广东省惠州市惠城区2017_2018学年八年级数学下学期期末试题新人教版
广东省惠州市博罗县2017-2018学年八年级数学下学期期末质量检测试题新人教版

广东省惠州市博罗县2017-2018学年八年级数学下学期期末质量检测试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上). 1.要使二次根式3x -有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ). A .23B .3C .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm )185 180 185 180 方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12- 7.一次函数y =3x -2的图象不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ).A .3B .4C .5D .69.如图,□ABCD 中,下列说法一定正确的是( ).A .AC =BDB .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cmABCD第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是 .12.若x 、y 为实数,且满足033=++-y x ,则x +y 的值是 .13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是 cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围 . 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为 .16.如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图(2));以此下去···,则正方形A4B4C4D4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分).17.计算:20(2)(51)3(36)---++.18.已知,如图在ΔABC中,AB=BC=AC=2cm,AD是边BC上的高.求AD的长.19.如图,□ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.四、解答题(二)(本大题3小题,每小题7分,共21分).20.一次函数y=2x-4的图像与x轴的交点为A,与y轴的交点为B.(1)A,B两点的坐标分别为A(,),B(,);(2)在平面直角坐标系中,画出此一次函数的图像.第15题图第16题图(1)A1B1C1D1A BCDD2A2B2C2D1C1B1A1A BCD第16题图(2)21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:小组 研究报告 小组展示 答辩 甲 91 80 78 乙798390(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想: (1)146+= ,157+= ;12km CAB 5km(2)计算(请写出推导过程):1 1012.(3)请你将猜想到的规律用含有自然数n(n≥1)的代数式表达出来..24.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:BF=DF;(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.①求证:四边形BFDG是菱形;②若AB=3,AD=4,求FG的长.25.已知一次函数y=kx+b的图象过P(1,4),Q(4,1)两点,且与x轴交于A点.(1)求此一次函数的解析式;(2)求△POQ的面积;(3)已知点M在x轴上,若使MP+MQ的值最小,求点M的坐标及MP+MQ的最小值.。
2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
广东省惠州市惠城区八年级数学上学期期末考试试题(含解析) 新人教版-新人教版初中八年级全册数学试题

某某省某某市惠城区2015-2016学年八年级数学上学期期末考试试题一.选择题(本大题共10个小题,每小题3分,共30分)1.下列长度的线段能组成一个三角形的是()A.15cm、10cm、7cm B.4cm、5cm、10cmC.3cm、8cm、5cm D.3cm、3cm、6cm2.八边形的外角和为()A.180°B.360°C.900°D.1260°3.如图,∠1=∠2,PD⊥OA于D,PF⊥OB于F,下列结论错误的是()A.PD=PF B.OD=OF C.∠DPO=∠FPO D.PD=OD4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或175.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.106.下列图形中,是轴对称图形的有()个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2 B.3 C.4 D.57.下列运算正确的是()A.a3b3=(ab)3B.a2a3=a6C.a6÷a3=a2D.(a2)3=a58.下面的多项式在实数X围内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+19.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b210.已知,则的值是()A.B.﹣C.2 D.﹣2二.填空题(本大题共6个小题,每小题4分,共24分)11.如图,△ABC中,AB=AC,AD⊥BC,BD=5,则CD=.12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.13.计算:(4x3y﹣8xy3)÷(﹣2xy)=.14.化简=.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.16.已知a﹣b=1,a2+b2=25,则ab=.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.如图,网格图中的每小格均是边长是1的正方形,△ABC的顶点均在格点上,请完成下列各题:(1)在平面直角坐标系中画出△A1B1C1,使它与△ABC关于x轴对称;(2)写出△A1B1C1三个顶点的坐标.18.解分式方程:.19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.求∠ECB的度数.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 ﹣2 ﹣3 …输出答案 1 1(2)请将题中计算程序用代数式表达出来,并给予化简.21.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.22.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.先化简,再求值:,其中a=,b=.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ACB的平分线交AD于点E,交AB 于点F,FG⊥BC于点G.求证:AE=FG.25.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.2015-2016学年某某省某某市惠城区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.下列长度的线段能组成一个三角形的是()A.15cm、10cm、7cm B.4cm、5cm、10cmC.3cm、8cm、5cm D.3cm、3cm、6cm【考点】三角形三边关系.【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:A、10+7>15,能组成三角形,故此选项正确;B、4+5<10,不能组成三角形,故此选项错误;C、3+5=8,不能组成三角形,故此选项错误;D、3+3=6,不能组成三角形,故此选项错误;故选:A.【点评】此题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.八边形的外角和为()A.180°B.360°C.900°D.1260°【考点】多边形内角与外角.【分析】根据多边形的外角和等于360°进行解答.【解答】解:八边形的外角和等于360°.故选B.【点评】本题主要考查了多边形的外角和定理,多边形的外角和等于360°,与边数无关.3.如图,∠1=∠2,PD⊥OA于D,PF⊥OB于F,下列结论错误的是()A.PD=PF B.OD=OF C.∠DPO=∠FPO D.PD=OD【考点】角平分线的性质.【分析】根据角平分线性质得出PF=PD,根据勾股定理推出OF=OD,根据三角形内角和定理推出∠DPO=∠FPO.【解答】解:A、∵∠1=∠2,PD⊥OA,PF⊥OB,∴PE=PD,正确,故本选项错误;B、∵PD⊥OA,PF⊥OB,∴∠PFO=∠PDO=90°,∵OP=OP,PF=PD,∴由勾股定理得:OF=OD,正确,故本选项错误;C、∵∠PFO=∠PDO=90°,∠POB=∠POA,∴由三角形的内角和定理得:∠DPO=∠FPO,正确,故本选项错误;D、根据已知不能推出PD=OD,错误,故本选项正确;故选D.【点评】本题主要考查平分线的性质,三角形的内角和,熟练掌握角平分线的性质是解题的关键.4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.5.一个多边形的内角和是900°,这个多边形的边数是()A.7 B.8 C.9 D.10【考点】多边形内角与外角.【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【解答】解:设这个多边形的边数为n,则有(n﹣2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选:A【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.6.下列图形中,是轴对称图形的有()个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2 B.3 C.4 D.5【考点】轴对称图形.【专题】几何图形问题.【分析】根据轴对称图形的概念判断各图形即可求解.【解答】解:根据轴对称图形的定义可知:①角的对称轴是该角的角平分线所在的直线;②线段的对称轴是线段的垂直平分线;③等腰三角形的对称轴是底边的高所在的直线;⑤圆的对称轴有无数条,是各条直径所在的直线,故轴对称图形共4个.故选C.【点评】本题考查轴对称图形的知识,注意掌握轴对称图形的判断方法:图形沿一条直线折叠后,直线两旁的部分能够互相重合.7.下列运算正确的是()A.a3b3=(ab)3B.a2a3=a6C.a6÷a3=a2D.(a2)3=a5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】A、原式利用积的乘方运算法则变形得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=(ab)3,正确;B、原式=a5,错误;C、原式=a3,错误;D、原式=a6,错误,故选A.【点评】此题考查了同底数幂的乘法,除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.8.下面的多项式在实数X围内能因式分解的是()A.x2+y2 B.x2﹣y C.x2+x+1 D.x2﹣2x+1【考点】实数X围内分解因式.【分析】利用因式分解的方法,分别判断得出即可.【解答】解;A、x2+y2,无法因式分解,故A选项错误;B、x2﹣y,无法因式分解,故B选项错误;C、x2+x+1,无法因式分解,故C选项错误;D、x2﹣2x+1=(x﹣1)2,故D选项正确.故选:D.【点评】此题主要考查了公式法分解因式,熟练应用公式是解题关键.9.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+b)(a﹣2b)=a2﹣ab﹣2b2【考点】平方差公式的几何背景.【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b 的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.【解答】解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.10.已知,则的值是()A.B.﹣C.2 D.﹣2【考点】分式的化简求值.【专题】计算题.【分析】观察已知和所求的关系,容易发现把已知通分后,再求倒数即可.【解答】解:∵,∴﹣=,∴,∴=﹣2.故选D.【点评】解答此题的关键是通分,认真观察式子的特点尤为重要.二.填空题(本大题共6个小题,每小题4分,共24分)11.如图,△ABC中,AB=AC,AD⊥BC,BD=5,则CD= 5 .【考点】等腰三角形的性质.【分析】由已知条件,根据等腰三角形“三线合一”的性质,可得CD=BD=5.【解答】解:∵AB=AC∴∠ABD=∠ACD∵AD⊥BC∴∠ADC=∠ADB=90°∴CD=BD=5.故填5.【点评】此题主要考查等腰三角形“三线合一”的性质.题目思路比较直接,属于基础题.12.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.【考点】全等三角形的判定.【专题】开放型.【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.13.计算:(4x3y﹣8xy3)÷(﹣2xy)= ﹣2x2+4y2.【考点】整式的除法.【分析】直接利用整式的除法运算法则化简求出答案.【解答】解:(4x3y﹣8xy3)÷(﹣2xy)=﹣2x2+4y2.故答案为:﹣2x2+4y2.【点评】此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.14.化简= 1 .【考点】分式的加减法.【专题】计算题.【分析】首先把两个分式的分母变为相同再计算.【解答】解:原式=﹣==1.故答案为:1.【点评】此题考查的知识点是分式的加减法,关键是先把两个分式的分母化为相同再计算.15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200 台机器.【考点】分式方程的应用.【分析】根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得: =.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.【点评】此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.16.已知a﹣b=1,a2+b2=25,则ab= 12 .【考点】完全平方公式.【专题】计算题.【分析】根据完全平方公式得到(a﹣b)2=a2﹣2ab+b2,再把a﹣b=1,a2+b2=25整体代入,然后解关于ab的方程即可.【解答】解:∵(a﹣b)2=a2﹣2ab+b2,∴1=25﹣2ab,∴ab=12.故答案为12.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了整体思想的运用.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.如图,网格图中的每小格均是边长是1的正方形,△ABC的顶点均在格点上,请完成下列各题:(1)在平面直角坐标系中画出△A1B1C1,使它与△ABC关于x轴对称;(2)写出△A1B1C1三个顶点的坐标.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于x轴对称的点,然后顺次连接即可;(2)根据网格结构写出顶点的坐标.【解答】解:(1)所作图形如图所示:;(2)坐标为:A1(﹣1,﹣4)、B1(﹣2,﹣2)、C1(0,﹣1).【点评】本题考查了根据轴对称变化作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.18.解分式方程:.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边乘以(x+2)(x﹣2),得x(x+2)﹣8=(x+2)(x﹣2),解这个方程,得x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.求∠ECB的度数.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理求出∠ACB的度数,根据线段垂直平分线的性质得到EA=EC,求出∠ACE的度数,计算即可.【解答】解:∵AB=AC,∠A=36°∴∠ACB=∠B==72°,又∵DE是AC的垂直平分线,∴EA=EC,∴∠ACE=∠A=36°∴∠ECB=∠ACB﹣∠ACE=36°.【点评】本题考查的是线段的垂直平分线的性质和三角形内角和定理以及等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三.解答题(二)(本大题共3个小题,每小题7分,共21分)20.按下列程序计算,把答案写在表格内:(1)填写表格:输入n 3 ﹣2 ﹣3 …输出答案 1 1(2)请将题中计算程序用代数式表达出来,并给予化简.【考点】整式的除法.【分析】(1)根据计算程序把数据代入即可求出答案;(2)把n代入计算程序后列出代数式化简即可.【解答】解:(1)输入n 3 ﹣2 ﹣3 …输出答案 1 1 1 1…(2)(n2+n)÷n﹣n(n≠0)=﹣n=n+1﹣n=1.【点评】解决问题的关键是读懂题意,找到所求的量的等量关系,读表,明确计算程序是正确解答本题的前提.21.已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据CE=DE得出∠ECD=∠EDC,再利用平行线的性质进行证明即可;(2)根据SAS证明△AEC与△BED全等,再利用全等三角形的性质证明即可.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BE D;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.【点评】本题主要考查了全等三角形的判定以及全等三角形的性质,关键是根据SAS证明全等.22.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【考点】分式方程的应用.【专题】应用题.【分析】设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同,列方程求解.【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得: =,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,得到等量关系:动车行驶360km与特快列车行驶(360﹣135)km所用的时间相同.三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.先化简,再求值:,其中a=,b=.【考点】分式的化简求值;分母有理化.【专题】计算题.【分析】首先把除法运算转化成乘法运算,能因式分解的先因式分解,进行约分,然后进行减法运算,最后代值计算.【解答】解:原式=﹣=﹣==,当a=,b=时,原式==.【点评】本题的关键是正确进行分式的通分、约分,并准确代值计算.24.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,∠ACB的平分线交AD于点E,交AB 于点F,FG⊥BC于点G.求证:AE=FG.【考点】等腰三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】根据角平分线上的点到两边的距离相等可得:FG=FA;则只要在确定FA与AE的关系即可确定AE与FG之间的关系;在直角三角形AFC中∠AFC+∠ACF=90°,在直角三角形CDE中,∠DEC+∠ECD=90°,根据角平分线的性质可知:∠ACF=∠DCE,则∠AFC=∠DEC,又知∠AEF=∠DEC,则∠AFC=∠AEF,所以AE=FA,则AE=FG.【解答】证明:∵CF平分∠ACB,FA⊥AC,FG⊥BC∴FG=FA∵∠AFC+∠ACF=90°,∠DEC+∠ECD=90°,且∠ACF=∠ECD∴∠AFC=∠DEC∵∠AEF=∠DEC∴∠AFC=∠AE F∴AE=FA∴AE=FG.【点评】本题主要考查了等腰三角形的判定和性质,角平分线的性质;解题时利用了AF这个中间量进行了等量代换是解答本题的关键.25.如图,△ABC为等边三角形,AE=CD,AD交BE于点P,BQ⊥AD于Q.(1)求证:AD=BE;(2)设∠BPQ=α,那么α的大小是否随D、E的位置变化而变化?请说明理由;(3)若PQ=3,PE=1,求AD的长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)欲证明AD=BE,只要证明△ACD≌△BAE即可.(2)由α=∠ABE+∠BAP=∠CAD+∠BAP即可得出结论.(3)在RT△PBQ中,利用30度角的性质即可知道PB=2PQ,由此可以解决问题.【解答】(1)证明:∵△ABC为等边三角形,∴AC=AB,∠C=∠BAC=60°在△ACD和△BAE中,,∴△ACD≌△BAE,∴AD=BE.(2)解:不变.由(1)可知:△ACD≌△BAE,∴∠CAD=∠ABE,∵α=∠ABE+∠BAP=∠CAD+∠BAP=60°,(3)解:在△PBQ中,∠PBQ=90°﹣∠PBQ=30°,∴BP=2PQ=6,∴AD=BE=BP+PE=6+1=7.【点评】本题考查全等三角形的判定和性质、直角三角形30度角的性质等知识,解题的根据利用全等三角形的性质,属于中考常考题型.。
新课标-精品卷】2017-2018学年广东省深圳市八年级下学期期末数学试卷及答案

新课标-精品卷】2017-2018学年广东省深圳市八年级下学期期末数学试卷及答案2017-2018学年广东省深圳市八年级(下)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.不等式2x+1>x+2的解集是()A。
x>1B。
x<1C。
x≥1D。
x≤12.多项式2x^2-2y^2分解因式的结果是()A。
2(x+y)^2B。
2(x-y)^2C。
2(x+y)(x-y)D。
2(y+x)(y-x)3.下列图案中,不是中心对称图形的是()A。
B。
C。
D。
4.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A。
6cmB。
8cmC。
9cmD。
10cm5.要使分式有意义,那么x的取值范围是()A。
x≠3B。
x≠-3C。
x≠3且x≠-3D。
x≠-36.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A。
a<-1B。
a<0C。
a>-1D。
a>07.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A。
4B。
3C。
2D。
18.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上。
另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A。
3cmB。
6cmC。
2√3cmD。
3√3cm9.如图,在平行四边形ABCD中,XXX于E,AF⊥CD 于F,若AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为()A。
24B。
36C。
40D。
4810.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A。
x<mB。
x<3C。
x>mD。
x>311.已知a^2+b^2=6ab,则的值为()A。
2017-2018学年广东省东莞市八年级(下)期末数学试卷以及答案

2017-2018学年广东省东莞市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分) 1.(232x -x 的取值范围是( D )A .32x >B .32x <C .32x ≥D .32x ≤2.(2分)下列计算正确的是( C )A ()242-= B 523=C 5210=D 623=3.(2分)下列各组线段中,能构成直角三角形的是( B ) A .2cm ,3cm ,4cm B .1cm ,1cm 2cm C .5cm ,12cm ,14cmD 3cm 4cm 54.(2分)函数31y x =-的图象不经过( B )A .第一象限B .第二象限C .第三象限D .第四象限 5.(2分)一次数学测试中,小明所在小组的5个同学的成绩(单位:分)分别是:90、91、88、90、97,则这组数据的中位数是( B ) A .88 B .90 C .90.5D .916.(2分)如题6图,在平行四边形ABCD 中,∠A =40°,则∠C 大小为( A ) A .40° B .80° C .140° D .180°题6图 题7图 7.(2分)题7图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,下列结论不正确的是( C ) A .DE ∥BC B .BC =2DE C .DE =2BC D .∠ADE =∠B 8.(2分)对某小区20户家庭某月的节约用水情况进行分组统计,结果如下表: 节约用水量x (t )0.5≤x <1.51.5≤x <2.52.5≤x <3.53.5≤x <4.5户数6482由上表可知,这20户家庭该月节约用水量的平均数是( B ) A .1.8t B .2.3t C .2.5t D .3 t 9.(2分)边长为4的等边三角形的面积是( C ) A .4B .42C .43D 43310.(2分)某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是( B ) A . B . C . D .二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)将正比例函数2y x =-的图象向上平移3个单位,则平移后所得图象的解析式是 23y x =-+ .12.(3分)已知一组数据3、x 、4、5、6,若该组数据的众数是5,则x 的值是 5 . 13.(34055= 221 . 14.(3分)一直角三角形的两边长分别为5和12,则第三边的长是 13119或 . 15.(3分)如图,将矩形ABCD 沿直线BD 折叠,使C 点落在C ′处,BC ′交边AD 于点E ,若∠ADC ′=40°,则∠ABD 的度数是 65° . 三、解答题(一)(本大题共5小题,每小题5分,共25分) 16.(5分)计算:218364322286+36432433222343==⨯=解:原式17.(5分)下面是某公司16名员工每人所创的年利润(单位:万元) 5 3 3 5 5 10 8 5 3 5 5 8 3 5 8 5 (1)完成下列表格:每人所创年利润/万元10 853 人数13 84(2)这个公司平均每人所创年利润是多少?()()101+83+58+34432=16843.8⨯⨯⨯⨯=解:利润万元答:利润是万元18.(5分)如图,BD 是▱ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.90ABCD AB CD AB CD ABE CDF AE BD CF BD AEB CFD AE CF AEB CFD AEB CFD ABE CDF AB CD AEB CFD AAS AE CF AECF ∴∴∠∠⊥⊥∴∠∠︒∠=∠⎧⎪∠=∠⎨⎪=⎩∴∴∴证明:四边形是平行四边形,=,,=,,,==,,在和中≌(),=,四边形是平行四边形.‖‖19.(5分)如图,在四边形ABCD 中,AC ⊥CD ,若AB =4,BC =5,AD =41D =30°,求四边形ABCD 的面积.()2222222222222301412241411234541419011413••1022ABCD ABCACDACD AC CD AD D AC AD CD AD AC ABC AB BC AC AB BC AC ABC ABC S SSAB BC AC CD ⊥∠︒∴==∴=-=-+=+==∴+∴∠=︒∴=+=+=+四边形解:在中,,=,=,,=.在中,,,=,是直角三角形,且,20.(5分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨2.5元收费,如果超过20吨,未超过的部分按每吨2.5元收费,超过的部分按每吨3.3元收费. (1)若该城市某户6月份用水18吨,该户6月份水费是多少? (2)设某户某月用水量为x 吨(x >20),应缴水费为y 元,求y 关于x 的函数关系式.()()()()1 2.5184564522020 2.52033 3.316;203316x y x x x y x =⨯>=⨯+-⋅=-∴>=-解:水费=元答:该户月份水费是元;当时,当时,四、解答题(二)(本大题共5小题,每小题8分,共40分) 21.(86a -5a =.22632234545a a a a a =⋅⋅+⋅====⨯=解:原式当时,原式22.(8分)甲、乙两人参加操作技能培训,他们在培训期间参加的5次测试成绩(满分10分)记录如下:5次测试成绩(分)平均数 方差 甲 8 8 7 8 9 8 0.4 乙59710983.2(1)若从甲、乙两人中选派一人参加操作技能大赛,你认为应选谁?为什么?(2)如果乙再测试一次,成绩为8分,请计算乙6次测试成绩的方差(结果保留小数点后两位).()()()()()()()()()222222221880.4 3.2.5898982 3.255898988816=2.67666 2.67.S =<∴-+-++-=-+-++-+-∴=≈乙解:,选择甲参赛易知答:乙次测试成绩的方差大约为23.(8分)如图,一架5米长的梯子AB 斜靠在一面墙上,梯子底端B 到墙底的垂直距离BC 为3米.(1)求这个梯子的顶端A 到地面的距离AC 的值; (2)如果梯子的顶端A 沿墙AC 竖直下滑1米到点D 处,求梯子的底端B 在水平方向滑动了多少米?()()()()()()22222222222213544?24135354431Rt ABC AC CB AB AC AC m A AC m DC m DE m Rt DCE DC CE DE CE CE m BE CE CB m B +=+∴=-==+=+=∴=-=-=解:在中,由勾股定理得, 即=,=,答:这个梯子的顶端到地面的距离为;,,在中,由勾股定理得, 即=,答:梯子的底端在水平方向滑动1m 了.24.(8分)如图,已知直线y kx b =+交x 轴于点A ,交y 轴于点B ,直线24y x =-交x 轴于点D ,与直线AB 相交于点()3,2C .(1)根据图象,写出关于x 的不等式24x x b ->+的解集; (2)若点A 的坐标为()5,0,求直线AB 的解析式; (3)在(2)的条件下,求四边形BODC 的面积.()()()()()()()()1243250,3250132553055050525,00522,031552AOB ACDx x b x A C y kx b k b k k b b y x x y x y B y y x x A y y x x D DA BODC SS->+>=+⋅+==-⎧⎧⎨⎨⋅+==⎩⎩∴=-+==-+=∴==-+=∴==-+=∴∴=∴=-=⨯⨯解:根据图象可得不等式的解集为:;把点,,代入有,解得,解析式为:;把代入得,,,把代入得,,把代入得,,,四边形的面积1329.52-⨯⨯=.25.(8分)如图1,四边形ABCD 是正方形,点G 是BC 边上任意一点,DE ⊥AG 于点E ,BF ∥DE 且交AG 于点F . (1)求证:DE =AF ;(2)若AB =4,BG =3,求AF 的长;(3)如图2,连接DF 、CE ,判断线段DF 与CE 的位置关系并证明.()1909090902435435=22DE AG BF DE BF AG AED BFA ABCD AB AD BAD ADC BAF EAD EAD ADE BAF ADE AFB DEA AAS AF DE Rt ABG AB BG AG BF⊥∴⊥∴∠=∠=︒∴=∠=∠=︒∴∠+∠=︒∠+∠=︒∴∠=∠∴∴====⨯解:证明:,,,,四边形是正方形,且,,,,≌(),;()在中,,,根据勾股定理得,,根据等面积法,有 ‖()222.4;4 2.4 3.2;3.23;9090BF Rt ABF AF AF DF CE FAD ADE EDC ADE ADC FAD EDC AFB DEA AF DE ABCD AD CD FAD EDC FAD EDC SAS ADF DCE ==-=∴=⊥∠+∠=︒∠+∠=∠=︒∴∠=∠∴=∴=∴≅∴∠=∠ 解得 在中,理由如下:,,,≌,,又四边形是正方形,,在和中,(),,,9090ADF CDF ADC DCE CDF DF CE ∠+∠=∠=︒∴∠+∠=︒∴⊥,,.。
2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
2022年广东省惠州市惠城区XX中学八下期末数学试卷

2022年广东省惠州市惠城区XXX中学八下期末数学试卷1.(2022·惠州市惠城区·期末)下列二次根式为最简二次根式的是( )C.√0.2D.√7 A.√12B.√13的自变量x的取值范围是( )2.(2022·惠州市惠城区·期末)函数y=√11−xA.x>1B.x≠1C.x<1D.x≤13.(2022·惠州市惠城区·期末)为了从甲、乙两名选手中选拔一名参加射击比赛,现对他们进行一次测验,两个人在相同的条件下各射靶10次,为了比较两人的成绩,制作了如下统计表:平均数中位数方差命中10环的次数若想选拔一位成绩稳定的选手参赛,则表中几个数甲9.59.5 3.71乙9.59.6 5.42据应该重点关注的是( )A.中位数B.平均数C.方差D.命中10环的次数4.(2022·惠州市惠城区·期末)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A.√3,√4,√5B.2,3,4C.6,7,8D.9,12,155.(2022·惠州市惠城区·期末)如图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BC B.AB∥DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD=BC6.(2022·惠州市惠城区·期末)已知三角形两边长分别为2和9,第三边的长为二次方程x2−14x+48=0的一根,则这个三角形的周长为( )A.11B.17C.17或19D.197.(2022·惠州市惠城区·期末)已知一次函数y=(m−4)x+2m+1的图象不经过第三象限,则m的取值范围是( )A.m<4B.−12≤m<4C.−12≤m≤4D.m≤−128.(2022·惠州市惠城区·期末)下列命题错误的是( )A.正比例函数也是一次函数B.顺次连接四边形各边中点所得的四边形是平行四边形C.一组数据的平均数越大,则中位数越大D.矩形的对角线互相平分9.(2022·惠州市惠城区·期末)如图,在边长为2的菱形ABCD中,∠B=45∘,AE为BC边上的高,将△ABE沿AE所在直线翻折得△ABʹE,ABʹ与CD边交于点F,则BʹF的长度为( )A.1B.√2C.2−√2D.2√2−210.(2022·惠州市惠城区·期末)如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y 与点P经过的路径长x之间的函数关系用图象表示大致是( )A.B.C.D.11.(2022·惠州市惠城区·期末)已知函数y=2x+m−1是正比例函数,则m=.12.(2022·惠州市惠城区·期末)把直线y=−3x+4向下平移2个单位,得到的直线解析式是.13.(2022·惠州市惠城区·期末)菱形两条对角线的长分别为6和8,它的高为.14.(2022·惠州市惠城区·期末)已知关于x的方程mx2+2x−1=0有两个实数根,则m的取值范围.15.(2022·惠州市惠城区·期末)如图,在矩形ABCD中的AB边长为6,BC边长为9,E为BC上一点,且CE=2BE,将△ABE翻折得到△AFE,延长EF交AD边于点M,则线段DM 的长度为.16.(2022·惠州市惠城区·期末)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,⋯按如图所示的方式放置.点A1,A2,A3,⋯和点C1,C2,C3,⋯分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.17.(2022·惠州市惠城区·期末)计算:(√5−√2)(√5+√2)+(√3−1)2.18.(2022·惠州市惠城区·期末)如图,已知四边形ABCD中,AB⊥BC,AB=4cm,BC=3cm,CD=12cm,AD=13cm,则四边ABCD的面积是多少?19.(2022·惠州市惠城区·期末)在平行四边形ABCD中,AC的垂直平分线分别交AD,BC于F,E两点,交AC于O点,试判断四边形AECF的形状,并说明理由.20.(2022·惠州市惠城区·期末)某水果批发商场经销一种高档水果.如果每千克盈利10元,可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价5元,日销售量将减少100千克,现该商场要保证每天盈利6000元.同时又要使顾客得到实惠,那么每千克应涨价多少元?21.(2022·惠州市惠城区·期末)某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤,超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800斤,乙养殖场每天最多可调出900斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:到超市的路程(千米)运费(元/斤⋅千米)设从甲养殖场调运鸡蛋x斤,总运费为W 甲养殖场2000.012乙养殖场1400.015元.(1) 试写出W与x的函数关系式.(2) 怎样安排调运方案才能使每天的总运费最省?22.(2022·惠州市惠城区·期末)在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:册数01234人数31316171(1) 求这50本样本数据的平均数、众数和中位数.(2) 根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.23.(2022·惠州市惠城区·期末)如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=√2CE.24.(2022·惠州市惠城区·期末)如图,已知矩形ABOC,顶点B,C分别在x轴的负半轴和y轴x+b的图象分别交边AB,OC于D,E,交x轴于F,的正半轴上,A(−4,6),一次函数y=12且AD=OE.(1) 求b的值.(2) 若点P(x,y)是线段EF上一点,且△PBO的面积为S,求出S与x的函数关系式,并写出自变量x的取值范围.(3) 在(2)中若△PEO与△PBO的面积的比为1:2,求P点坐标.25.(2022·惠州市惠城区·期末)平面直角坐标系中,坐标A(0,8),B(21,8),C(15,0),点P从点O出发,以每秒1个单位的速度向x轴正方向运动,同时点Q从点B出发,在线段AB上匀速向A点方向运动.(1) 当Q以每秒1个单位的速度运动,使PQ∥BC时,需经过几秒?(2) 当Q以每秒3个单位的速度运动,使PQ=BC时,需经过几秒?(3) 当以P,C,B,Q为顶点的四边形有机会能成为菱形时,点Q的速度是每秒多少单位,请直接写出结果.答案1. 【答案】D【知识点】最简二次根式2. 【答案】C【解析】由题意得:1−x >0,x <1.【知识点】分式与二次根式综合型自变量的取值范围3. 【答案】C【解析】方差能够体现岀数据的稳定性,符合题中成绩稳定要求.【知识点】方差4. 【答案】D【知识点】勾股逆定理5. 【答案】B【知识点】对角线互相平分、两组对边分别相等6. 【答案】D【解析】解方程 x 2−14x +48=0,∵(x −6)(x −8)=0,∴x 1=6,x 2=8,若第三边长为 6,则三角形三边长分别为 2,6,9,2+6<9,不符合两边之和大于第三边,舍;若第三边长为 8,则三角形三边长分别为 2,8,9,2+8>9,满足两边之和大于第三边,满足题意,则周长为:19.【知识点】三角形的三边关系、因式分解法7. 【答案】B【解析】根据题意得:{m −4<0,2m +1≥0,解得 −12≤m <4.故选B .【知识点】k,b 对一次函数图象及性质的影响8. 【答案】C【解析】平均数与中位数没有相互影响的关系,故错误.【知识点】中位数9. 【答案】C【解析】∵在边长为2的菱形ABCD中,∠B=45∘,AE为BC边上的高,∴AE=√2,由折叠易得△ABBʹ为等腰直角三角形,∴S△ABBʹ=12BA⋅AB=2,S△ABE=1,∴CBʹ=2BE−BC=2√2−2,∵AB∥CD,∴∠FCBʹ=∠B=45∘,又由折叠的性质知,∠Bʹ=∠B=45∘,∴CF=FBʹ=2−√2.【知识点】折叠问题、菱形的性质10. 【答案】A【解析】∵在矩形ABCD中,AB=2,AD=3,∴CD=AB=2,BC=AD=3,∵点E是BC边上靠近点B的三等分点,∴CE=23×3=2,①点P在AD上时,△APE的面积y=12x⋅2=x(0≤x≤3),②点P在CD上时,S△APE=S梯形AECD−S△ADP−S△CEP=12(2+3)×2−12×3×(x−3)−12×2×(3+2−x)=5−32x+92−5+x=−12x+92,∴y=−12x+92(3<x≤5),③点P在CE上时,S△APE=12×(3+2+2−x)×2=−x+7,∴y=−x+7(5<x≤7).【知识点】图像法11. 【答案】1【解析】∵y=2x+m−1是正比例函数,∴m−1=0,即m=1.【知识点】正比例函数的定义12. 【答案】y=−3x+2【解析】把直线y=−3x+4向下平移2个单位,得到y=−3x+4−2=−3x+2.【知识点】一次函数的图象变换13. 【答案】245【解析】由题意知AC=6,BD=8,则菱形的面积S=12×6×8=24,∵菱形对角线互相垂直平分,∴△AOB为直角三角形,AO=3,BO=4,∴AB=√AO2+BO2=5,∴菱形的高ℎ=SAB =245.故答案为:245.【知识点】菱形的性质14. 【答案】m≥−1且m≠0【解析】∵a=m,b=2,c=−1,∴Δ=b2−4ac=22−4m×(−1)=4m+4≥0,解得:m≥−1;且m≠0.【知识点】一元二次方程根的判别式15. 【答案】32【解析】过M作MN⊥BC于N,则四边形CDMN是矩形,∴MN=CD=AB=6,设DM=x,∴CN=DM=x,AM=9−x,∵CE=2BE,∴BE=3,CE=6,∴EN=6−x,∵将△ABE翻折得到△AFE,∴AF=AB=MN,∠AFE=∠B=∠AFM=∠MNE=90∘,∵∠AMF+∠EMN=∠EMN+∠MEN=90∘,∴∠AMF=∠MEN,在 △AMF 与 △MNE 中,{∠AFM =∠MNE,∠AMF =∠MEN,AF =MN.∴△AMF ≌△MNE ,∴AM =EM =9−x ,∵EM 2=EN 2+MN 2,∴(9−x )2=(6−x )2+62,∴x =32,∴DM =32.【知识点】折叠问题、矩形的性质16. 【答案】 (2n −1,2n−1)【解析】 ∵B 1 的坐标为 (1,1),点 B 2 的坐标为 (3,2),∴ 正方形 A 1B 1C 1O 1 边长为 1,正方形 A 2B 2C 2C 1 边长为 2,∴A 1 的坐标是 (0,1),A 2 的坐标是:(1,2),代入 y =kx +b 得 {b =1,k +b =2, 解得:{b =1,k =1,则直线的解析式是:y =x +1,∵A 1B 1=1,点 B 2 的坐标为 (3,2),∴A 1 的纵坐标是:1=20,A 1 的横坐标是:0=20−1,∴A 2 的纵坐标是:1+1=21,A 2 的横坐标是:1=21−1,∴A 3 的纵坐标是:2+2=4=22,A 3 的横坐标是:1+2=3=22−1,∴A 4 的纵坐标是:4+4=8=23,A 4 的横坐标是:1+2+4=7=23−1,据此可以得到 A n 的纵坐标是:2n−1,横坐标是:2n−1−1.∵ 点 B 1 的坐标为 (1,1),点 B 2 的坐标为 (3,2),∴ 点 B 3 的坐标为 (7,4),∴B n 的横坐标是:2n −1,纵坐标是:2n−1.则 B n 的坐标是 (2n −1,2n−1).【知识点】一次函数的解析式、正方形的性质17. 【答案】(√5+√2)(√5−√2)+(√3−1)2 =(√5)2−(√2)2+(√3)2−2√3+1 =5−2+3−2√3+1=7−2√3.【知识点】二次根式的混合运算18. 【答案】连接AC,如图所示:∵AB⊥BC,∴∠B=90∘,∴△ABC为直角三角形,又∵AB=4cm,BC=3cm,∴根据勾股定理得:AC=√AB2+BC2=5cm,又∵AD=13cm,CD=12cm,∴AD2=132=169,CD2+AC2=122+52=144+25=169,CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90∘,则S四边形ABCD=S△ABC+S△ACD=12AB⋅BC+12AC⋅CD=12×3×4+12×12×5=36(cm2).故四边形ABCD的面积是36cm2.【知识点】勾股逆定理、勾股定理19. 【答案】四边形AECF是菱形,理由如下:因为四边形ABCD是平行四边形,所以AD∥BC,所以AO:CO=OF:OE,因为AO=OC,所以OE=OF,所以四边形AECF是平行四边形,因为EF⊥AC,所以平行四边形AECF是菱形.【知识点】对角线互相垂直的平行四边形20. 【答案】设每千克应涨价x元,由题意列方程得:(10+x)(500−20x)=6000.整理,得x2−15x+50=0.解这个方程,得x1=5,x2=10.要使顾客得到实惠,应取x=5,答:每千克应涨价5元.【知识点】销售问题21. 【答案】(1) 从甲养殖场调运了 x 斤鸡蛋,从乙养殖场调运了 (1200−x ) 斤鸡蛋,根据题意得:{x ≤800,1200−x ≤900.解得:300≤x ≤800.总运费 W =200×0.012x +140×0.015×(1200−x )=0.3x +2520(300≤x ≤800).(2) ∵W 随 x 的增大而增大,∴ 当 x =300 时,W min =2610 元,∴ 每天从甲养殖场调运了 300 斤鸡蛋,从乙养殖场调运了 900 斤鸡蛋,每天的总运费最省.【知识点】方案问题22. 【答案】(1) 平均数 =1×13+2×16+3×17+450=2.众数为 3,中位数为 2.(2) 300×17+150=108(人).【知识点】用样本估算总体、算术平均数、中位数23. 【答案】(1) ∵ 四边形 ABCD 是正方形,∴∠BCG =∠DCB =∠DCF =90∘,BC =DC ,∵BE ⊥DF ,∴∠CBG +∠F =∠CDF +∠F ,∴∠CBG =∠CDF ,在 △CBG 和 △CDF 中,{∠BCG =∠DCF =90∘,BC =CD,∠CBG =∠CDF,∴△CBG ≌△CDF (ASA ),∴BG =DF =4,∴ 在 Rt △BCG 中,CG 2+BC 2=BG 2,∴CG =√42−32=√7.(2) 如图,过点 C 作 CM ⊥CE 交 BE 于点 M ,∵△CBG ≌△CDF ,∴CG =CF ,∠F =∠CGB ,∵∠MCG +∠DCE =∠ECF +∠DCE =90∘,∴∠MCG =∠ECF ,在 △MCG 和 △ECF 中,{∠MCG=∠ECF, CG=CF,∠F=∠CGB,∴△MCG≌△ECF(ASA),∴MG=EF,CM=CE,∴△CME是等腰直角三角形,∴ME=√2CE,又∵ME=MG+EG=EF+EG,∴EF+EG=√2CE.【知识点】正方形的性质、勾股定理、角边角24. 【答案】(1) 方法一:如图,连接OA交EF于R,∵四边形ABOC是矩形,∴AB∥OC,∴∠DAR=∠EOR,∵AD=OE,∠ARD=∠ORE,∴△ADR≌△OER,∴AR=OR,∵A(−4,6),∴R(−2,3),把R(−2,3)代入y=12x+b,得到:3=−1+b,∴b=4.(2) 如图,∵直线EF的解析式为y=12x+4,∴E(0,4),F(−8,0),设P(x,12x+4),∴S=12×4×(12x+4)=x+8(−8<x≤0).(3) ∵△PEO与△PBO的面积的比为1:2,∴12×4×(−x):(x+8)=1:2,解得x=−85,∴P(−85,165).【解析】(1) 方法二:D(−4,y D),E(0,y E)在y=12x+b上,即y D=12×(−4)+b=b−2,y E=b,∴BD=y D=b−2,DE=y E=b.∵AD=DE,∴BD+DE=BD+AD=AB,即b−2+b=6,∴b=4.【知识点】解析式法、一次函数与一元一次方程的关系、矩形的性质、坐标平面内图形的面积、一次函数图像上点的坐标特征25. 【答案】(1) 设点Q运动的时间为x秒,由题意得:OP=x,PC=15−x,BQ=x,如图1,因为A(0,8),B(21,8),所以AB∥z轴,因为当PQ∥BC时,四边形QPCB是平行四边形,所以BQ=PC,即15−x=x,x=152,答:使PQ∥BC时,需经过152秒.(2) 由题意得:PC=15−x,BQ=3x,因为BQ∥PC,所以使PQ=BC时,存在两种情况:①当PC=BQ时,四边形QPCB是平行四边形,如图1,有PQ=BC,得:15−x=3x,x=154.②过Q作QE⊥x轴于E,过B作BF⊥x轴于F,如图2,因为AB∥PC,所以QE=BF,因为PQ=BC,所以Rt△QEP≌Rt△BFC(HL),所以EP=CF=21−15=6,因为AQ=21−3x,OE=OP−EP=x−6,因为AQ=OE,所以21−3x=x−6,x=274.答:使PQ=BC时,需经过154秒或274秒.(3) 2 或514【解析】 (3) 设点 Q 的速度为每秒 v 个单位,当以 P ,C ,B ,Q 为顶点的四边形有机会能成为菱形时,存在两种情况:①如图 3,点 P 在 C 的左侧时,由勾股定理得:BC =√82+62=10,因为四边形 QPCB 是菱形,所以 BQ =BC =PC ,所以 15−x =10=vx ,所以 x =5,v =2;②当点 P 在 C 的右侧时,如图 4,过 B 作 BF ⊥PC 于 F ,因为四边形 QCPB 是菱形,所以 BQ =BP =PC ,所以 vx =√82+(x −21)2=x −15,所以 x =703,v =514 综上所述,点 Q 的速度是每秒 2 或 514 个单位.【知识点】平行四边形及其性质、菱形的性质、性质与判定综合(D)。
人教版八年级数学下册期末测试题 (24)

江西省南昌市2017-2018学年八年级(下)期末数学试卷(解析版)一、选择题(共8小题,每小题3分,满分24分)1.若+3=x,则x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥32.在△ABC中,AB=2,BC=,AC=,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形3.在▱ABCD中,∠B=60°,则下列各式中,不能成立的是()A.∠D=60° B.∠C+∠D=180°C.∠A=120°D.∠C+∠A=180°4.如图,在菱形ABCD中,BE⊥AD于E,BF⊥CD于F,且AE=DE,则∠EBF的度数是()A.75°B.60°C.50°D.45°5.函数y=﹣2x+5(1≤x≤2)的图象是()A.直线B.射线C.线段D.曲线6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(﹣2,﹣3),(4,﹣6)B.(﹣2,3),(4,6) C.(2,﹣3),(﹣4,6)D.(2,3),(﹣4,6)7.某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为()A.12 B.13 C.14 D.158.甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.44,S乙2=18.8,S丙2=25,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选()A.甲队B.乙队C.丙队D.哪一个都可以二、填空题(共6小题,每小题3分,满分18分)9.若是一个整数,则x可取的最小正整数是.10.一次函数y=mx+|m﹣1|的图象过点(0,2)且y随x的增大而减小,则m= .11.如图,在矩形ABCD中,AD=2AB,E是AD上一点,且BE=BC,则∠ECD的度数是.12.若直线y=2x﹣4与x轴交于点A,与y轴交于点B,则△AOB的面积是.13.若一组数据2,4,x,﹣1极差为7,则x的值可以是.14.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.三、解答题(共4小题,满分24分)15.计算:(2﹣)(2+)+(﹣1)2011(﹣π)0﹣()﹣1.16.一组数据2,3,4,x中,若中位数与平均数相同,求x的值.17.已知y=(k﹣1)x|k|﹣k是一次函数.(1)求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.18.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.四、解答题(共24分)19.电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?20.(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为A.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.21.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩85 92 84 90 84 80/分面试成绩90 88 86 90 80 85/分根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.五、综合题(10分)22.如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.若+3=x,则x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥3【分析】已知等式变形后,利用二次根式性质确定出x的范围即可.【解答】解:已知等式整理得: =|x﹣3|=x﹣3,∴x﹣3≥0,解得:x≥3,故选D【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.2.在△ABC中,AB=2,BC=,AC=,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据勾股定理的逆定理即可判断.【解答】解:∵AB2+BC2=22+()2=7,AC2=()2=7,∴AB2+BC2=AC2,∴△ABC是直角三角形.故选B.【点评】本题考查勾股定理的逆定理.解题的关键是掌握利用勾股定理的逆定理的解题步骤,属于中考常考题型.3.在▱ABCD中,∠B=60°,则下列各式中,不能成立的是()A.∠D=60° B.∠C+∠D=180°C.∠A=120°D.∠C+∠A=180°【分析】由于平行四边形中相邻内角互补,对角相等,而∠A和∠C是对角,而它们和∠B是邻角,∠D和∠B 是对角,由此可以分别求出它们的度数,然后可以判断了.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AD∥BC,∴∠C+∠D=180°,∵∠B=60°,∴∠A=∠C=120°,∠D=60°.∴选项A、B、C正确,选项D错误.故选D.【点评】本题主要考查了平行四边形的性质;熟记平行四边形的对角相等,邻角互补是解决问题的关键.4.如图,在菱形ABCD中,BE⊥AD于E,BF⊥CD于F,且AE=DE,则∠EBF的度数是()A.75°B.60°C.50°D.45°【分析】连结BD,如图,先利用线段垂直平分线的性质得到BA=BD,再根据菱形的性质得AB=AD,AB∥CD,则可判断△ABD为等边三角形得到∠A=60°,再计算出∠ADC=120°,然后利用四边形内角和可计算出∠EBF的度数.【解答】解:连结BD,如图,∵BE⊥AD,AE=DE,∴BA=BD,∵四边形ABCD为菱形,∴AB=AD,AB∥CD,∴AB=AD=BD,∴△ABD为等边三角形,∴∠A=60°,∵AB∥CD,∴∠ADC=120°,∵BF⊥CD,∴∠EBF=360°﹣120°﹣90°﹣90°=60°.故选B.【点评】本题考查了菱形的性质:有一组邻边相等的平行四边形叫做菱形.熟练掌握菱形的性质(菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角).解决此题的关键是判断△ABD为等边三角形.5.函数y=﹣2x+5(1≤x≤2)的图象是()A.直线B.射线C.线段D.曲线【分析】由于一次函数y=﹣2x+5为直线,但当1≤x≤2时,函数y=﹣2x+5(1≤x≤2)的图象应该为线段.【解答】解:当x=1时,y=﹣2x+5=3;当x=2时,y=﹣2x+5=1,所以当1≤x≤2时,1≤y≤3,所以函数y=﹣2x+5(1≤x≤2)的图象是一条线段.故选C.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.6.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(﹣2,﹣3),(4,﹣6)B.(﹣2,3),(4,6) C.(2,﹣3),(﹣4,6)D.(2,3),(﹣4,6)【分析】由于正比例函数图象上点的纵坐标和横坐标的比相同,找到比值相同的一组数即可.【解答】解:A、∵≠,∴两点不在同一个正比例函数图象上,故本选项错误;B、∵≠,∴两点不在同一个正比例函数图象上,故本选项错误;C、∵=,∴两点在同一个正比例函数图象上,故本选项正确;D、∵≠,∴两点不在同一个正比例函数图象上,故本选项错误.故选C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.某校乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为()A.12 B.13 C.14 D.15【分析】由于众数是一组实际中出现次数最多的数据,由此可以确定这组数据的众数.【解答】解:依题意得13在这组数据中出现四次,次数最多,∴他们年龄的众数为13.故选B.【点评】此题考查了众数的定义,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.8.甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.44,S乙2=18.8,S丙2=25,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选()A.甲队B.乙队C.丙队D.哪一个都可以【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=1.44,S乙2=18.8,S丙2=25,∴S甲2最小,∴他应选甲队;故选A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题(共6小题,每小题3分,满分18分)9.若是一个整数,则x可取的最小正整数是 3 .【分析】由于=2,则当x为3的完全平方数倍时,2为整数,于是可判断x可取的最小正整数为3.【解答】解: ==2,因为2为整数,而x为整数,所以x可取的最小正整数为3.故答案为3.【点评】本题考查了二次根式的性质与化简:利用使用=|a|化简二次根式.10.一次函数y=mx+|m﹣1|的图象过点(0,2)且y随x的增大而减小,则m= ﹣1 .【分析】首先根据一次函数与y轴的交点坐标为(0,b)可得|m﹣1|=2,解出m的值,再根据y随x的增大而减小可得m<0,进而即可确定出m的值.【解答】解:∵一次函数y=mx+|m﹣1|的图象过点(0,2),∴|m﹣1|=2,解得:m=3或﹣1,∵y随x的增大而减小,∴m<0,∴m=﹣1,故答案为:﹣1.【点评】此题主要考查了一次函数的性质,关键是掌握一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.y=kx+b与y轴交于(0,b).11.如图,在矩形ABCD中,AD=2AB,E是AD上一点,且BE=BC,则∠ECD的度数是15°.【分析】根据矩形性质得出∠D=∠ABC=90°,AD=BC,DC∥AB,根据AE=2AD,得出∠DEA=30°=∠EAB,求出∠EBA的度数,即可求出答案.【解答】解:∵四边形ABCD是矩形,∴∠D=∠ABC=90°,AD=BC,DC∥AB,∵AB=2AD,∴∠DEA=30°,∵DC∥AB,∴∠DEA=∠EAB=30°,∵AE=AB,∴∠ABE=∠AEB=(180°﹣∠EAB)=75°,∵∠ABC=90°,∴∠EBC=90°﹣75°=15°,故答案为:15°.【点评】本题考查了矩形性质,三角形的内角和定理,平行线性质,等腰三角形的性质,含30度角的直角三角形性质的应用,解此题的关键是求出∠ABC和∠EBA的度数,题目比较好,是一道综合性比较强的题目.12.若直线y=2x﹣4与x轴交于点A,与y轴交于点B,则△AOB的面积是 4 .【分析】由直线解析式可先求得A、B的坐标,从而可求得OA、OB,再利用三角形的面积公式可求得答案.【解答】解:在直线y=2x﹣4中,令y=0可得x=2,令x=0可得y=﹣4,∴A(2,0),B(0,﹣4),∴OA=2,OB=4,∴S△AOB=OAOB=×2×4=4,故答案为:4.【点评】本题主要考查一次函数与坐标轴的交点,掌握直线与坐标轴的交点坐标的求法是解题的关键.13.若一组数据2,4,x,﹣1极差为7,则x的值可以是﹣3或6 .【分析】分两种情况讨论,①x为最小数,②x为最大数,再由极差的定义,可得出x的值.【解答】解:①若x为这组数据的最小数,则4﹣x=7,解得:x=﹣3;②若x为这组数据的最大数,则x﹣(﹣1)=7,解得:x=6;故答案为:﹣3或6;【点评】本题考查了极差的知识,属于基础题,掌握极差的定义是解题的关键,注意分类讨论,不要漏解.14.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为2或2或2 .【分析】利用分类讨论,当∠APB=90°时,易得∠PAB=30°,利用锐角三角函数得AP的长;当∠ABP=90°时,分两种情况讨论,情况一:如图2易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半得出结论.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=4,∴AP=ABsin60°=4×=2;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===2,在直角三角形ABP中,AP==2,情况二:如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=2,故答案为:2或2或2.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.三、解答题(共4小题,满分24分)15.计算:(2﹣)(2+)+(﹣1)2011(﹣π)0﹣()﹣1.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=4﹣3+(﹣1)×1﹣2,然后进行乘法运算后合并即可.【解答】解:原式=4﹣3+(﹣1)×1﹣2=4﹣3﹣1﹣2=﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.16.一组数据2,3,4,x中,若中位数与平均数相同,求x的值.【分析】先分三种情况讨论,当x≤2时,2<x<4时,x≥4时,再根据中位数与平均数相同,列出算式,求出x的值即可得出答案.【解答】解:当x≤2时,有=,解得x=1.当2<x<4时,有=,解得x=3.当x≥4时, =,解得x=5.则x的值为1或3或5.【点评】本题考查了平均数和中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.17.已知y=(k﹣1)x|k|﹣k是一次函数.(1)求k的值;(2)若点(2,a)在这个一次函数的图象上,求a的值.【分析】(1)由一次函数的定义可知:k﹣1≠0且|k|=1,从而可求得k的值;(2)将点的坐标代入函数的解析式,从而可求得a的值.【解答】解:(1)∵y是一次函数,∴|k|=1,解得k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.(2)将k=﹣1代入得一次函数的解析式为y=﹣2x+1.∵(2,a)在y=﹣2x+1图象上,∴a=﹣4+1=﹣3.【点评】本题主要考查的是一次函数的定义,依据一次函数的定义求得k的值是解题的关键.18.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.【分析】(1)根据菱形的四条边都相等,又∠A=60°,得到△ABD是等边三角形,∠ABD是60°;(2)先求出OB的长和∠BOE的度数,再根据30°角所对的直角边等于斜边的一半即可求出.【解答】解:(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(4分)(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2(6分),又∵OE⊥AB,及∠ABD=60°,∴∠BOE=30°,∴BE=1.19.电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?【分析】(1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.(2)根据(1)的函数解析式以及图标即可解答即可.【解答】解:(1)当0≤x≤100时,设y=kx,则有65=100k,解得k=0.65.∴y=0.65x.当x>100时,设y=ax+b,则有,解得∴y=0.8x﹣15.(2)当用户用电80度时,该月应缴电费0.65×80=52(元).当用户缴费105元时,由105=0.8x﹣15,解得x=150.∴该用户该月用电150度.【点评】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力.20.(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为 CA.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.【分析】(1)根据矩形的判定,可得答案;(2)①根据菱形的判定,可得答案;②根据勾股定理,可得答案.【解答】解:(1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为矩形,故选:C;(2)①证明:∵纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,∴AE=3.如图2:,∵△AEF,将它平移至△DE′F′,∴AF∥DF′,AF=DF′,∴四边形AFF′D是平行四边形.在Rt△AEF中,由勾股定理,得AF===5,∴AF=AD=5,∴四边形AFF′D是菱形;②连接AF′,DF,如图3:在Rt△DE′F中E′F=FF′﹣E′F′=5﹣4=1,DE′=3,∴DF===,在Rt△AEF′中EF′=EF+FF′=4+5=9,AE=3,∴AF′===3.【点评】本题考查了图形的剪拼,利用了矩形的判定,菱形的判定,勾股定理.21.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:序号1 2 3 4 5 6项目笔试成绩85 92 84 90 84 80/分面试成绩90 88 86 90 80 85/分根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是84.5 分,众数是84 分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.【分析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【解答】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5分,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:,解得:,笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.【点评】此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.五、综合题(10分)22.如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由;(3)如图③,当点E在直线l的下方时,请直接写出三条线段DD1、EE1、AB之间的数量关系.由四边形CADF、CBEG是正方形,可得AD=CA,∠DAC=∠ABC=90°,又由同角的余角相等,求得∠ADD1=∠CAB,然后利用AAS证得△ADD1≌△CAB,根据全等三角形的对应边相等,即可得DD1=AB;(2)首先过点C作CH⊥AB于H,由DD1⊥AB,可得∠DD1A=∠CHA=90°,由四边形CADF是正方形,可得AD=CA,又由同角的余角相等,求得∠ADD1=∠CAH,然后利用AAS证得△ADD1≌△CAH,根据全等三角形的对应边相等,即可得DD1=AH,同理EE1=BH,则可得AB=DD1+EE1.(3)证明方法同(2),易得AB=DD1﹣EE1.【解答】(1)证明:∵四边形CADF、CBEG是正方形,∴AD=CA,∠DAC=∠ABC=90°,∴∠DAD1+∠CAB=90°,∵DD1⊥AB,∴∠DD1A=∠ABC=90°,∴∠DAD1+∠ADD1=90°,∴∠ADD1=∠CAB,在△ADD1和△CAB中,,∴△ADD1≌△CAB(AAS),∴DD1=AB;(2)解:AB=DD1+EE1.证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,在△ADD1和△CAH中,,∴△ADD1≌△CAH(AAS),∴DD1=AH;同理:EE1=BH,∴AB=AH+BH=DD1+EE1;(3)解:AB=DD1﹣EE1.证明:过点C作CH⊥AB于H,∵DD1⊥AB,∴∠DD1A=∠CHA=90°,∴∠DAD1+∠ADD1=90°,∵四边形CADF是正方形,∴AD=CA,∠DAC=90°,∴∠DAD1+∠CAH=90°,∴∠ADD1=∠CAH,在△ADD1和△CAH中,,∴△ADD1≌△CAH(AAS),∴DD1=AH;同理:EE1=BH,∴AB=AH﹣BH=DD1﹣EE1.【点评】此题考查了正方形的性质与全等三角形的判定与性质.此题难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图 8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题 9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为14,且使关于x的不等式组⎩⎨⎧x+2≤a,1-x≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6题 广东省惠州市惠城区2017-2018学年八年级数学下学期期末试题(考试时间:100分钟 满分:120分)一.选择题(本题10小题,每题3分,共30分) 1.下列二次根式是最简二次根式的是( )A. 31B. 24C. 2D. 42.若式子在实数范围内有意义,则x 的取值范围是( )A .x≥ B .x> C .x≥ D .x>3.小勇投标训练4次的成绩分别是(单位:环)9,9,x ,8.已知这组数据的众数和平均数相等,则这组数据中x 是( )A .7B .8C .9D .10 4.在□ABCD 中,点P 在对角线AC 上,过P 作EF ∥AB ,HG ∥AD ,记四边形BFPH 的面积为S 1,四边形DEPG 的面积为S 2,则S 1与S 2的大小关系是( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D . 无法判断第4题5.如下图,四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能..判定这个四边形是平行四边形的是( )A. AB ∥DC ,AD ∥BCB. AB =DC ,AD =BCC. AO =CO ,BO =DOD. AB ∥DC ,AD =BC6.如图,函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式2x <ax +4的解集为( ) A .x< B .x <3C .x>D .x >37.已知正比例函数)0(≠=k kx y 的函数值y 随x 的增大而增大,则一次函数k x y +=的图象大致是( )A. B. C. D.8.样本方差的计算公式()()()22221230120202030S x x x ⎡⎤=-+-++-⎣⎦中,数字30和20分别表示样本的( )A 、众数、中位数B 、方差、标准差C 、数据的个数、中位数D 、数据的个数、平均数9.如图,正方形面积是( )A .16B .8C .4D .2B AAA 第5题10.如图,有一块Rt△ABC 的纸片,∠ABC =90︒,AB =6,BC =8,将△ABC 沿AD 折叠,使点B落在AC 上的E 处,连接ED ,则BD 的长为( ) A .3 B .4 C .5 D .6.第9题 第10题二、填空题(本题6小题,每题4分,共24分)11.计算:()()=___________12.如图,A 、B 两点被池塘隔开,在AB 外选一点C ,连接AC 、BC ,取AC 、BC 的中点D 、E ,量出DE =20米,则AB 的长为___________.米13.某大学自主招生考试只考数学和物理,按数学占60%,物理占40%的权重计算综合得分.已知孔闽数学得分为95分,综合得分 为93分,那么孔闽物理得分是_________分 14.将直线32-=x y 平移,使之经过点(1,4),则平移后的直线解析式是__________ 15.菱形ABCD 的边AB 为5 cm ,对角线AC 为8 cm ,则菱形ABCD 的面积为 cm 2 16.顺次连接矩形ABCD 各边中点,所得四边形形状必定是__________第12题 第15题三.解答题(本题3小题,每题6分,共18分) 17.计算:2)153()347)(347(---+18.如图,已知四边形ABCD 中,AB ⊥BC ,AB =1 cm ,BC =2 cm ,CD =2 cm ,AD =3 cm ,求四边形ABCD 的面积.19.图(a )、图(b )、图(c )是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a )、图(b )、图(c )中,分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合. (1)画一个底边为4,面积为8的等腰三角形;(2)画一个面积为10的等腰直角三角形; (3)画一个面积为12的平行四边形.四.解答题(本题3小题,每题7分,共21分) 20.已知y +2与3x 成正比例,当x =1时,y 的值为4.⑴ 求y 与x 之间的函数关系式;⑵ 若点(-1,a ),(2,b )是该函数图象上的两点,请利用一次函数的性质比较a 、b 的大小.21.如图,已知在四边形ABCD 中,AE ⊥BD 于E ,CF ⊥BD 于F ,AE =CF ,BF =DE . 求证:四边形ABCD 是平行四边形.22.在开展“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:⑴ 求这50个样本数据的平均数、众数和中位数:⑵ 根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数五.解答题(本题3小题,每题9分,共27分) 23.如图,点A (1,0),点B 在y 轴正半轴上,直线AB 与直线l :y =362x 相交于点C ,直线l 与x 轴交于点D ,AB ⑴ 求点D 坐标;⑵ 求直线AB 的函数解析式;⑶求△ADC的面积.24.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,过点A作直线AE交DO并延长到点E,使∠EAB=∠C,连接BE.⑴求证:BC∥AE⑵求证:四边形AEBD是矩形;⑶当△ABC满足什么条件时,四边形AEBD是正方形,并说明理由.25.如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒2cm的速度沿线段AB向点B方向运动,点Q从点D出发,以每秒3cm的速度沿线段DC向点C运动,已知动点P、Q同时出发,点P到达B点或点Q到达C点时,P、Q运动停止,设运动时间为t (秒).⑴求CD的长;⑵当四边形PBQD为平行四边形时,求t的值;⑶在点P、点Q的运动过程中,是否存在某一时刻,使得PQ⊥AB?若存在,请求出t的值并说明理由;若不存在,请说明理惠城区2017-2018第二学期期末质量检测八年级数学评分标准一.选择题(本题10小题,每题3分,共30分)二.填空题(本题6小题,每题4分,共24分)11 .3; 12.40; 13.90; 14.y =2x +2; 15.24; 16. 菱形 三.解答题(本题3小题,每题6分,共18分)17.解:原式=49-48-(45-65+1) 4分=65-45 6分18.解:连接AC∵ AB ⊥BC AB =1 BC =2∴ AC =22BC AB + =2221+=5 2分∵ CD =2 AD =3∴ CD 2+AC 2=22+(5)2=9=AD 24分∴AC ⊥CDS ABCD 四边形=21×2×1+21×2×5=1+5 6分19.每小题2分四.解答题(本题3小题,每题7分,共21分)20.解:(1)由y +2 与3x 成正比例得y +2=k (3x ) 2分即y =3kx -2∵ x =1时y =4 ∴ 3k -2=4∴ k =2 4分 ∴ y =6x -2 5分(2) ∵ 6﹥0∴y 随x 增大而增大 6分∵-1<2∴a <b 7分21.解: ∵AE ⊥BD CF ⊥BD AE =CF BF =DE∴⊿AED ≌⊿CFD 4分∴AD =CB∠ADE =∠CBF∴AD ∥BC 6分 ∴ 四边形ABCD 是平行四边形 7分22.解:(1)平均数x =2 2分 众数是3 ;中位数是2 4分 (2)读书多于2册的人数为:50117+×300=108 (人) 7分五.解答题(本题3小题,每题9分,共27分) 23. 解:(1)当y =0时,3602x -=,得x =4, ∴ 点D 坐标为(4,0). 1分 (2)在△AOB 中,∠AOB=90°∴ OB3==,∴ B 坐标为(0,3),∴ 直线AB 经过(1,0),(0,3), 设直线AB 解析式s=kt+b ,∴ 03k b b +=⎧⎨=⎩ 解得 33k b =-⎧⎨=⎩,∴ 直线AB 解析式为s=﹣3x +3. 5分(3)如图,由33362y x y x =-+⎧⎪⎨=-⎪⎩ 得 23x y =⎧⎨=-⎩ ∴ 点C 坐标为(2,-3)作CM ⊥x 轴,垂足为M ,则点M 坐标为(2,0) ∴ CM=0 -(-3)=3AD=4-1=3.∴ S △ABC =11933222AD CM ⨯=⨯⨯=9分24.⑴ 证明:如图,在△ABC 中,∵ AB =AC ,∴ ∠CBA =∠C又 ∠EAB =∠C ∴ ∠EAB =∠CBA ∴ BC ∥AE⑵ 证明:∵点O 为AB 的中点∴BO =AO在△BOD 和△AOE 中DBO EAO BO AOBOD AOE ∠=⎧⎪=⎨⎪∠=∠⎩∴ △BOD ≌△AOE ∴ BD =EA ∵ BC ∥AE 即BD ∥AE∴ 四边形AEBD 是平行四边形; 又 在△ABC 中,AB =AC∵ AD 是△ABC 的角平分线, ∴ AD ⊥BC ∴ ∠DBA =90°∴ 四边形AEBD 是矩形。
(3)当△ABC 满足∠BAC =90°时,四边形AEBD 是正方形。
理由如下:∵ AD 是△ABC 的角平分线 ∵ AD ⊥BC∴ ∠DBA =∠BAD=45°∴BD=DA∵四边形AEBD是矩形∴四边形AEBD是正方形。
25.解:(1)作AM⊥CD于M,则由题意四边形ABCM是矩形,在R t△ADM中,∵DM2=AD2﹣AM2,AD=10,AM=BC=8,∴AM==6,∴CD=DM+CM=DM+AB=6+10=16. 2分(2)当四边形PBQD是平行四边形时,点P在AB上,点Q在DC上,如图2中,由题意:BP=AB﹣AP=10﹣2t.DQ=3t,当BP=DQ时,四边形PBQD是平行四边形,∴10﹣2t=3t,∴t=2, 5分(3)不存在.理由如下:作AM⊥CD于M,连接PQ.由题意AP=2t.DQ=3t,由(1)可知DM=6,∴MQ=3t﹣6,若2t=3t﹣6,解得t=6, 7分∵AB=10,∴t≤=5,而t=6>5,故t=6不符合题意,t不存在. 9分。