八年级数学上册 第11课时 三角形全等判定(SAS)教案 (新版)新人教版
12.2.2 三角形全等的判定(SAS)教学设计 2022-2023学年人教版八年级数学上册

12.2.2 三角形全等的判定(SAS)教学设计一、教学目标1.了解什么是三角形的全等性质以及如何判定。
2.学会运用SAS(边角边)判定法判断三角形是否全等。
3.培养学生的观察力、分析问题和解决问题的能力。
二、教学准备1.教师准备:白板、黑板笔、教材《数学八年级上册》。
2.学生准备:课本、笔、纸。
三、教学过程第一步:导入新知教师向学生出示两个三角形的平面图,然后引导学生讨论这两个三角形有哪些相同的地方。
第二步:引入概念教师通过例题引入概念:如果两个三角形的两边分别相等,并且夹角也相等,那么这两个三角形就是全等的。
这个判断三角形全等的判定法叫做SAS判定法(边角边判定法)。
第三步:讲解原理教师以白板为工具,结合具体的例子,详细讲解SAS判定法的原理和应用方法。
第四步:例题演示教师给出几个具体的例题,让学生跟随教师的指导,通过观察和分析,判断两个三角形是否全等,并解释判断的依据。
第五步:巩固练习学生们在老师的指导下,自主完成一些练习题,巩固所学的知识。
教师可以在黑板上写出练习题,让学生上台做题,并进行讲解。
第六步:拓展延伸教师可以提出一些拓展的问题,让学生思考并运用所学知识解决问题。
同时,教师也可以引导学生思考其他三角形全等判定法,比如SSS判定法(边边边判定法)等。
第七步:总结归纳教师和学生一起总结归纳SAS判定法的要点,帮助学生对所学知识进行梳理和记忆。
四、教学反思这节课采用了导入新知、引入概念、讲解原理、例题演示、巩固练习、拓展延伸和总结归纳等多种教学方法,使学生在实际操作中逐步理解和掌握了SAS判定法。
通过学习,学生在观察、分析和解决问题等方面的能力得到了培养和提高。
但是教学时间有限,学生的练习时间不够充分,需要在课后进行更多的练习来巩固所学的知识。
五、板书设计SAS判定法(边角边) - 两个三角形的两边分别相等,并且夹角也相等 - 全等六、课堂作业完成课本上相关习题。
七、扩展阅读了解其他三角形全等判定法,比如SSS判定法(边边边)等。
人教版八年级上册12.2三角形全等的判定-SAS(教案)

最后,我觉得这节课的总结回顾环节做得还不够充分,学生们对知识点的巩固可能不够。为了提高教学效果,我打算在下节课开始时,先对这节课的知识点进行一个简短的复习,然后再进入新的教学内容。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形全等的判定-SAS》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全相同的情况?”比如,在拼接图形或修理家具时。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形全等的奥秘。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结围绕“SAS在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解SAS判定全等三角形的基本概念。SAS即边角边,是指两个三角形中有两边及其夹角分别相等。它在几何证明中非常重要,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用SAS定理来判断两个三角形是否全等,并解决实际问题。
-难点二:区分SAS与其他全等判定条件(如SSS、ASA、AAS)的区别和联系,避免混淆。
-难点三:在实际问题中,正确识别对应边和对应角,特别是在图形复杂或信息不完整的情况下。
人教版数学八年级上册《全等三角形判定(SAS、AAS)》教学设计

人教版数学八年级上册《全等三角形判定(SAS、AAS)》教学设计一. 教材分析人教版数学八年级上册《全等三角形判定(SAS、AAS)》是全等三角形判定部分的最后一节,前面已经学习了SSS、SAS判定全等三角形。
本节课通过探究活动让学生理解并掌握AAS判定全等三角形的方法,能运用SAS、AAS判定三角形全等。
教材通过丰富的图片、例题、练习,引导学生主动探究,发现规律,培养学生的空间想象能力和思维能力。
二. 学情分析学生在七年级已经学习了全等图形的概念,对全等图形有了一定的认识。
通过前面的学习,学生已经掌握了SSS、SAS判定全等三角形,但对AAS判定全等三角形可能还存在理解上的困难。
因此,在教学过程中,要注重引导学生通过观察、操作、思考、交流等活动,自主探索并掌握AAS判定全等三角形的方法。
三. 教学目标1.理解并掌握AAS判定全等三角形的方法。
2.能运用SAS、AAS判定三角形全等,解决一些实际问题。
3.培养学生的空间想象能力和思维能力。
四. 教学重难点1.教学重点:理解并掌握AAS判定全等三角形的方法。
2.教学难点:如何引导学生通过探究活动,发现并总结AAS判定全等三角形的方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、操作、思考、交流等活动,自主探索并掌握AAS判定全等三角形的方法。
2.利用多媒体课件,展示全等三角形的图片和实例,帮助学生直观地理解全等三角形的概念。
3.注重变式训练,让学生在不同的情境中运用SAS、AAS判定三角形全等,提高学生的运用能力。
六. 教学准备1.多媒体课件。
2.三角板、直尺、圆规等学具。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示全等三角形的图片,引导学生回顾全等三角形的概念。
然后提出问题:“我们已经学习了SSS、SAS判定全等三角形,那么还有没有其他的方法可以判定两个三角形全等呢?”2.呈现(10分钟)引导学生观察两个三角形,已知其中一个三角形的两个角和它们夹的边分别与另一个三角形的两个角和它们夹的边相等。
八年级数学上册 12.2 三角形全等的判定(SAS)教案 (新版)新人教版

三角形全等的判定—边角边教学目标1.知识与技能:掌握三角形全等的“边角边”判定方法,并能运用“边角边”公理来解决有关问题。
2.过程与方法:经历探究三角形全等条件的过程,初步体会分类讨论及由特殊到一般的数学思想方法。
3.情感、态度与价值观:① 在合作探究三角形全等条件的过程中,积累数学活动经验,学会与他人合作交流。
②通过探索三角形全等条件的过程,培养学生勇于探索、善于实践的创新精神。
学生分析学生通过前面的学习,已了解了三角形全等的概念及性质,掌握了全等三角形的对应边、对应角的关系,这为探索三角形全等的条件做好了知识上的准备。
另外,学生也具备了一定的作图能力,这使学生能主动参与本节课的操作、探究。
值得注意的是,以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点,而且初二学生还不具备独立系统地推理论证几何问题的能力,思维有一定的局限性,考虑问题不够全面。
教学重难点教学重点 :探究三角形全等条件及“边角边”公理的应用。
教学难点 :三角形全等条件的分析和探索,能对一些实际问题进行解释教学过程一、创设情境,引入课题探讨:如果两个三角形有三组对应相等的元素,那么会有几种可能的情况?两边一角又会有哪几种情况?请同学们探讨一下!(略)二、探究新知 形成结论探究一:两边一夹角已知两条线段和一个角,以这两条线段为边,以这个角为这两条边的夹角,画一个三角形。
把你所画的三角形与其他同学所画的三角形进行比较,我们能发现什么?(结论)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简记S.A.S.(或边角边) 符号语言如下:在△ABC 与△DEF 中AB=DE∠ABC=∠DEF BC=EF ∴△ABC ≌△DEF (S.A.S.)探究二:两边一对角以9cm ,12cm 为三角形的两边,长度为9cm 的边所对的角为45° ,情况又怎样?动手画一画,你发现了什么?(略)三、例题讲解例题: 如图,在△ ABC 中,AB=AC,AD 平分∠ BAC,求证: △ABD ≌ △ACD证明: ∵AD 平分∠ BAC,D A B CE F2 ∴ ∠ BAD= ∠ CAD在△ABD 与△ACD 中,AB=AC,∠BAD=∠CAD,AD=AD,∴△ABD ≌△ACD练习:1、如图,AO =CO ,BO =DO ,那么△AOB 和△COD 全等吗?为什么?四、实践应用小明和小强到一个湖边玩,他们在湖两端A 、B 处,他们想知道他们之间的直线距离,但A 、B 无法直接达到,这两点的距离无法直接量出。
八年级数学上册第11课时三角形全等判定(SAS)教案(新人教版)

三角形全等判定(SAS)归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS •”).【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力.【媒体使用】投影显示作法.【教学形式】操作感知,互动交流,形成共识.二、例题讲解【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,•使CE=CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB=DE .在△ABC 和△DEC 中,CA=CD ,CB=CE ,如果能得出∠1=∠2,△ABC 和△DEC •就全等了.证明:在△ABC 和△DEC 中CA=CD12CA CDCB CE=∠=∠=CB=CE∴△ABC ≌△DEC (SAS )∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写.【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.三、学以致用【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC的端点B重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来,出现一个现象:△ABC与△ABD满足两边及其中一边对角相等的条件,但△ABC与△ABD不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT;(2)以A为圆心,以适当长为半径,画弧,交BT于C、C′;(3)•连线AC,AC′,△ABC与△ABC′不全等.【形成共识】“边边角”不能作为判定两个三角形全等的条件.【教学形式】观察、操作、感知,互动交流.四、巩固练习课本P10练习第1、2题.五、课堂总结1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.六、布置作业。
人教版数学八年级上册12.2.2三角形全等的判定(SAS)教学设计

1.基础巩固题:完成课本第十二章习题2中的第1-4题,重点考察学生对SAS判定方法的掌握。
2.实践应用题:从生活中找一个包含全等三角形的实物或图片,运用SAS判定方法,说明其全等的依据,并简要阐述全等三角形在实际生活中的应用。
1.理解SAS判定方法的定义、性质和条件。
2.学会运用SAS判定方法解决实际问题。
3.掌握全等三角形的性质,了解全等判定方法之间的联系和区别。
最后,我会对学生在本节课中的表现给予积极评价,鼓励他们在今后的学习中继续努力。同时,提醒学生加强对全等三角形相关知识的学习,为后续课程打下坚实基础。
五、作业布置
人教版数学八年级上册12.2.2三角形全等的判定(SAS)教学设计
一、教学目标
(一)知识与技能
1.理解三角形全等的定义,掌握全等三角形的性质。
2.学会使用SAS(Side-Angle-Side,边角边)判定两个三角形全等。
3.能够运用SAS判定方法解决实际问题,如计算不全的三角形的边长和角度。
4.能够通过实际操作和画图,加深对三角形全等概念的理解,提高空间想象能力和逻辑推理能力。
三、教学重难点和教学设想
(一)教学重点
1.掌握SAS判定全等三角形的方法,理解其内涵和应用条件。
2.能够运用SAS判定方法解决实际几何问题,如计算未知边长、角度等。
3.培养学生的几何直观能力和逻辑推理能力,提高解决实际问题的能力。
(二)教学难点
1.理解SAS判定条件的必要性,区分与其他全等判定方法的异同。
2.自主探究:给予学生充分的时间和空间,引导他们自主发现SAS判定方法,培养学生的探究精神和几何直观。
新人教版八年级上册数学导学案:三角形全等的判定(SAS)

C 'B 'A 'C B AC B A新人教版八年级上册数学导学案:三角形全等的判定(SAS)一、自主学习1、复习思考(5分钟)(1)怎样的两个三角形是全等三角形?全等三角形的性质是什么?三角形全等的判定(一)的内容是什么?(2)上节课我们知道满足三个条件画两个三角形有4种情形,三个角对应相等;三条边对应相等;两边和一角对应相等;两角和一边对应相等;前两种情况已经研究了,今天我们来研究第三种两边和一角的情况,这种情况又要分两边和它们的夹角,两边及其一边的对角两种情况。
2、探究一:两边和它们的夹角对应相等的两个三角形是否全等?(15分钟)(1)动手试一试已知:△ABC求作:'''A B C ∆,使''A B AB =,''B C BC =, B B ∠='∠(2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完全重合?(3)归纳;由上面的画图和实验可以得出全等三角形判定(二):两边和它们的夹角对应相等的两个三角形 (可以简写成“ ”或“ ”)(4)用数学语言表述全等三角形判定(二)在△ABC 和'''A B C ∆中, ∵''AB A B B BC =⎧⎪∠=⎨⎪=⎩ ∴△ABC ≌3、探究二:两边及其一边的对角对应相等的两个三角形是否全等?(5分钟)通过画图或实验可以得出:二、合作探究1、课本例题三、练习:课本2、如图,已知OA=OB,应填什么条件就得到△AOC≌△BOD(允许添加一个条件)3、(实验班)如图,已知CA=CB,AD=BD,M、N分别是CA、CB的中点,求证:DM=DN四、当堂检测如图,AD⊥BC,D为BC的中点,那么结论正确的有A、△ABD≌△ACDB、∠B=∠CC、AD平分∠BACD、△ABC是等边三角形五、课堂小结(5分钟)1、两边和它们的夹角对应相等的两个三角形全等。
新人教版八年级全等三角形教案

11.1全等三角形教学目标:1了解全等形及全等三角形的的概念;2 理解全等三角形的性质3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣重点:探究全等三角形的性质难点:掌握两个全等三角形的对应边,对应角教学过程:观察下列图案,指出这些图案中中形状与大小相同的图形问题:你还能举出生活中一些实际例子吗?这些形状、大小相同的图形放在一起能够完全重合。
能够完全重合的两个图形叫做全等形能够完全重合的两个三角形叫做全等三角形思考:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
“全等”用 表示,读作“全等于”两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如DEF ABC ∆∆和全等时,点A 和点D ,点B 和点E ,点C 和点F 是对应顶点,记作DEF ABC ∆≅∆把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角思考:如上图,13。
1-1DEF ABC ∆≅∆,对应边有什么关系?对应角呢? 全等三角形性质:全等三角形的对应边相等;全等三角形的对应角相等。
思考:(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角D AD BD(2)将ABC ∆沿直线BC 平移,得到DEF∆,说出你得到的结论,说明理由?B E(3)如图,,A C DA B E ∆≅∆AB 与AC ,AD 与AE 是对应边,已知: 30,43=∠=∠B A ,求ADC ∠的大小。
B C小结:通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,•并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.作业:P4—1,2,311.2 三角形全等的判定(1)教学目标①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.②掌握三角形全等的“边边边”条件,了解三角形的稳定性.③通过对问题的共同探讨,培养学生的协作精神.教学难点三角形全等条件的探索过程.一、复习过程,引入新知多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.二、创设情境,提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.三、建立模型,探索发现出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?让学生按照下面给出的条件作出三角形.(1)三角形的两个角分别是30°、50°.(2)三角形的两条边分别是4cm,6cm.(3)三角形的一个角为30°,—条边为3cm.再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.四、应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.鼓励学生举出生活中的实例.给出例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D 的支架,求证△ABD≌△ACD.AB D让学生独立思考后口头表达理由,由教师板演推理过程.例2 如图是用圆规和直尺画已知角的平分线的示意图,作法如下:①以A为圆心画弧,分别交角的两边于点B和点C;②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;③画射线AD.AD就是∠BAC的平分线.你能说明该画法正确的理由吗?例3 如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?你有几种方法?你能证明你的方法吗?试一试.ADB C五、巩固练习教科书第8页的练习.六、反思小结回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.七、布置作业1.必做题:教科书第15页习题11.2中的第1、2题.2.选做题:教科书第16页第9题.A B C D E11.2 三角形全等的判定(2)教学目标①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力. ②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.③通过对问题的共同探讨,培养学生的协作精神.教学难点指导学生分析问题,寻找判定三角形全等的条件.知识重点应用“边角边”证明两个三角形全等,进而得出线段或角相等. 教学过程(师生活动)一、 创设情境,引入课题多媒体出示探究3:已知任意△ABC ,画△A'B'C',使A'B'=AB ,A'C'=AC ,∠A'=∠A .教帅点拨,学生边学边画图,再让学生把画好的△A'B'C',剪下放在△ABC 上,观察这两个三角形是否全等.二、交流对话,探求新知根据前面的操作,鼓励学生用自己的语言来总结规律:两边和它们的夹角对应相等的两个三角形全等.(SAS)补充强调:角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.三、 应用新知,体验成功出示例2,如图,有—池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD =CA ,连接BC 并延长到E ,使CE =CB .连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据.(若学生不能顺利得到证明思路,教师也可作如下分析:要想证AB =DE ,只需证△ABC ≌△DEC△ABC 与△DEC 全等的条件现有……还需要……)明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.补充例题: 1、已知:如图AB=AC,AD=AE,∠BAC=∠DAE求证: △ABD ≌△ACE证明:∵∠BAC=∠DAE (已知)∠ BAC+ ∠ CAD= ∠DAE+ ∠ CAD ∴∠BAD=∠CAEA BC D E F M在△ABD 与△ACEAB=AC (已知)∠BAD= ∠CAE (已证)AD=AE (已知)∴△ABD ≌△ACE (SAS)思考:求证:1.BD=CE2. ∠B= ∠C3. ∠ADB= ∠AEC 变式1:已知:如图,AB ⊥AC,AD ⊥AE,AB=AC,AD=AE. 求证: ⑴ △DAC ≌△EAB1. BE=DC2. ∠B= ∠ C3. ∠ D= ∠ E4. BE ⊥CD四、再次探究,释解疑惑出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?让学生模仿前面的探究方法,得出结论:两边及其中一边的对角对应相等的两个三角形不一定全等.教师演示:方法(一)教科书98页图13.2-7.方法(二)通过画图,让学生更直观地获得结论.五、巩固练习教科书第99页,练习(1)(2).六、小结提高1.判定三角形全等的方法;2.证明线段、角相等常见的方法有哪些?让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.七、布置作业1.必做题:教科书第15页,习题11.2第3、4题.2.选做题:教科书第16页第10题.3.备选题:(1)小明做了一个如图所示的风筝,测得DE =DF ,EH =FH ,你能发现哪些结沦?并说明理由.(2)如图,∠1=∠2,AB =AD ,AE =AC ,求证BC =DE .11.2 三角形全等的判定(3)教学目标①探索并掌握两个三角形全等的条件:“ASA”“AAS”,并能应用它们判别两个三角形是否全等.②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.教学重点理解,掌握三角形全等的条件:“ASA”“AAS”.教学难点探究出“ASA”“AAS”以及它们的应用.教学过程(师生活动)创设情境复习:师:我们已经知道,三角形全等的判定条件有哪些?生:“SSS”“SAS”师:那除了这两个条件,满足另一些条件的两个三角形是否也可能全等呢?今天我们就来探究三角形全等的另一些条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形全等判定(SAS)
ABC≌△DEC,就可以得
出AB=DE.在△ABC和△DEC中,CA=CD,CB=CE,如果能得出∠1=∠2,△ABC和△DEC 就全等了.
证明:在△ABC和△DEC中
CA=CD
CB=CE
∴△ABC≌△DEC(SAS)
∴AB=DE
想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE的依据是什么?(全等三角形对应边相等)
【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写.
【媒体使用】投影显示例2.
【教学形式】教师讲例,学生接受式学习但要积极参与.
【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.
三、学以致用
【问题探究】(投影显示)
我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?
【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.
操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,使长木棍的另一端与射线BC的端点B重合,适当调整好长木棍与射线BC所成的角后,固定住长木棍,把短木棍摆起来,出现一个现象:△ABC与△ABD满足两边及其中一边对角相等的条件,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角对应相等的两个三角形不一定全等.
【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)
(1)画∠ABT;(2)以A为圆心,以适当长为半径,画弧,交BT于C、C′;(3)连线AC,AC′,△ABC与△ABC′不全等.
【形成共识】“边边角”不能作为判定两个三角形全等的条件.
【教学形式】观察、操作、感知,互动交流.
四、巩固练习
课本P10练习第1、2题.
五、课堂总结
1.请你叙述“边角边”定理.
2.证明两个三角形全等的思路是:首先分析条件,观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.
六、布置作业。