能的情况为:ab,ac,ad,ae,bc,bd,be,cd,ce,de,共10种,其中a、b至少有1人的情况为:ab,ac,ad,ae,bc,bd,be,共有7种,∴a、b两位同学中至少有1人被选到的概率为P=7 10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学九月月考试题
一、选择题(5分×12=60分)
1. 下列关于算法的说法中正确的个数有()
①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;
③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确
定的结果。
A. 1
B. 2
C. 3
D. 4
2.下列程序框中,出口可以有两个流向的是( )
A.起止框 B.输入输出框 C.处理框 D.判断框
3.把89化成五进制数的末位数字为()
A 1
B 2
C 3
D 4
4.
A 37.0%
B 20.2%
C 0分
D 4分
5.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为
(A)1 (B)2 (C)3 (D)4
6.分层抽样又称为类型抽样,即将相似的个体归入一类(层),然后每层各抽
若干个个体构成样本,所以分层抽样为保
证每个个体等可能
入样,必须进行(
)
(A)每层等可能抽样(B)每层不等可能抽样
(C)所有层用同一抽样比,等可能抽样(D)所有层抽同样多样本容量,等可能抽样
7.将两个数a=2007,b=2008交换使得a=2008,b=2007下列语句正确的一组是
()
8. 某中学组织春游,为了确定春游地点,打算从该校学号为0034~2037的所有学生中,采用系统抽样选50名进行调查,则学号为2003的同学被抽到的可能性为()
A .
20031 B. 20041 C. 200450 D. 2003
50 9. 某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
① 7,34,61,88,115,142,169,196,223,250; ② 5,9,100,107,111,121,180,195,200,265; ③ 11,38,65,92,119,146,173,200,227,254; ④ 30,57,84,111,138,165,192,219,246,270. 关于上述样本的下列结论中,正确的是( )
A. ② ③都不能为系统抽样
B. ② ④都不能为分层抽样
C. ① ④ 都可能为系统抽样
D. ① ③
10.
11.下面左图是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1、A 2、…、A 10(如A 2表示身高(单位:cm )(150,155)内的学生人数).右图是统计左图中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )
秒
某班 50 名学生在一次百米测试中,成绩全部介 于
13 秒与 19 秒之间,将测试结果按如下方式分成六
组:每一组,成绩大于等于 13 秒且小于
秒;第二 14
组,成绩大于等于 14 秒且小于 15 秒;……第六组, 成绩大于等于 18 秒且小于等于 19 秒.右图是按上述 分组方法得到的频率分布直方图,设成绩小于 17 秒 的学生人数占全班人数的百分比为 x ,成绩大于等于 15
秒且小于 17 秒的学生人数为 y ,则从频率分布直方 图中可以分析出 x 和 y 分别为( )
A . 0.9 , 35
B . 0.9 , 45
C . 0.1 , 35
D . 0.1 , 45
A.i <6
B. i <7
C. i <8
D. i <9
12. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d , 例如,明文 1,2,3,4 对应密文 5,7,18,16. 当接收方收到密文 14,9,23,28 时,则解密得到的明文为( ).
A. 4,6,1,7
B. 7,6,1,4
C. 6,4,1,7
D. 1,6,4,7 二、填空题(本大题共4小题,每小题5分,满分20分)
13. 完成右边进位制之间的转化: 110011(2)=____________(4)
14.某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。
若用分层抽样方法,则40岁以下年龄段应抽取 人.
15. 用秦九韶算法求多项式5
4
3
2
()52 3.5 2.6 1.70.8f x x x x x x =++-+-当5x =时的值的过程中3v =
16.程序框图如右图所示,若判断框内分别填写“k≤50”与“k<50”,则执行程序后输出结果的差为_________
三.解答题(共70分)
17. (本题10分) 分别用辗转相除法、更相减损术求204与85的最大公约数.
解:
18. 甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是:
甲:8, 6,7, 8,6,5,9, 10, 4, 7;
乙:6, 7, 7, 8, 6, 7, 8, 7, 9, .5
(1)分别计算以上两组数据的平均数
(2)分别求出两组数据的方差;
(3)根据计算结果,估计一下两名战士的射击情况
19.(12分)为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:
00—10:00间各自的点击量,得如下所示的统计图,根据统计图:(1)甲、乙两个网站点击量的极差分别是多少?(4分)(2)甲网站点击量在[10,40]间的频率是多少?(4分)(3)甲、乙两个网站哪个更受欢迎?并说明理由。
(4分)茎叶图
20. (本题6分) 根据下面的要求,求满足1+2+3+…+n > 500的最小的自然数n 。
(1)画出执行该问题的程序框图;
(2)以下是解决该问题的一个程序,但有几处错误,请找出错误并予以更正。
解:
21.某市从高一500名学生的一次数学竞赛成绩中抽取50人的成绩,各分数段的人数统计如下: (单位:分)
[40, 50) ,2; [50, 60), 3 ; [60, 70) ,10; [70, 80), 15 ; [80, 90) ,12; [90,100), 8 .
(1)列出样本的频率分布表
(2)估计总体80分以上(含80分)的人数 (3)估计这次竞赛总体的平均分 . 22. 求
100
991431321211⨯++⨯+⨯+⨯ 的值。
要求画出程序框图,写出用基本语句编写的程序。
高二数学九月月考试题答题纸
二、填空题(本大题共4小题,每小题5分,共20分)
11. 12. 13. 14.
三、解答题:(本大题共6小题,共70分.解答应写出文字说明、演算步骤或推证过程.) 15.(10分)
16.(12分)
学校_____________班级_________________姓名__________________考号 ________
17.(12分)
18.(12分)
19.(12分)
20.(12分)
____________班级_________________姓名__________________考号 ________
21.(12分)
22.(12分)。