江苏省南京市钟英中学2015届九年级国庆作业检测试卷数学
初中九年级数学国庆作业(2)

九年级上第一、二章数学自测 (2)自评成绩一、选择题:(每小题3分,共24分.)1.如图1,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cm B .4cm C .5cm D .6cm2.如图2,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于()A .20B .15C . 10D .53.如图3,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E , 则AE 的长是( )A .1.6 B .2.5 C .3 D .3.44.已知一组数据:-1,x ,0,1,-2的平均数是0,那么,这组数据的方差是( )5. 如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( ) A .2 B .4 C .4 D .86.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等腰梯形B .平行四边形C .正三角形D .矩形7. 已知四边形ABCD ,有以下四个条件:①AB ∥CD ;②CD AB =;③BC ∥AD ;④AD BC =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法共有( )A.6种 B.5种 C.4种 D.3种8. 等腰ABC ∆中,90ACB ∠=,且1AC =.过点C 作直线l ∥AB ,P 为直线l 上一点,且AP AB =.则点P 到BC 所在直线的距离是( )A .1B .1或12-C .1或12+D .12-+或12二、填空题:(每小题4分,共40分.)9. 的平行四边形是是菱形(只填一个条件).10、对某校同龄的70名女学生的身高进行测量,其中最高的是169㎝,最矮的是146㎝,对这组数据进行整理时,可得极差为 。
2015江苏省南京市中考数学试卷解析

2015年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(2分)(2015•南京)计算:|﹣5+3|的结果是()A.﹣2 B.2C.﹣8 D.82.(2分)(2015•南京)计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y93.(2分)(2015•南京)如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=4.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆5.(2分)(2015•南京)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.(2分)(2015•南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O 相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)(2015•南京)4的平方根是;4的算术平方根是.8.(2分)(2015•南京)若式子在实数范围内有意义,则x的取值范围是.9.(2分)(2015•南京)计算的结果是.10.(2分)(2015•南京)分解因式(a﹣b)(a﹣4b)+ab的结果是.11.(2分)(2015•南京)不等式组的解集是.12.(2分)(2015•南京)已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m的值是.13.(2分)(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x 轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(,).14.(2分)(2015•南京)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工 5 7000木工 4 6000瓦工 5 5000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差(填“变小”、“不变”或“变大”).15.(2分)(2015•南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=°.16.(2分)(2015•南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(6分)(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.18.(7分)(2015•南京)解方程:.19.(7分)(2015•南京)计算:(﹣)÷.20.(8分)(2015•南京)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.21.(8分)(2015•南京)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.22.(8分)(2015•南京)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.23.(8分)(2015•南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)24.(8分)(2015•南京)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.25.(10分)(2015•南京)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)26.(8分)(2015•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.27.(10分)(2015•南京)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?2015年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的)1.(2分)(2015•南京)计算:|﹣5+3|的结果是()A.﹣2 B.2C.﹣8 D.8考点:有理数的加法;绝对值.分析:先计算﹣5+3,再求绝对值即可.解答:解:原式=|﹣2|=2.故选B.点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数.2.(2分)(2015•南京)计算(﹣xy3)2的结果是()A.x2y6B.﹣x2y6C.x2y9D.﹣x2y9考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数);求出计算(﹣xy3)2的结果是多少即可.解答:解:(﹣xy3)2=(﹣x)2•(y3)2=x2y6,即计算(﹣xy3)2的结果是x2y6.故选:A.点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).3.(2分)(2015•南京)如图,在△ABC中,DE∥BC,=,则下列结论中正确的是()A.=B.=C.=D.=考点:相似三角形的判定与性质.分析:由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2014年底机动车的数量为:3×105+2×106=2.3×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(2分)(2015•南京)估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间考点:估算无理数的大小.分析:先估算的范围,再进一步估算,即可解答.解答:解:∵ 2.235,∴﹣1≈1.235,∴≈0.617,∴介于0.6与0.7之间,故选:C.点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.6.(2分)(2015•南京)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O 相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2考点:切线的性质;矩形的性质.分析:连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.解答:解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分)7.(2分)(2015•南京)4的平方根是±2;4的算术平方根是2.考点:算术平方根;平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.(2分)(2015•南京)若式子在实数范围内有意义,则x的取值范围是x≥﹣1.考点:二次根式有意义的条件.分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.(2分)(2015•南京)计算的结果是5.考点:二次根式的乘除法.分析:直接利用二次根式的性质化简求出即可.解答:解:=×=5.故答案为:5.点评:此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.10.(2分)(2015•南京)分解因式(a﹣b)(a﹣4b)+ab的结果是(a﹣2b)2.考点:因式分解-运用公式法.分析:首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可.解答:解:(a﹣b)(a﹣4b)+ab=a2﹣5ab+4b2+ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.点评:此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.(2分)(2015•南京)不等式组的解集是﹣1<x<1.考点:解一元一次不等式组.分析:分别解每一个不等式,再求解集的公共部分.解答:解:,解不等式①得:x>﹣1,解不等式②得:x<1,所以不等式组的解集是﹣1<x<1.故答案为:﹣1<x<1.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.12.(2分)(2015•南京)已知方程x2+mx+3=0的一个根是1,则它的另一个根是3,m 的值是﹣4.考点:根与系数的关系;一元二次方程的解.分析:利用一元二次方程的根与系数的关系,两根的和是﹣m,两个根的积是3,即可求解.解答:解:设方程的另一个解是a,则1+a=﹣m,1×a=3,解得:m=﹣4,a=3.故答案是:3,﹣4.点评:本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.(2分)(2015•南京)在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x 轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(﹣2,3).考点:关于x轴、y轴对称的点的坐标.分析:分别利用x轴、y轴对称点的性质,得出A′,A″的坐标进而得出答案.解答:解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.点评:此题主要考查了关于x轴、y轴对称点的性质.(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).14.(2分)(2015•南京)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工 5 7000木工 4 6000瓦工 5 5000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差变大(填“变小”、“不变”或“变大”).考点:方差.分析:利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大.解答:解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:增大.点评:此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键.15.(2分)(2015•南京)如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= 215°.考点:圆内接四边形的性质.分析:连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.解答:解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故答案为:215.点评:本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.16.(2分)(2015•南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是y=.考点:反比例函数与一次函数的交点问题.分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,由于点A在反比例函数y1=上,设A(a,),求得点B的坐标代入反比例函数的解析式即可求出结果.解答:解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1=上,∴设A(a,),∴OC=a,AC=,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△OBD,∴,∵A为OB的中点,∴=,∴BD=2AC=,OD=2OC=2a,∴B(2a,),设y2=,∴k=2a•=4,∴y2与x的函数表达式是:y=.故答案为:y=.点评:本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用.三、解答题(本大题共11小题,共88分,解答时应写出文字说明、证明过程或演算步骤)17.(6分)(2015•南京)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可.解答:解:去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.(7分)(2015•南京)解方程:.考点:解分式方程.专题:计算题.分析:观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘以x(x﹣3),得2x=3(x﹣3).解这个方程,得x=9.检验:将x=9代入x(x﹣3)知,x(x﹣3)≠0.所以x=9是原方程的根.点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.(7分)(2015•南京)计算:(﹣)÷.考点:分式的混合运算.分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.解答:解:(﹣)÷=[﹣]×=[﹣]×=×=.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.20.(8分)(2015•南京)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.考点:相似三角形的判定与性质.分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.解答:(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.21.(8分)(2015•南京)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共10000名,其中小学生4500名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为3600名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.解答:解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与2010年相比,2014年该市大学生50米跑成绩合格率下降了5%(答案不唯一).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)(2015•南京)某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.考点:列表法与树状图法.专题:计算题.分析:(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.解答:解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23.(8分)(2015•南京)如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)考点:解直角三角形的应用.分析:设B处距离码头Oxkm,分别在Rt△CAO和Rt△DBO中,根据三角函数求得CO和DO,再利用DC=DO﹣CO,得出x的值即可.解答:解:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=,∴DO=BO•tan∠DBO=x•tan58°,∵DC=DO﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=≈=13.5.因此,B处距离码头O大约13.5km.点评:本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键.24.(8分)(2015•南京)如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.考点:菱形的判定;全等三角形的判定与性质;矩形的判定.分析:(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP是菱形,只要证MN=NQ,再证∠MGE=∠QFH得出即可.解答:(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF,∵FH平分∠DFE,∴∠EFH=∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠EFG=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;(2)解:答案不唯一:由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证GE=FH、∠GME=∠FGH.故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.点评:此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.25.(10分)(2015•南京)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.分析: ①以A 为圆心,以3为半径作弧,交AD 、AB 两点,连接即可;②连接AC ,在AC 上,以A 为端点,截取1.5个单位,过这个点作AC 的垂线,交AD 、AB 两点,连接即可;③以A 为端点在AB 上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC 一个点,连接即可;④连接AC ,在AC 上,以C 为端点,截取1.5个单位,过这个点作AC 的垂线,交BC 、DC 两点,然后连接A 与这两个点即可;⑤以A 为端点在AB 上截取3个单位,再作着个线段的垂直平分线交CD 一点,连接即可.解答:解:满足条件的所有图形如图所示:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法.26.(8分)(2015•南京)如图,四边形ABCD 是⊙O 的内接四边形,BC 的延长线与AD 的延长线交于点E ,且DC=DE .(1)求证:∠A=∠AEB ;(2)连接OE ,交CD 于点F ,OE ⊥CD ,求证:△ABE 是等边三角形.考点:圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.分析:(1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE,然后利用等边对等角可得∠DCE=∠AEB,进而可得∠A=∠AEB;(2)首先证明△DCE是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB,可得△ABE是等腰三角形,进而可得△ABE是等边三角形.解答:证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠AEB,∴∠A=∠AEB;(2)∵∠A=∠AEB,∴△ABE是等腰三角形,∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.点评:此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.27.(10分)(2015•南京)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?考点:二次函数的应用.分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.解答:解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.点评:本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.参与本试卷答题和审题的老师有:张其铎;放飞梦想;zcl5287;caicl;sdwdmahongye;王学峰;1987483819;gbl210;sd2011;星期八;733599;zhangCF;CJX;gsls;守拙;sjzx (排名不分先后)菁优网2015年6月25日。
江苏省南京市钟英中学届九年级下学期中考一模考试数学试题及答案

钟英中学2014-2015学年度第二学期预一模试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须写在答题卷上的指定位置,在其他位置答题一律无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卡.相应位置....上) 1.如果a 与-2互为倒数,那么a 是A .-2B .-12C .12D .22.计算(-a 2)3的结果是A .a 5B .-a 5C .a 6D .-a 63.从下列不等式中选一个与x +2≥1组成不等式组,若要使该不等式组的解集为x ≥-1,则可以选择的不等式是A .x >-2B .x >0C .x <0D .x <-2 4.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin ∠OMN 的值为A .12B .1C .22D . 325.如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至A 1B 1,则a +b 的值为A .2B .3C .4D .56.在同一直角坐标系中,P 、Q 分别是y =-x +3与y =3x -5的图象上的点,且P 、Q 关于x 轴对称,则点P 的坐标是A .(-12,72)B .(-2,5)C .(1,2)D .(-4,7)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 7.式子x -2在实数范围内有意义,x 的取值范围是 ▲ .8.月球是距离地球最近的天体,它与地球的平均距离约为384400千米.将384400用科学记数法可表示为 ▲ .9.如果一次函数y =kx +b 的图像经过点(1,0),且y 随x 的增大而减小,那么这个一次函数的关系式可以是 ▲ .10.设x 1,x 2是方程x 2-2x =1的两根,则x 1·x 2= ▲ .11.若m 2-5m +2=0,则2m 2-10m +2015= ▲ .)(第5题) A B CD O M N (第4题)12.如图,△ABC 内接于⊙O ,∠C =45°,AB =4,则⊙O 的半径为 ▲ . 13.某班6名同学在一次“1分钟仰卧起坐”测试中,成绩为(单位:次):39,42,42,37,41,39.这组数据的方差是 ▲ .14.四张完全相同的卡片上分别画有圆、正方形、等边三角形、平行四边形,现在从中随机抽取一张,卡片上画的恰好是中心对称图形的概率是 ▲ .15.如图,两条互相垂直的弦将⊙O 分成四部分,相对的两部分面积之和分别记为S 1、S 2,若圆心O 到两弦的距离分别为4和6,则| S 1-S 2|= ▲ . 16.如图,将一张长方形的纸片ABCD 沿x 轴摆放,顶点A (6,1)恰好落在某双曲线上.现在AD 边上找一点E ,使得将纸片的右半部分沿OE 所在直线折叠后,点A 恰好还落在此双曲线上,则满足条件的点E 的坐标为 ▲ .三、解答题(本大题共10文字说明、证明过程或演算步骤)17.(本题6分)计算33+ (π+ 3 )0-27 +| 3 -2|.18.(本题6分)解方程:x x +1-1x=1.19.(本题8分)先化简(a 2-4a 2-4a +4-2a -2)÷a 2+2aa -2,然后选取一个恰当..的数代入求值. 20.(本题8分)中考体育测试满分为40分,某校九年级进行了中考体育模拟测试,随机抽取了部分学生的考试成绩进行统计分析,并把分析结果绘制成如下两幅统计图.试根据统计图中提供的数据,回答下列问题:(1分的人数有 ▲ 人; (2)抽取的样本中,考试成绩的中位数是 ▲ 分,众数是 ▲ 分; 5各类学生人数比例统计图 各类学生人数条形统计图 得40分得39分得38分 占20%得36分 得37分C (第16题) x y AB C D O(3)若该校九年级共有500名学生,试根据这次模拟测试成绩估计该校九年级将有多少名学生能得到满分? 21.(本题8分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为10cm ,最大张角α为150°,你能否利用此圆规,画出一个半径为18cm 的圆?请借助图2说明理由.(参考数据:sin150.26°≈,cos150.97°≈,tan150.27°≈,sin 750.97°≈,cos750.26°≈,tan 75 3.73°≈)22.(本题8分)某校有A 、B 两个阅览室,甲、乙、丙三名学生各自随机选择其中的一个阅览室阅读. (1)下列事件中,是必然事件的为( ▲ ) A .甲、乙同学都在A 阅览室B .甲、乙、丙同学中至少两人在A 阅览室C .甲、乙同学在同一阅览室D .甲、乙、丙同学中至少两人在同一阅览室(2)求甲、乙、丙三名学生在同一阅览室阅读的概率. 23.(本题10分)如图,四边形ABCD 是菱形,点G 是BC 延长线上一点,连接AG ,分别交BD 、CD 于点E 、F ,连接CE . (1)求证:∠DAE=∠DCE ;(2)当AE=2EF 时,判断FG 与EF 有何等量关系?并证明你的结论.24.(本题10分)甲、乙两城市之间开通了动车组高速列车.已知每隔2h 有一列速度相同的动车组列车从甲城开往乙城.如图,OA 是第一列动车组列车离开甲城的路程s (km )与运行时间t (h )的函数图像,BC 是一列从乙城开往甲城的普通快车距甲城的路程s (km )与运行时间t (h )的函数图像.请根据图中的信息,解答下列问题:(1)从图像看,普通快车发车时间比第一列动车组列车发车时间 ▲ 1 h(填”早”或”晚”),点B 的纵坐标600的实际意义是 ▲ ; (2)请直接在图中画出第二列动车组列车离开甲城的路程s (km )与时间t (h )的函数(第23题) (第21题)图2C B A图像;(3)若普通快车的速度为100 km/h ,①求BC 的表达式,并写出自变量的取值范围;②第二列动车组列车出发多长时间后与普通快车相遇?③请直接写出这列普通快车在行驶途中与迎面而来的相邻两列动车组列车相遇的时间间隔.25.(本题12分)如图,△ABC 内接于⊙O ,∠DAB =∠ACB . (1)判断直线AD 与⊙O 的位置关系,并说明理由; (2)若∠DAB =30°,AB =1,求弦AB 所对的弧长;(3)在(2)的条件下,点C 在优弧AB 上运动,是否存在点C ,使点O 到弦BC 的距离为12,若有,请直接写出AC 的长;若没有,请说明理由. 26.(本题满分12分)我们知道对于任意实数a 、b ,都有a 2+b 2≥2ab (当且仅当a =b 时取等号).我们可以利用这一结论来解决很多实际问题.(1)若x >0,则函数y =x 2+1x2的最小值是 ▲ .(2)现有一架敌方无人机沿曲线y =2x(x >0)前来侦察,我方位于坐标原点O (0,0)的雷达站捕捉信号,当无人机与雷达站距离最近时,信号最强,求此时无人机信号所在点的坐标.(3)现有两个电阻R 1、R 2,串联后总电阻R 串=R 1+R 2,并联后总电阻1R 并=1R 1+1R 2,若R串(第25题)(备用图)=k·R并,求实数k的取值范围.2014/2015学年度新课结束考试试卷 九年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.7.x ≥2 8.3.844×1059.答案不唯一,如y =-x +1 10.-111.2011 12.2 2 13.103 14.3415.9616.(1,1),(-1,1),(-16,1)三、解答题(本大题共10小题,共计88分) 17.(本题6分)解:原式=3+1-33+2- 3 ·························· 4 =3-3 3 ································ 618.(本题6分)解:x 2-(x +1)=x (x +1) (2)x 2-x -1= x 2+xx =-12. (5)经检验,x =-12是原方程的解. (6)19.(本题8分)解:(a 2-4a 2-4a +4-2a -2)÷a 2+2aa -2=[(a +2)(a -2) (a -2)2-2a -2]·a -2a (a +2) ························ 3 =a a -2·a -2a (a +2) (5)=1a +2. (6)代入除2,-2,0以外的数字,并计算正确 ····················· 820.(本题8分)解:(1)14. ................................... 2 (2)中位数:39分,众数:40分. ....................... 6(3)500×40%=200(人). (7)所以估计这次模拟测试成绩该校九年级有200名学生能得到满分. (8)21.(本题8分)解:能画.过A 作AD ⊥BC ,垂足为D . ··························· 1∵在△ABC 中, AB =AC 、∠BAC =150°,∴∠B =15°,BD =12BC . (3)∵在△ABC 中,cos B =BD AB,∴DE =AB ·cos B =10×0.97=9.7, ······················· 5 ∴BC =2BD =19.4; ······························ 6 ∵19.4>18,∴能画. (8)22.(本题8分)解:(1)D . ··································· 2(2)用树状图分析如下:∵共有8种等可能性,其中三名学生在同一阅览室阅读有两种情况. ············∴P (三名学生在同一阅览室阅读)=28=14. (8)(说明:通过枚举、画树状图或列表得出全部正确情况得4分;没有说明等可能性扣1分.) 23.(本题10分)(1)证明:∵四边形ABCD 是菱形, ∴AD =CD ,∠ADE =∠CDB ; 又∵DE =DE , ∴△ADE ≌△CDB ,∴∠DAE =∠DCE . (4)(2)FG =3EF . ···································· 5证明∵四边形ABCD 是菱形, ∴AD ∥BG , ∴∠G =∠DAG ;又∵由(1)可知∠DAE =∠DCE , ∴∠G =∠DCE ; ∵∠CEF =∠GEC , ∴△CEF ∽△GEC ,∴EF EC =CE GE; ································· 7 又∵△ABE ≌△CBE ,AE =2EF ,(AAA ) (AAB )A(ABA )(ABB ) B (BAA ) (BAB )A(BBA )(BBB ) BA B开始甲乙 丙 所有结果∴AE =CE =2EF ,∴EF EC =AE GE =EF AE =12,∴EF FG =13,即FG =3EF . (10)24.(本题10分)解:(1)晚; (1)甲乙两城相距600km . ····························· 2(2)画对图. ··································· 3(3)解:①设直线BC 的解析式为:S =kt +b , 由图像可知:直线BC 经过点B (1,600), 又因为普通快车的速度为100 km/h , 所以直线BC 还经过点(2,500)。
2015年南京市中考数学试题及答案

数学试卷
第 5 页 (共 11 页)
27. (10 分)某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线 ABD、线段 CD 分别表示该产品每千克生产成本 y1(单位:元) 、销售价 y2(单位:元)与产量 x(单 位:kg)之间的函数关系. (1)请解释图中点 D 的横坐标、纵坐标的实际意义. (2)求线段 AB 所表示的 y1 与 x 之间的函数表达式. (3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
由 AB∥CD,MN∥EF,PQ∥EF,易证四边 形 MNQP 是平行四边形.要证□MNQP 是菱形, 只要证 NM=NQ. 由已知条件 ≌△QFH.易证 ∠EFH, ▲ ▲ , ▲ ▲ , MN∥EF, ,故只要证∠ 可证 NG=NF,故只要证 GM=FQ,即证△MGE MGE=∠QFH.易证∠MGE=∠GEF,∠QFH= ,即可得证. C N G D A M E P B
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分) 7.±2;2 12.3;-4 8.x≥-1 13.-2;3 9. 5 14.变大 10.(a-2b)2 15.215 11.-1<x<1 16.y2= 4 x
三、解答题(本大题共 11 小题,共 88 分) 17. (本题 6 分) 解:去括号,得 2x+2-1≥3x+2. 移项,得 2x-3x≥2-2+1. 合并同类项,得-x≥1. 系数化为 1,得 x≤-1. 这个不等式的解集在数轴上表示如下图所示.
H
F (第 24 题)
Q
数学试卷
第 4 页 (共 11 页)
25. (10 分)如图,在边长为 4 的正方形 ABCD 中,请画出以 A 为一个顶点,另外两个顶点在 正方形 ABCD 的边上,且含边长为 3 的所有大小不同的等腰三角形. (要求:只要画出示 意图,并在所画等腰三角形长为 3 的边上标注数字 3)
江苏省南京市钟英中学2017届九年级下学期期初测试数学试题(附答案)

南京市钟英中学2016-2017学年度第二学期期初测试数 学一、选择题(每题2分).注意:请把答案写在下列表格中,否则选择题不得分!1. 用配方法解一元二次方程x 2 - 6x + 5 = 0,其中配方正确的是( )A. (x - 3)2 = 5B. (x - 3)2 = -4C. (x - 3)2 = 4 ,D. (x - 3)2 = 9 .2.某校书法决赛共设置6个获奖名额,进入决赛的11名选手决赛得分均不相同.若知道某位选手的决赛得分,要判断他是否获奖,只需知道这11名选手决赛得分的( ) A .平均数B .众数C .方差D .中位数3.某单位在两个月内将开支从24000元降到18000元.如果设每月降低开支的百分率均为x (x >0),则由题意列出的方程应是( )A .()180001240002=+x B .()240001180002=+xC .()180001240002=-x D .()240001180002=-x4.如图,已知AB ∥CD ∥EF ,直线AF 与直线BE 相交于点O ,下列结论错误的是( ) A . AD DF = BC CE B . OA OC = OB OD C . CD EF = OC OE D . OA OF = OBOE5.已知0≤x≤12,那么函数2286y x x =-+-的最大值是( ) A .-2.5;B .2;C .-10.5;D .-6;6.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,O 是△ABC 的内心,以O 为圆心,r 为半径的圆与线段AB 有交点,则r 的取值范围是( )A .r≥1B .1≤r≤10C .1≤r≤ 5D .1≤r≤4二、填空题(每题2分).注意:请把答案写在下列横线上,否则填空题不得分!7.若c是a、b的比例中项,且a=4,b=9,则c= .8.如图,两边平行的刻度尺在圆上移动,当刻度尺的一边与直径为6.5cm的圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则刻度尺的宽为cm.9.在一次同学聚会时,大家一见面就相互握手.有人统计了一下,大家一共握了45次手,参加这次聚会的同学共有____________人.10.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是_________.11.用半径为30cm,圆心角为120°的扇形卷成一个无底的圆锥形筒,则这个圆锥形筒的底面半径为_________ cm.12.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=_________.三、解答题.13.(4分)解方程:4x2﹣(x2﹣2x+1)=0.14.(8分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.15.(6分)九(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是队.16.(8分)已知二次函数y=x2+(2m+2)x+m2+m﹣1(m是常数).(1)用含m的代数式表示该二次函数图象的顶点坐标;(2)当二次函数图象顶点在x轴上时,求出m的值及此时顶点的坐标;(3)小明研究发现:当m取不同的值时,表示不同的二次函数,并将它们的图像在同一直角坐标系中画出,发现二次函数顶点都在同一条直线上,请求出这条直线的函数表达式.17.(10分)如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.18.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B 出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒3cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.初三数学期初测试答案一、选择题二、填空题.三、解答题.13.(4分)解:4x 2﹣(x-1)2=0 (3x-1)(x+1)=0 x 1=13,x 2=-114.(8分)15.(6分) 解:(1)9.5,10; (2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9, 则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;16.(8分)解:(1)y=x2+(2m+2)x+m2+m﹣1=(x+m+1)2﹣m﹣2,∴该二次函数图象的顶点坐标为(﹣m﹣1,﹣m﹣2);(2)当二次函数图象顶点在x轴上时,﹣m﹣2=0,解得:m=﹣2,∴此时顶点的坐标为(1,0);(3)直线的函数表达式为y=x﹣1,证明如下:法1:设直线的函数表达式为y=kx+b,取两个顶点坐标代入,可求得∴y=x﹣1.法2:∵将x=﹣m﹣1,y=﹣m﹣2代入满足y=x﹣1,∴m取不同值时,点(﹣m﹣1,﹣m﹣2)都在一次函数y=x﹣1的图象上即顶点所在的直线的函数表达式为y=x﹣1.18.(10分)。
江苏省南京市2015年中考数学试卷(解析版)

江苏省南京市2015年中考数学试卷一、选择题1.计算:|﹣5+3|的结果是()A.﹣2 B.2 C.﹣8 D.8【答案】B.考点:1.有理数的加法;2.绝对值.2.的计算结果是()A.B.A.D.【答案】A.【解析】试题分析:原式=.故选A.考点:幂的乘方与积的乘方.3.如图所示,△ABC中,DE∥BC,若,则下列结论中正确的是()A.B.C.D.【答案】C.【解析】试题分析:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴两相似三角形的相似比为1:3,∵周长的比等于相似比,面积的比等于相似比的平方,∴C正确.故选C.考点:相似三角形的判定与性质.4.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A.2.3×105辆B.3.2×105辆C.2.3×106辆D.3.2×106辆【答案】C.考点:科学记数法—表示较大的数.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间【答案】C.【解析】试题分析:∵≈2.235,∴≈1.235,∴≈0.617,∴介于0.6与0.7之间,故选C.考点:估算无理数的大小.6.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.【答案】A.【解析】试题分析:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在R t△DMC中,,∴,∴NM=,∴DM==,故选A.考点:1.切线的性质;2.矩形的性质.二.填空题7.4的平方根是,算术平方根是.【答案】±2;2.考点:1.算术平方根;2.平方根.8.若式子在实数范围内有意义,则x的取值范围是.【答案】.【解析】试题分析:根据题意得:x+1≥0,解得,故答案为:.考点:二次根式有意义的条件.9.计算的结果是.【答案】5.考点:二次根式的乘除法.10.分解因式的结果是.【答案】.【解析】试题分析:===.故答案为:.考点:因式分解-运用公式法.11.不等式组的解集是.【答案】﹣1<x<1.考点:解一元一次不等式组.12.已知方程的一个根是1,则它的另一个根是,m的值是.【答案】3,﹣4.【解析】试题分析:设方程的另一个解是a,则1+a=﹣m,1×a=3,解得:m=﹣4,a=3.故答案为:3,﹣4.考点:1.根与系数的关系;2.一元二次方程的解.13.在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(,).【答案】﹣2;3.【解析】试题分析:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.考点:关于x轴、y轴对称的点的坐标.14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差(填“变小”、“不变”或“变大”).【答案】变大.【解析】试题分析:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:变大.考点:方差.15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= °.【答案】215.考点:圆内接四边形的性质.16.如图,过原点O的直线与反比例函数,的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数,则与x的函数表达式是.【答案】.【解析】试题分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数上,∴设A(a,),∴OC=a,AC=,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△OBD,∴,∵A为OB的中点,∴,∴BD=2AC=,OD=2OC=2a,∴B(2a,),设,∴k=,∴与x的函数表达式是:.故答案为:.考点:反比例函数与一次函数的交点问题.三.解答题17.解不等式,并把它的解集在数轴上表示出来.【答案】.考点:1.解一元一次不等式;2.在数轴上表示不等式的解集.18.解方程:.【答案】.【解析】试题分析:观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:方程两边同乘以,得.解这个方程,得.检验:将代入知,.所以是原方程的根.考点:解分式方程.19.计算:.【答案】.【解析】试题分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.试题解析:原式====.考点:分式的混合运算.20.如图,△ABC中,CD是边AB上的高,且.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【答案】(1)证明见试题解析;(2)90°.【解析】试题分析:(1)根据两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)可知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,再由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.试题解析:(1)∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵,∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考点:相似三角形的判定与性质.21.为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.【答案】(1)10000,4500;(2)3600;(3)例如:与2010年相比,2014年该市大学生50米跑成绩合格率下降了5%(答案不唯一).(3)根据条形图,写出一条即可,答案不唯一.试题解析:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与2010年相比,2014年该市大学生50米跑成绩合格率下降了5%(答案不唯一).考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.22.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.【答案】(1);(2).【解析】试题分析:(1)先列表得到所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.试题解析:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.考点:列表法与树状图法.23.如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)【答案】13.5km.【解析】试题分析:设B处距离码头Oxkm,分别在Rt△CAO和Rt△DBO中,根据三角函数求得CO 和DO,再利用DC=DO﹣CO,得出x的值即可.试题解析:设B处距离码头Oxkm,在Rt△CAO中,∠CAO=45°,∵tan∠CAO=,∴CO=AO•tan∠CAO=(45×0.1+x)•tan45°=4.5+x,在Rt△DBO中,∠DBO=58°,∵tan∠DBO=,∴DO=BO•tan∠DBO=x•tan58°,∵DC=DO﹣CO,∴36×0.1=x•tan58°﹣(4.5+x),∴x=.因此,B处距离码头O大约13.5km.考点:解直角三角形的应用.24.如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.【答案】(1)证明见试题解析;(2)答案不唯一,例如:FG平分∠CFE;GE=FH;∠GME=∠FQH;∠GEF=∠EFH.【解析】试题分析:(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP是菱形,只要证MN=NQ,再证∠MGE=∠QFH得出即可.试题解析:(1)∵EH平分∠BEF,∴∠FEH=∠BEF,∵FH平分∠DFE,∴∠EFH=∠DFE,∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠EFG=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;考点:1.菱形的判定;2.全等三角形的判定与性质;3.矩形的判定.25.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)【答案】答案见试题解析.【解析】试题分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.试题解析:满足条件的所有图形如图所示:考点:1.作图—应用与设计作图;2.等腰三角形的判定;3.勾股定理;4.正方形的性质.26.如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.【答案】(1)证明见试题解析;(2)证明见试题解析.试题解析:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE,∵DC=DE,∴∠DCE=∠AEB,∴∠A=∠AEB;(2)∵∠A=∠AEB,∴△ABE是等腰三角形,∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴∠AEB=60°,∴△ABE是等边三角形.考点:1.圆内接四边形的性质;2.等边三角形的判定与性质;3.圆周角定理.27.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本(单位:元)、销售价(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【答案】(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)y=﹣0.2x+60(0≤x≤90);(3)当该产品产量为75kg 时,获得的利润最大,最大值为2250.(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.试题解析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的与x之间的函数关系式为,∵的图象过点(0,60)与(90,42),∴,∴解得:,∴这个一次函数的表达式为:y=﹣0.2x+60(0≤x≤90);(3)设与x之间的函数关系式为,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W==,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W==,∴当x=90时,W=,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.考点:二次函数的应用.。
2015南京市中考数学试卷

南京市2015年初中毕业生学业考试数学试题选择题(本大题共6小题,每小题2分,共12分) 1 •计算丨—5 + 3丨的结果是()A. - 2B. 2C. — 82 .计算(—xy32的结果是()A. x2y 6B. — x2y 6C. x2y 93.如图,在△ ABC 中,DE AE 1 A.EC 2-△ ADE 的周长 1C.△ ABC 的周长=3 4 .某市2013年底机动车的数量是 2014年底机动车的数量是( ) A. 2.3 氷05 辆 B. 3.2 X 05 辆 C. 2.3 氷06 辆 D. 3.2 X 06 辆5 .估计一5”介于()A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间ABCD 中,AB=4 , AD=5 , AD 、AB 、 BC 分别与O O 相切于E 、F 、G 三点,过点D 作O O 的切线交BC 于点M ,切点为N ,贝U DM 的长为( ) A.号B. 2C. 4 .帀D.2 .5二.填空题(本大题共10小题,每小题2分,共20分) 7. 4的平方根是;4的算术平方根是.&若式子.x+1在实数范围内有意义,则 x 的取值范围是10. ____________________________________________ 分解因式(a — b )(a — 4b ) + ab 的结果是 _____________________________________________ .2x+1 111. 不等式组2x+1 V 3的解集是 __________ .12. _________________________________________________________ 已知方程 x2+ mx +3=0的一个根是1,则它的另一个根是 _________________________________ , m 的值是 ______ . 13.在平面直角坐标系中, 点A 的坐标是(2, — 3),作点A 关于x 轴的对称点,得到点A ,再作点A 关于y 轴的对称点,得到点 A”,则点A”的坐标是( _________ , _). 14 .某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.DE 1 B.BC =2A△ ADE 的面积 1/ \D. △ ABC 的面积=3B CB第3题图C9. 5X 15计算「3的结果是D. 8D. — x 步96.如图,在矩形AD 1 // BC , AD =石,则下列结论中正确的是 (2 X106辆,2014年新增3X105辆.用科学记数法表示该市16•如图,过原点 0的直线与反比例函数1 小A 为0B 的中点.若函数 y 1= -,则y 2与x 的函数表达式是x三.解答题(本大题共11小题,共88分)J _______ J _____ I ______ I ______ I ______ I JpT 2 -0123第17题图(1)求证:△ ACD s △ CBD ; ⑵求/ ACB 的大小.工种 人数 每人每月工资 元电工 5 7000 木工4 6000 瓦丄55000现该工程队进行了人员调整:减少木工 2名,增加电工、瓦工各 程队员工月工资的方差 ________ (填“变小”,“不变”或“变1名.与调整前相比,该工 ). 15.如图,在O O 的内接五边形 ABCDE中,/ CAD=35°,则/1yy1=xB +/ E=y 1、y 2的图像在第一象限内分别交于点 A 、B ,且17. (6分) 解不等式2(x + 1) — 1 > 3x +2,并把它的解集在数轴上表示出来. 18. (7 分)解方程x —h19. (7分)、A _2 计算 a2 — b2 a2 —ab亠 a a+b20. (8分)如图,△ ABC 中,CD 是边AB 上的高,且AD CD CD BD .E21. (8分)为了了解2014年某地区10万名大、中、小学生 50米跑成绩情况,教育部门从 这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图.(1) 本次检测抽取了大、中、小学生共名,其中小学生名;(2) 根据抽样的结果,估计 2014年该地区10万名大、中、小学生中,50米跑成绩合格的中 学生人数为名;(3) 比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论. 22. ( 8分)某人的钱包内有 10元、20元和50元的纸币各1张.从中随机取出 2张纸币. (1) 求取出纸币的总额是 30元的概率;(2) 求取出纸币的总额可购买一件 51元的商品的概率.23. (8分)如图,轮船甲位于码头 O 的正西方向 A 处,轮船乙位于码头 O 的正北方向C 处,测得/ CAO=45 .轮船甲自西向东匀速行驶, 同时轮船乙沿正北方向匀速行驶, 它们的 速度分别为45km/h 和36km/h .经过0.1h ,轮船甲行驶至 B 处,轮船乙行驶至 D 位,测得/24. (8 分)如图,AB // CD ,点 E 、F 分别在 AB 、CD 上,连接 EF ,/ AEF 、/ CFE 的 平分线交于点 G ,/ BEF 、/ DFE 的平分线交于点 H . (1)求证:四边形 EGFH 是矩形.DBO=58°,此时B 处距离码头 O 有多远?(参考数据:sin58 ° 〜0.85, cos58 ° 〜0.53, tan58 ° 〜 1.60)D CO北东⑵小明在完成⑴的证明后继续进行了探索. 过G作MN // EF,分别交AB、CD于点M、N,过H作PQ // EF,分别交AB、CD于点P、Q,得到四边形MNQP .此时,他猜想四边形MNQP是菱形,请在下列框图中补全他的证明思路.小明的证明思路由AB // CD , MN // EF, PQ // EF,易证四边形MNQP是平行四边形.要证?MNQP是菱形,只要证NM=NQ .由已知条件,MN // EF,可证NG = NF,故只要证GM = FQ,即证△ MGE QFH .易证_______________ , __________ ,故只要证Z MGE = Z QFH,工QFH = Z GEF ,Z QFH= Z EFH , ,即可得证.一刃25. (10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形. (要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)26. (8分)如图,四边形ABCD是O O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.⑴求证:Z A= Z AEB .⑵连接0E,交CD于点F, 0E丄CD •求证:△ ABE是等边三角形.E27. 某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义.(2)求线段AB所表示的y i与x之间的函数表达式.⑶当该产品产量为多少时,获得的利润最大?最大利润是多少?•15-南京市2015年初中毕业生学业考试 数学试卷参考答案及评分标准说明:本许分标准毎JS 给出了一种或几种I?法供参考 如果考生的解法与本鱗答不同.希照本评分标准的精神给分.-、选择JH «*大越共6小每小題2分.共12分丿题号1 2 3 4 56 袴案B ACCCA二.《本大Hi 共10小Uh 毎小88 2分.并20分〉• 7. ±2: 2 8. *二一1 9. 5 10. (a-2bf 11. -l<x<l 12. 3: -4B. -2: 314.变大15. 21516.力斗三、 解答M (本大18共II 小越.共対分)17.(本題6分〉解,去括号.冯2x+2— 1工3°+2・移项.褂2r-3rP2-2+l ・ 仑井冋类项. 系数化为1.得JC W-I.这个不等式的觴儀亦敬轴卜•丧术如*图所示.18.(本题7分〉M :方程两边集心一3).得2r=30r —3).M 得 x=9.检验^当*=9对.xU-3)H0・所以•原方丹的解为才=9・ 19・(本越7分)Ms(-^7—侖24/—(CJ + Q) a+b u(a+b)(a —b) nu — b aa(a+6Ra —6) a数学试堆審垮拎*及评分杯准魁丨炎(其5贝〉2(o 厶以卩一0) u(a-b). 2aa(a+Z>)(Q —b) a+b・16 •20・(本程8分)(l> iff 明,•: CD 足辿上的高.••• Z"C=ZCD 〃=90°・ © AD CD只时而(2) M : v ZUCDsZSCBD.;• W” 二厶 SCO ・ 在ZUG 中./*DC=*r ・•••" + ZACD ・2 ・10 0001 4 S00» •••*•••••••«•・・・«••••••••• --•••・•・•••・•》••・・・・・• x ・・・・・・・・・・・/*・・.・・・・・・•••・・■・••••••・•••• 2夕>16000・.. .... .. ......................... .. ................... .. ....... .... ......... ...... .. ... .. (5)木IB 答案不惟 ・卜列解法供參考.例釦・9 2010年相比・2014^^市大学牛50米跑成绩合格卓下降了 5% ............................ .................... ...................... .. ・・・・・•・・“8分C^H K 分)H>果人从钱包内随机取出2张烁币•可腌出现的结果有3种.W (!0> 20〉. <10. 50). <20. 50><并且它们出现的可能性相等.仃)取出城币的总飯足30元(记为弔件4)的箱果冇丨种■即(10. 20).所以P (Q=7 ......................... .... ••••・••— ................................................................................. 4 分(2)取出瓯币的总帧刊购头r 51元的丽品(记为耶fM )怖給眾有21 ap (io. 50).23.(本888 分) 解:设〃处血离码头0xkm ・在 IUAC4O 中.ZC4O=45°・COV tan/C4O 二而.A CO«/lO*UinZC4O (45X0.1 fx)・ tan45° 4.5^4.左Ri △加O 中・ZDBO 5^.V UmZDBO^ 器./. DO RO • tm/DUO—x • tan58c ・ 7 DC^DO-CO. :.36XO.|=x« tan58°-(4 5+x).••• ZBCD4 "CD 90%HP Z.ACB 3。
2015年南京中考数学解析版

江苏省南京市2015年初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是()A. - 2B. 2C. - 8D. 8 考点:有理数的加法;绝对值. 分析:先计算﹣5+3,再求绝对值即可. 解答:解:原式=|﹣2| =2. 故选B . 点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数. 2.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6 C. x ²y 9 D. -x ²y 9 考点:幂的乘方与积的乘方. 分析:根据幂的乘方和积的乘方的运算方法:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n(n是正整数);求出计算(﹣xy 3)2的结果是多少即可. 解答:解:(﹣xy 3)2=(﹣x )2•(y 3)2=x 2y 6,即计算(﹣xy 3)2的结果是x 2y 6. 故选:A . 点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =amn(m ,n 是正整数);②(ab )n =a n b n(n 是正整数). 3.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()A.AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D.△ADE 的面积△ABC 的面积= 13考点:相似三角形的判定与性质. 分析:第3题图由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆.用科学记数法表示该市2014年底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:2014年底机动车的数量为:3×105+2×106=2.3×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.估计5 -12介于( )A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间考点:估算无理数的大小.第6题图F分析: 先估算的范围,再进一步估算,即可解答.解答: 解:∵ 2.235, ∴﹣1≈1.235, ∴≈0.617,∴介于0.6与0.7之间,故选:C . 点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( ) A.133B.92C.4313D.2 5考点:切线的性质;矩形的性质. 分析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,得到∠A=∠B=90°,CD=AB=4,由于AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE ,FBGO 是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果. 解答:解:连接OE ,OF ,ON ,OG , 在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点, ∴∠AEO=∠AFO=∠OFB=∠BGO=90°, ∴四边形AFOE ,FBGO 是正方形, ∴AF=BF=AE=BG=2, ∴DE=3,∵DM 是⊙O 的切线, ∴DN=DE=3,MN=MG , ∴CM=5﹣2﹣MN=3﹣MN ,在R t △DMC 中,DM 2=CD 2+CM 2,∴(3+NM )2=(3﹣NM )2+42,∴NM=, ∴DM=3=,故选A .点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.二.填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.考点:算术平方根;平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.若式子x+1在实数范围内有意义,则x的取值范围是.考点:二次根式有意义的条件.分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.计算5×153的结果是.考点:二次根式的乘除法.分析:直接利用二次根式的性质化简求出即可.解答:解:=×=5.故答案为:5.点评:此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键. 10.分解因式(a - b )(a - 4b )+ab 的结果是 .考点:因式分解-运用公式法. 分析:首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可. 解答: 解:(a ﹣b )(a ﹣4b )+ab =a 2﹣5ab+4b 2+ab =a 2﹣4ab+4b 2=(a ﹣2b )2.故答案为:(a ﹣2b )2. 点评:此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .考点:解一元一次不等式组. 分析:分别解每一个不等式,再求解集的公共部分. 解答:解:,解不等式①得:x >﹣1, 解不等式②得:x <1,所以不等式组的解集是﹣1<x <1. 故答案为:﹣1<x <1. 点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 考点:根与系数的关系;一元二次方程的解. 分析:利用一元二次方程的根与系数的关系,两根的和是﹣m ,两个根的积是3,即可求解. 解答:解:设方程的另一个解是a ,则1+a=﹣m ,1×a=3, 解得:m=﹣4,a=3. 故答案是:3,﹣4. 点评:本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.在平面直角坐标系中,点A 的坐标是(2,- 3),作点A 关于x 轴的对称点,得到点A',再作点A'关于y 轴的对称点,得到点A'',则点A''的坐标是( , ). 考点:关于x 轴、y 轴对称的点的坐标. 分析:分别利用x 轴、y 轴对称点的性质,得出A ′,A ″的坐标进而得出答案. 解答:解:∵点A 的坐标是(2,﹣3),作点A 关于x 轴的对称点,得到点A ′, ∴A ′的坐标为:(2,3),∵点A ′关于y 轴的对称点,得到点A ″, ∴点A ″的坐标是:(﹣2,3). 故答案为:﹣2;3. 点评:此题主要考查了关于x 轴、y 轴对称点的性质. (1)关于x 轴对称点的坐标特点: 横坐标不变,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P ′的坐标是(x ,﹣y ). (2)关于y 轴对称点的坐标特点: 横坐标互为相反数,纵坐标不变.即点P (x ,y )关于y 轴的对称点P ′的坐标是(﹣x ,y ).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”). 考点: 方差. 分析:利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大. 解答:解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大. 故答案为:增大. 点评:此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键.15.如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B +∠E= °.第15题图y 1=1考点:圆内接四边形的性质.分析:连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD,然后求解即可.解答:解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠CED=∠CAD=35°,∴∠B+∠E=180°+35°=215°.故答案为:215.点评:本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.16.如图,过原点O的直线与反比例函数y1、y2的图像在第一象限内分别交于点A、B,且A为OB的中点.若函数y1= 1x,则y2与x的函数表达式是.考点:反比例函数与一次函数的交点问题.分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,由于点A在反比例函数y1=上,设A(a,),求得点B的坐标代入反比例函数的解析式即可求出结果.解答:解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1=上,∴设A(a,),∴OC=a,AC=,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△OBD,∴,∵A 为OB 的中点, ∴=,∴BD=2AC=,OD=2OC=2a , ∴B (2a ,), 设y 2=, ∴k=2a •=4,∴y 2与x 的函数表达式是:y=. 故答案为:y=.点评:本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用. 三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来. 考点: 解一元一次不等式;在数轴上表示不等式的解集. 分析:不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可. 解答:解:去括号,得2x+2﹣1≥3x+2, 移项,得2x ﹣3x ≥2﹣2+1, 合并同类项,得﹣x ≥1, 系数化为1,得x ≤﹣1,这个不等式的解集在数轴上表示为:第17题图–1–2–31230点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 18.(7分)解方程2x -3= 3x考点:解分式方程. 专题: 计算题. 分析:观察可得最简公分母是x (x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程两边同乘以x (x ﹣3),得2x=3(x ﹣3). 解这个方程,得x=9.检验:将x=9代入x (x ﹣3)知,x (x ﹣3)≠0. 所以x=9是原方程的根. 点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.(7分)计算⎝⎛⎭⎫2a ²-b ² - 1a ² - ab ÷ a a +b考点:分式的混合运算. 分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可. 解答:解:(﹣)÷=[﹣]×=[﹣]×=×=.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD = CDBD.(1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.考点:相似三角形的判定与性质. 分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°. 解答:(1)证明:∵CD 是边AB 上的高, ∴∠ADC=∠CDB=90°,∵=.∴△ACD ∽△CBD ;(2)解:∵△ACD ∽△CBD , ∴∠A=∠BCD ,在△ACD 中,∠ADC=90°, ∴∠A+∠ACD=90°, ∴∠BCD+∠ACD=90°, 即∠ACB=90°. 点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理. 21.(8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图.第20题图A(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.解答:解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与2010年相比,2014年该市大学生50米跑成绩合格率下降了5%(答案不唯一).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.考点:列表法与树状图法.专题:计算题.分析:(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.解答: 解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种, 所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种, 所以取出纸币的总额可购买一件51元的商品的概率为.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率. 23.(8分)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km /h 和36km /h .经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 位,测得∠DBO=58°,此时B 处距离码头O 有多远?(参考数据:sin 58° ≈ 0.85,cos 58° ≈ 0.53,tan 58° ≈ 1.60)考点:解直角三角形的应用. 分析:设B 处距离码头Oxkm ,分别在Rt △CAO 和Rt △DBO 中,根据三角函数求得CO 和DO ,再利用DC=DO ﹣CO ,得出x 的值即可. 解答:解:设B 处距离码头Oxkm , 在Rt △CAO 中,∠CAO=45°,∴CO=AO •tan ∠CAO=(45×0.1+x )•tan45°=4.5+x , 在Rt △DBO 中,∠DBO=58°, ∵tan ∠DBO=,∴DO=BO •tan ∠DBO=x •tan58°, ∵DC=DO ﹣CO ,∴36×0.1=x •tan58°﹣(4.5+x ), ∴x=≈=13.5.因此,B 处距离码头O 大约13.5km . 点评:本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键. 24.(8分)如图,AB ∥ CD ,点E 、F 分别在AB 、CD 上,连接EF ,∠AEF 、∠CFE 的平分线交于点G ,∠BEF 、∠DFE 的平分线交于点H . (1) 求证:四边形EGFH 是矩形.(2) 小明在完成(1)的证明后继续进行了探索.过G 作MN ∥ EF ,分别交AB 、CD 于点M 、N ,过H 作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.考点:菱形的判定;全等三角形的判定与性质;矩形的判定. 分析:(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH 是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP 是菱形,只要证MN=NQ ,再证∠MGE=∠QFH 得出即可. 解答:(1)证明:∵EH 平分∠BEF ,∴∠FEH=∠BEF , ∵FH 平分∠DFE ,小明的证明思路第24题图C∵AB ∥CD ,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE )=×180°=90°, ∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH )=180°﹣90°=90°, 同理可得:∠EGF=90°, ∵EG 平分∠AEF , ∴∠EFG=∠AEF , ∵EH 平分∠BEF , ∴∠FEH=∠BEF ,∵点A 、E 、B 在同一条直线上, ∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF )=×180°=90°,即∠GEH=90°,∴四边形EGFH 是矩形;(2)解:答案不唯一:由AB ∥CD ,MN ∥EF ,PQ ∥EF ,易证四边形MNQP 是平行四边形,要证▱MNQP 是菱形,只要证MN=NQ ,由已知条件:FG 平分∠CFE ,MN ∥EF , 故只要证GM=FQ ,即证△MGE ≌△QFH ,易证 GE=FH 、∠GME=∠FGH .故只要证∠MGE=∠QFH ,易证∠MGE=∠GEF ,∠QFH=∠EFH ,∠GEF=∠EFH ,即可得证.点评:此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.25.(10分)如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)第25题图A考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A 为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.解答:解:满足条件的所有图形如图所示:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法.26.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB.(2)连接OE,交CD于点F,OE ⊥CD.求证:△ABE是等边三角形.考点:圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.分析:(第26题)(1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE ,然后利用等边对等角可得∠DCE=∠AEB ,进而可得∠A=∠AEB ;(2)首先证明△DCE 是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB ,可得△ABE 是等腰三角形,进而可得△ABE 是等边三角形. 解答: 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE , ∵DC=DE ,∴∠DCE=∠AEB , ∴∠A=∠AEB ;(2)∵∠A=∠AEB , ∴△ABE 是等腰三角形, ∵EO ⊥CD , ∴CF=DF ,∴EO 是CD 的垂直平分线, ∴ED=EC , ∵DC=DE , ∴DC=DE=EC ,∴△DCE 是等边三角形, ∴∠AEB=60°,∴△ABE 是等边三角形. 点评:此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义. (2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?/kgy /(第27题)考点:二次函数的应用.分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.解答:解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.点评:本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下列根式中,与3是同类二次根式的是( ▲ ) A . 6B .12C .18D .242.下列关于x 的方程中,一定是一元二次方程的是 ( ▲ )A . a x 2+ bx+c =0 B.(x +2)(x -3)=()21-x C. x 2-1=0 D. 11=+x x3.下面4个算式中,正确的是( ▲ ) A .27 ÷3=3B .3+2= 5C .(-6)2=-6D .33-23=14.矩形ABCD 中,AB =8,BC =3 5,点P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是( ▲ ) A . 点B 、C 均在圆P 外 B . 点B 在圆P 外、点C 在圆P 内 C . 点B 在圆P 内、点C 在圆P 外 D . 点B 、C 均在圆P 内5.关于x 的一元二次方程a (x +2)2+2=0的解的情况是( ▲ )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定6.如图,在平面直角坐标系中,边长为1的正方形ABCD 中,AD 边的中点处有一 动点P ,动点P 沿P →D →C →B →A →P 运动一周,则P 点的纵坐标y 与点P 走过 的路程s 之间的函数关系用图象表示大致是( ▲ )第Ⅱ卷(非选择题 共108分)注意事项:1.第Ⅱ卷共5页,用钢笔或圆珠笔直接在试卷中作答.2.答卷前将密封线内的项目填写清楚二、填空题(本大题共10题,每题2分,共20分.把答案填在题中的横线上.) 7.如果1+x 是二次根式,则x 的取值范围是___▲ ___ .8.方程x 2=5x 的解为 ▲ .9.若一个等腰三角形的一个外角等于110°,则这个等腰三角形的顶角应该为 ▲ .10. 如图,某小区规划在一个长30m 、宽20m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块花草的面积都为78m 2,那么通道的宽应设计成多 少m ?设通道的宽为x m ,由题意可列方程 ▲ . 11. 关于x 的方程-x +k = 1x (-2<k <2)的解的个数是 ▲ 个. 12. 若a,b 是方程x 2+x -4=0的两个实数根,则a+b =__▲__,ab = ▲ .13. 用文字语言写出“垂径定理”的具体内容: ▲ . 14. 已知x 2-4x +2=0,则 (x -1)2-2(x +1)的值为_______▲_________.15.如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是________▲________.16.如图,矩形ABCD 中,E 点在AD 上,且∠ABE =30°.将矩形折叠,点A 、D 别落在A' ,D' 处,折痕为BE 、CE .若∠A'ED'=15°,则∠BCE 度数为 ▲ °.(第15题图) (第16题图)三、计算题 (本大题共4小题,共31分.计算应写出过程或演算步骤.) 17.(本题满分10分)D'A B CDEA'(1)化简: ( 3 )2+ │1- 2 │-(12)-1(2)化简:322b a ·)41(b a(a >0,b ≥0) 18.(本题满分5分)计算:( 3 + 2 )2014( 3 - 2 )201519.(本题满分10分)(1)我们研究过的解一元二次方程的常见方法有四种.一般来说,其中解一元二次方程的通法是:_______________________.(2)在探索一元二次方程的解法的过程,最清晰的体现了下列哪一种数学基本思想A . 转化B .符号表示C .数形结合D .逐步逼近(3)用三种不同的方法解一元二次方程: (x +3)=x (x +3)(4)请运用解一元二次方程的思想方法解方程x 3-4x =0.20.(本题满分6分)已知关于x 的方程x 2-6x +m 2-3m -5=0的一个根是-1,求m 的值.四、解答题 (本大题共8题,共57分.解答应写出文字说明、证明过程或演算步骤.) 21.(本题满分6分)补全图形并写出已知、求证,完成证明过程. 命题:等腰三角形底边的中点到两腰的距离相等. 已知:如图, ▲ . 求证: ▲ . 证明:22.(本题满分6分)已知:如图,在□ABCD 中,点E 、F 在BD 上,且∠AEB =∠CFD .BAC(第21题)(1)求证:四边形AECF 是平行四边形;(2)当四边形AECF 是菱形时,四边形ABCD 应满足什么条件?(不需要说明理由)23.(本题满分6分) 先阅读,再解答:由1)2()3()23)(23(22=-=+-可以看出,结果中不含有二次根式.若两个含有二次根式的代数式相乘,积不含有二次根式,则称这两个代数式互为有理化因式. 在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号. 例如:23)2()3(23)23)(23(2323122+=-+=+-+=-根据上述过程,回答下列问题:(1)3的有理化因式是 ▲ ,12+的有理化因式是 ▲(2)化去下列式子分母中的根号:52= ▲ ,633+ = ▲24.(本题满分8分)在“文化钟英•全民阅读”活动中,学校“钟英读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2012年全校有1000名学生,2013年全校学生人数比2012年增加10%,2014年全校学生人数比2013年增加100人.(1)求2014年全校学生人数;(2)2013年全校学生人均阅读量比2012年多1本,阅读总量比2012年增加1700本(注:阅读总量=人均阅读量×人数)①求2012年全校学生人均阅读量;②2012年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2012年、2014年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2014年全校学生人均阅读量比2012年增加的百分数也是a,那么2014年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.25.(本题满分9分)如图,将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC边落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展开后得到△AEF(如图②).EF与AD交于点O.求证:△AEF为等腰三角形.(1)下框中是小明对此题的解答。
小明的解答是否正确?如果不正确,请用圈出他解答过程中发生错误的步骤,指出错误的原因并完成正确的解答.(2)如图③,在图②中连接DE、DF.求证:四边形AE DF是菱形.BAD C EF (图③)OAC D图①ACD图②F EO26.(本题满分10分)南京青奥会期间,某青奥商品特许零售店购进600个青奥纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但零售店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售销售一周后,零售店对剩余青奥纪念品清仓处理,以每个4元的价格全部售出,如果这批青奥纪念品共获利1250元,问第二周每个青奥纪念品的销售价格为多少元? 27.(本题满分12分) (1)①如图1,在梯形ABCD 中,AD ∥BC ,E 、F 分别是AB 、CD 的中点,连接EF .证明EF =12(AD +BC );②如图2,在四边形ABCD 中,若AD 与BC 不平行,E 、F 分别是AB 、CD 的中点,连接EF .判断EF 与12(AD +BC )的大小关系,并说明理由;③综合①、②可得结论:在任意四边形ABCD 中,若E 、F 分别是AB 、CD 的中点,则EF 与12(AD +BC )的大小关系是 ▲ .(2)从(1)的①到③,我们将“梯形ABCD ” 改为“四边形ABCD ”后进行的探索,实际上就是一个“一般化”的过程——将梯形中位线的性质“一般化”成任意四边形一组对边中点连线段的性质.请将命题“菱形的面积等于它的两条对角线长的积的一半”一般化后探索新的结论,并说明理由.(友情提醒:命题“菱形的面积等于它的两条对角线长的积的一半”不需证明!)南京市钟英中学2014-2015学年度第一学期阶段检测九年级数学试题答案一、选择题(本大题共12题,每题2分,共12分.每题的四个选项中,只有一个选项是符合要求的.)二、填空题(本大题共10题,每题2分,共20分.把答案填在题中的横线上.)三、计算题 (本大题共4小题,第17题10分,第18题5分,第19题10分,第20题6分,共31分.计算应写出过程或演算步骤.)17.(1)解: 原式=3+2-1-2 ································································································ 3分= 2 ················································································································· 5分(2)解: 原式=b ab ba 222(a >0,b ≥0).···························································· 3分 =222ab (a >0,b ≥0). ··············································································· 5分18. 解:原式 =( 3 + 2 )2014( 3 ― 2 )2014( 3 ― 2 ) ····································· 1分 =[( 3 + 2 )( 3 ― 2 )]2014( 3 ― 2 ) ········································· 3分=12014( 3 ― 2 )··························································································· 4分 = 3 ― 2 ············································································································ 5分方法二:解:x +3-x 2-3x =0 x 2+2x =3,x 2+2x +12=3+12,(x +1)2=4, ……………………5分 x +1=±2,x =-1±2,∴x 1=-3,x 2=1. ……………………………………………………6分方法三:解:a =1,b =2,c =-3,b 2-4ac =16 , …………………………………………………………7分 x =-b ±b 2-4ac 2a =-2±16 2³1=-2±42. ∴x 1=-3,x 2=1. ……………………………………………………8分 (4) x (x 2-4)=0, x (x +2)(x -2)=0. x =0,或x +2=0,或x -2=0.∴x 1=0,x 2=-2,x 3=2.………………………………10分四、解答题 (本大题共8题,共57分.解答应写出文字说明、证明过程或演算步骤.) 21.画图略 …………………………………………1分已知:如图,△ABC 中,AB=AC ,D 是BC 边的中点,DE ⊥AB ,DF ⊥AC ,E 、F 为垂足. 求证:DE=DF . …………………………………3分 证明:连结AD∵AB=AC ,D 是BC 边上的中点, ∴ AD 平分∠BAC …………5分 又∵DE ⊥AB ,DF ⊥AC ,E 、F 为垂足,∴ DE=DF …………6分 (其它解法参照给分)22.解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD .∴∠ABE =∠CDF . ··················································································· 1分 又∵∠AEB =∠CFD ,∴△ABE ≌△CDF . ······················································································· 2分 ∴AE =CF .································································································ 3分 又∵∠AEB =∠CFD , ∴∠AEF =∠CFE .∴AE ∥CF .∴四边形AECF 是平行四边形. ···························································· 4分(2)当四边形AECF 是菱形时,四边形ABCD 应满足AB =BC (或AC ⊥BD ).····························································································································· 6分ABCDE F(第22题)23. 解:(1)3……1分,2-1 ……3分;(2)552……4分,63 ……6分24.解:(1)由题意,得2013年全校学生人数为:1000×(1+10%)=1100人,∴2014年全校学生人数为:1100+100=1200人;……………………2分(2)①设2012人均阅读量为x本,则2013年的人均阅读量为(x+1)本,由题意,得1100(x+1)=1000x+1700,解得:x=6.答:2012年全校学生人均阅读量为6本;……………………4分25.解:(1)小明的解答错误.因为由折叠无法得到OE=OF.……………………2分由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.又由折叠知,∠AOE=∠AOF=90°,∴∠AEF=∠AFE,……………………4分∴AE=AF,即△AEF为等腰三角形.…………………5分(2)由折叠知,EA=ED,FA=FD.……………………………………6分由(1)知AE=AF.…………………………7分∴EA=ED=FA=FD,………………………………………………8分∴四边形AEDF是菱形.……………………………………9分BAD C EF (图③)OA 图①A图②F EO27. (1)①证明:如图1,连接AF 并延长,交BC 延长线于点G . ···························· 1分∵AD ∥CG ,∴∠ADF =∠GCF ,∠DAF =∠CGF . 又∵DF =CF ,∴△ADF ≌△GCF . ··························································································· 2分 ∴AD =GC ,AF =GF . 又∵AE =EB ,∴EF 是△ABG 的中位线. ∴EF =12BG =12(CG +BC ).∴EF =12(AD +BC ). ····················································································· 3分②解:EF <12(AD +BC ),理由如下:方法一:如图2,连接AF 并延长,过点C 作CG ∥AD ,与AF 的延长线交于点G ,连接BG .与①类似,可得AD =GC ,EF =12BG . ····················································· 4分 在△ABG 中,BC +CG >BG , ∴AD +BC >BG .图1ABCDE FGA BCDEF图2GA B CDEF图3G∴EF <12(AD +BC ). ·············································································· 6分方法二:如图3,连接BD ,取BD 中点G ,连接GE 、GF .∵E 、F 分别是AB 、CD 的中点,∴GE =12AD ,GF =12BC . ···································································· 4分 在△EGF 中,GE +GF >EF ,∴12AD +12BC >EF . ∴EF <12(AD +BC ). ············································································ 6分 ③EF ≤12(AD +BC ). ·············································································································· 8分(2)解:新的结论:任意四边形的面积小于等于它的两条对角线长的积的一半. ·········· 9分 理由如下:如图4,在四边形ABCD 中,对角线AC 、BD 相交于点O .作BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F .S 四边形ABCD =S △ABC +S △ADC =12AC ²BE +12AC ²DF =12AC (BE +DF ). ······················· 10分①当AC ⊥BD 时,点E 、F 都与O 重合,则S 四边形ABCD =12AC ²BD ;②当AC 与BD 不垂直时,S 四边形ABCD =12AC (BE +DF )<12AC (BO +DO )=12AC ²BD .即S 四边形ABCD <12AC ²BD .综合①、②可得结论:任意四边形的面积小于等于它的两条对角线长的积的一半. ······································································································································ 12分 图4 A BCDEF O。