2018-2019学年高中数学苏教版选修2-3:课时跟踪训练(十八) 独立性检验-含解析
苏教版数学高二数学苏教版选修2-3课后导练3.1独立性检验

课后导练基础达标1.下列说法正确的个数是( )①对事件A 与B 的检验无关时,即两个事件互不影响②事件A 与B 关系越密切,则χ2就越大 ③x 2的大小是判定事件A 与B 是否相关的唯一根据 ④若判定两个事件A 与B 有关,则A 发生,B 一定发生A.1B.2C.3D.4思路解析:两个事件检验无关,只是说明两事件的影响较小;而判定两事件是否相关除了公式外,还可以用三维柱形图和二维条形图等方法来判定;两事件有关,也只是说明当一个事件发生时,另一个事件发生的概率较大,但不一定必然发生.所以只有命题②正确. 答案:A2.为了考察高中生的性别与是否喜欢数学课程之间的关系,在某校高中生中随机抽取了300名学生,得到如下列联表:喜欢数学课程不喜欢数学课程总计 男 37 85 122 女 35143178 总计72 228300你认为性别与是否喜欢数学课程之间有关系的把握有( )A.0B.95%C.99%D.100% 思路解析:利用独立性检验,由公式计算得χ2≈4.514>3.841,所以有95%的把握判定“性别与是否喜欢数学课程之间有关系”. 答案:B3.甲、乙两个班级进行一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下的列联表.班级与成绩列联表优秀 不优秀 总计 甲班 10 35 45 乙班 73845 总计17 7390利用列联表的独立性检验判断成绩与班级是否有关系?解析:∵χ2=73174545)7353810(902⨯⨯⨯⨯-⨯⨯≈0.625<3.841,∴我们认为成绩与班级没有关系.4.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶,而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶.请用独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效? 解析:根据题目所给数据得到如下列联表:总计 患心脏病 患其他病 秃顶 214 175 389 不秃顶 451 597 1 048 总计6657721 437χ2=7726651048389)451175597214(14732⨯⨯⨯⨯-⨯⨯≈16.373>6.635,所以有99%的把握认为“秃顶与患心脏病有关”.因为这组数据来自住院的病人,因此所得到的结论适合住院的病人群体. 5.调查某医院某段时间内婴儿出生时间与性别关系,得到下面的数据表. 出生时间 性别晚上 白天 合计 男婴 24 31 55 女婴 82634合计32 57 89试问能以多大把握认为婴儿的性别与出生时间有关系?能否判定性别与出生时间有关? 解析:根据列联表中的数据代入公式求得χ2的值,进行比较判断得出相应结论.将表中数据代入公式得χ2=57323455)8312624(892⨯⨯⨯⨯-⨯⨯≈3.689>2.709,所以我们有90%的把握认为在这次调查中婴儿的性别与出生时间有关系.6.某推销商为某保健药品做广告,在广告中宣传“在服用该药品的105人中有100人未患A 疾病”,经调查发现,在不使用该药品的418人中仅有18人患A 疾病.请用所学的知识分析该药品对患A 疾病是否有效? 解析:将题中条件列成2×2列联表,利用随机变量公式计算出χ2的值,与临界值作比较,从而得出结论.将问题中的数据写成2×2列联表:患A 病 不患A 病 合计 使用 5 100 105 不使用 18 400 418 合计23500523将数据代入公式得χ2=))()()(()(2d b c a d c b a bc ad n ++++-≈0.041 5<0.455.故没有充分理由认为该保健药品对患A 疾病有效.7.调查者通过询问男、女大学生在购买食品时是否看营养说明得到的数据如下表所示:看营养说明不看营养说明总计 男大学生 23 32 55 女大学生 92534总计32 57 89利用列联表的独立性检验估计看营养说明是否与性别有关系?思路分析:根据列联表中的数据代入公式求得χ2的值,进行比较判断得出相应结论.解:由公式得χ2=57323455)9322523(89))()()(()(22⨯⨯⨯⨯-⨯⨯=++++-d b c a d c b a bc ad n ≈2.149<3.841,所以我们没有理由认为看营养说明与男女性别有关,尽管在这次调查中男性看营养说明的比例5523比女性看营养说明的比例349高,但我们不能认为这些男、女大学生中男性比女性看营养说明的多. 综合运用8.某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了189名员工进行调查,所得数据如下表所示:积极支持企业改革不太赞成企业改革合计 工作积极 54 40 94 工作一般 326395 合计86 103189对于人力资源部的研究项目,根据上述数据能得出什么结论?解析:由公式,得χ2=103869594)32406354(1892⨯⨯⨯⨯-⨯⨯≈10.759.因为10.759>6.635,所以有99%的把握说:员工“工作积极”与“积极支持企业改革”是有关的,可以认为企业的全体员工对待企业改革的态度与其工作积极性是有关的.9.某地区羊患某种病的概率是0.4,且每只羊患病与否是彼此独立的.今研制一种新的预防药,任选5只羊做试验,结果这5只羊服用此药后均未患病,问此药是否有效? 解析:现假设药无效,5只羊都不生病的概率是(1-0.4)5≈0.078.这个概率很小,该事件几乎不会发生,但现在它确实发生了,说明我们的假设不对,药是有效的. 这里的分析思想有些像反证法,但并不相同.给定假设后,我们发现,一个概率很小几乎不会发生的事件却发生了,从而否定我们的“假设”.应该指出的是,当我们作出判断“药是有效的”时,是可能犯错误的.犯错误的概率是0.078.也就是说,我们有近92%的把握认为药是有效的.10.为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下列联表:性别与喜欢数学课程列联表喜欢数学课程不喜欢数学课程总计 男 37 85 122 女 35143178总计72 228 300由表中数据计算得χ2≈4.513.高中生的性别与是否喜欢数学课程之间是否有关系?为什么? 解析:可以有约95%以上的把握认为“性别与喜欢数学课之间有关系”.作出这种判断的依据是独立性检验的基本思想,具体过程如下:分别用a ,b ,c,d 表示样本中喜欢数学课的男生人数、不喜欢数学课的男生人数、喜欢数学课的女生人数、不喜欢数学课的女生人数.如果性别与是否喜欢数学课有关系,则男生中喜欢数学课的比例b a a +与女生中喜欢数学课的人数比例dc c+应该相差很多,即))((d c b a bdac d c c b a a ++-=+-+应很大.将上式等号右边的式子乘以常数因子))(())()((d b c a d c b a d c b a +++++++,然后平方得χ2=))()()(()(2d b c a d c b a bd ac n ++++-.。
【苏教版】2018-2019学年高二数学选修2-1课时跟踪训练全集(含答案)

课时跟踪训练(一) 四 种 命 题1.给出下列语句:①空集是任何集合的真子集;②三角函数是周期函数吗?③一个数不是正数就是负数;④老师写的粉笔字真漂亮!⑤若x ∈R ,则x 2+4x +5>0.其中为命题的序号是________,为真命题的序号是________.2.设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是________________________.3.命题“对于正数a ,若a >1,则lg a >0”及其逆命题、否命题、逆否命题四个命题中真命题的个数为________.4.命题“若α=π4,则tan α=1”的逆否命题是__________. 5.给出下列命题:①“若x 2+y 2≠0,则x ,y 不全为零”的否命题;②“若{a n }既是等差数列,又是等比数列,则a n =a n +1(n ∈N *)”的逆命题;③“若m >1,则不等式x 2+2x +m >0的解集为R ”的逆否命题.其中所有真命题的序号是________.6.把下列命题写成“若p ,则q ”的形式,并判断真假.(1)奇函数的图像关于原点对称;(2)当x 2-2x -3=0时,x =-3或x =1;(3)a <0时,函数y =ax +b 的值随x 值的增大而增大.7.证明:若m 2+n 2=2,则m +n ≤2.8.判断下列命题的真假,并写出它们的逆命题、否命题、逆否命题,并判断其真假.(1)若四边形的对角互补,则该四边形是圆的内接四边形;(2)若在二次函数y =ax 2+bx +c 中,b 2-4ac <0,则该函数图像与x 轴有交点.答 案1.解析:①是命题,且是假命题,因为空集是任何非空集合的真子集;②该语句是疑问句,不是命题;③是命题,且是假命题,因为数0既不是正数,也不是负数;④该语句是感叹句,不是命题;⑤是命题,因为x 2+4x +5=(x +2)2+1>0恒成立,所以是真命题.答案:①③⑤ ⑤2.若|a |=|b |,则a =-b3.解析:逆命题:对于正数a ,若lg a >0,则a >1.否命题:对于正数a ,若a ≤1,则lg a ≤0.逆否命题:对于正数a ,若lg a ≤0,则a ≤1.根据对数的性质可知都是真命题.答案:44.解析:将条件与结论分别否定,再交换即可.答案:若tan α≠1,则α≠π45.解析:①的否命题为“若x 2+y 2=0,则x ,y 全为零”是真命题;②的逆命题为“数列{a n }中,若a n =a n +1(n ∈N *),则数列{a n }既是等差数列,又是等比数列”是假命题,如0,0,0……;对于③当m >1时,Δ=4-4m <0恒成立,x 2+2x +m >0的解集为R 是真命题.因此逆否命题是真命题.答案:①③6.解:(1)若一个函数是奇函数,则它的图像关于原点对称,是真命题.(2)若x 2-2x -3=0,则x =-3或x =1,是假命题.(3)若a <0,则函数y =ax +b 的值随着x 值的增大而增大,是假命题.7.证明:将“若m 2+n 2=2,则m +n ≤2”视为原命题,则它的逆否命题为“若m +n >2,则m 2+n 2≠2”.由于m +n >2,则m 2+n 2≥12(m +n )2>12×22=2, 所以m 2+n 2≠2.故原命题的逆否命题为真命题,从而原命题也为真命题.8.解:(1)该命题为真.逆命题:若四边形是圆的内接四边形,则四边形的对角互补,为真.否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形,为真.逆否命题:若四边形不是圆的内接四边形,则四边形的对角不互补,为真.(2)该命题为假.逆命题:若二次函数y=ax2+bx+c的图像与x轴有交点,则b2-4ac<0,为假.否命题:若二次函数y=ax2+bx+c中b2-4ac≥0,则函数图像与x轴无交点,为假.逆否命题:若二次函数y=ax2+bx+c的图像与x轴无交点,则b2-4ac≥0,为假.课时跟踪训练(二)充分条件和必要条件1.(安徽高考改编)“(2x-1)x=0”是“x=0”的________条件.2.已知直线l1:x+ay+6=0和l2:(a-2)x+3y+2a=0,则l1∥l2的充要条件是a=________.3.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a>b”是“a2>b2”的充分条件;③“a<5”是“a<3”的必要条件;④“a+5是无理数”是“a是无理数”的充要条件.其中真命题的序号为________.4.(北京高考改编)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的____________条件.5.若p:x(x-3)<0是q:2x-3<m的充分不必要条件,则实数m的取值范围是________.6.求证:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.7.求直线l:ax-y+b=0经过两直线l1:2x-2y-3=0和l2:3x-5y+1=0交点的充要条件.8.已知p:-6≤x-4≤6,q:x2-2x+1-m2≤0(m>0),若q是p的充分不必要条件,求实数m 的取值范围.答 案1.解析:由(2x -1)x =0可得x =12或x =0,因为“x =12或x =0”是“x =0”的必要不充分条件,所以“(2x -1)x =0”是“x =0”的必要不充分条件.答案:必要不充分2.解析:由1×3-a ×(a -2)=0,得a =3或-1,而a =3时,两条直线重合,所以a =-1.答案:-13.解析:①“a =b ”是ac =bc 的充分不必要条件,故①错,②a >b 是a 2>b 2的既不充分也不必要条件,故②错.③④正确.答案:③④4.解析:由sin φ=0可得φ=k π(k ∈Z ),此为曲线y =sin(2x +φ)过坐标原点的充要条件,故“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分不必要条件.答案:充分不必要5.解析:p :0<x <3,q :x <3+m 2, 若p 是q 的充分不必要条件,则3+m 2≥3,即m ≥3. 答案:[3,+∞)6.证明:(1)必要性:因为方程ax 2+bx +c =0有一正根和一负根,所以Δ=b 2-4ac >0,x 1x 2=c a<0(x 1,x 2为方程的两根),所以ac <0. (2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=c a<0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程ax 2+bx +c =0有一正根和一负根.综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.7.解:由⎩⎪⎨⎪⎧2x -2y -3=0,3x -5y +1=0,得交点P (174,114). 若直线l :ax -y +b =0经过点P ,则a ×174-114+b =0.∴17a +4b =11.设a ,b 满足17a +4b =11,则b =11-17a 4, 代入方程ax -y +b =0,得ax -y +11-17a 4=0, 整理,得⎝⎛⎭⎫y -114-a ⎝⎛⎭⎫x -174=0. ∴直线l :ax -y +b =0恒过点⎝⎛⎭⎫174,114,此点即为l 1与l 2的交点.综上,直线l :ax -y +b =0经过两直线l 1:2x -2y -3=0和l 2:3x -5y +1=0交点的充要条件为17a +4b =11.8.解:p :-6≤x -4≤6⇔-2≤x ≤10.q :x 2-2x +1-m 2≤0⇔[x -(1-m )][x -(1+m )]≤0(m >0)⇔1-m ≤x ≤1+m (m >0).因为q 是p 的充分不必要条件.即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},如图,故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10,或⎩⎪⎨⎪⎧1-m >-2,1+m ≤10,解得m ≤3. 又m >0,所以实数m 的范围为{m |0<m ≤3}.课时跟踪训练(三) “且”“或”“非”1.命题“正方形的两条对角线互相垂直平分”的构成形式是________.2.如果原命题是“p 或q ”的形式,那么它的否定形式是________________________.3.由命题p :6是12的约数,q :6是24的约数,构成的“p 或q ”形式的命题是 _________________________________________________________________________, “p 且q ”形式的命题是____________________________________________________, “非p ”形式的命题是______________________________________________________.4.“末位数字是1或3的整数不能被8整除”的否定形式是_____________________, 否命题是__________________________________________________________________.5.分别用“p 或q ”,“p 且q ”,“非p ”填空:(1)命题“非空集A ∩B 中的元素既是A 中的元素,也是B 中的元素”是________的形式;(2)命题“非空集A∪B中的元素是A中元素或B中的元素”是________的形式;(3)命题“非空集∁U A的元素是U中的元素但不是A中的元素”是________的形式.6.分别指出下列命题的形式及构成它的简单命题:(1)12可以被3或4整除;(2)3是12和15的公约数.7.分别写出由命题p:方程x2-4=0的两根符号不同,q:方程x2-4=0的两根绝对值相等构成的“p或q”“p且q”“非p”形式的命题.8.写出下列各命题的否定形式及否命题:(1)面积相等的三角形是全等三角形;(2)若m2+n2+a2+b2=0,则实数m,n,a,b全为零;(3)若xy=0,则x=0或y=0.答案1.解析:正方形的两条对角线互相垂直并且平分,是p且q的形式.答案:p且q2.綈p且綈q3.6是12或24的约数6是12的约数且是24的约数6不是12的约数4.解析:命题的否定仅否定结论,所以该命题的否定形式是:末位数字是1或3的整数能被8整除;而否命题要同时否定原命题的条件和结论,所以否命题是:末位数字不是1且不是3的整数能被8整除答案:末位数字是1或3的整数能被8整除末位数字不是1且不是3的整数能被8整除5.解析:(1)命题可以写为“非空集A ∩B 中的元素是A 中的元素,且是B 中的元素”,故填p 且q ;(2)“是A 中元素或B 中的元素”含有逻辑联结词“或”,故填p 或q ;(3)“不是A 中的元素”暗含逻辑联结词“非”,故填非p .答案:(1)p 且q (2)p 或q (3)非p6.解:(1)这个命题是“p 或q ”的形式,其中p :12可以被3整除;q :12可以被4整除.(2)这个命题是“p 且q ”的形式,其中p :3是12的约数;q :3是15的约数.7.解:p 或q :方程x 2-4=0的两根符号不同或绝对值相等.p 且q :方程x 2-4=0的两根符号不同且绝对值相等.非p :方程x 2-4=0的两根符号相同.8.解:(1)否定形式:面积相等的三角形不一定是全等三角形;否命题:面积不相等的三角形不是全等三角形.(2)否定形式:若m 2+n 2+a 2+b 2=0,则实数m ,n ,a ,b 不全为零;否命题:若m 2+n 2+a 2+b 2≠0,则实数m ,n ,a ,b 不全为零.(3)否定形式:若xy =0,则x ≠0且y ≠0;否命题:若xy ≠0,则x ≠0且y ≠0.课时跟踪训练(四) 含逻辑联结词的命题的真假判断1.若p 是真命题,q 是假命题,则下列说法错误的是________.①p ∧q 是真命题 ②p ∨q 是假命题 ③綈p 是真命题 ④綈q 是真命题2.已知命题p :若a >1,则a x >log a x 恒成立;命题q :在等差数列{a n }中,m +n =p +q 是a m +a n =a p +a q 成立的充分不必要条件(m ,n ,p ,q ∈N *),则下面为真命题的是________.①(綈p )∧(綈q );②(綈p )∨(綈q );③p ∨(綈q );④p ∧q .3.已知命题p :不等式ax +b >0的解集为⎩⎨⎧⎭⎬⎫x | x >-b a ,命题q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b },则“p 或q ”“p 且q ”和“非p ”形式的命题中,真命题为________.4.已知命题p :所有自然数都是正数,命题q :正数的对数都是正数,则下列命题中为真命题的是________.(填序号)①綈p 且q ;②p 或q ;③綈p 且綈q ;④綈p 或綈q5.(湖北高考改编)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为________.①(綈p )∨(綈q );②p ∨(綈q );③(綈p )∧(綈q );④p ∨q .6.写出下列各组命题构成的“p 或q ”、“p 且q ”以及“非p ”形式的命题,并判断它们的真假.(1)p :5是有理数,q :5是整数;(2)p :不等式x 2-2x -3>0的解集是(-∞,-1),q :不等式x 2-2x -3>0的解集是(3,+∞).7.命题p :实数x 满足x 2-4ax +3a 2<0(a >0),命题q :实数x 满足⎩⎪⎨⎪⎧|x -1|≤2,x +3x -2≥0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)若q ⇒綈p ,求实数a 的取值范围.8.命题p :关于x 的不等式x 2+(a -1)x +a 2≤0的解集为∅,命题q :函数y =(2a 2-a )x 为增函数,分别求出符合下列条件的实数a 的取值范围.(1)p ∨q 为真命题;(2)“p ∨q ”为真,“p ∧q ”为假.答 案1.解析:p 是真命题,则綈p 是假命题.q 是假命题,则綈q 是真命题.故p ∧q 是假命题,p ∨q 是真命题.答案:①②③2.解析:当a =1.1,x =2时,a x =1.12=1.21,log a x =log 1.12>log 1.11.21=2,此时,a x <log a x ,故p 为假命题.命题q ,由等差数列的性质,当m +n =p +q 时,a n +a m =a p +a q 成立,当公差d =0时,由a m +a n =a p +a q 不能推出m +n =p +q 成立,故q 是真命题. 故綈p 是真命题,綈q 是假命题,所以p ∧q 为假命题,p ∨(綈q )为假命题,(綈p )∧(綈q )为假命题,(綈p )∨((綈q )为真命题.答案:②3.解析:命题p 是假命题,因为当a <0或a =0时解集与已知不同;命题q 也是假命题,因为不知道a ,b 的大小关系.所以只有非p 是真命题.答案:非p4.解析:因为命题p 为假命题,命题q 为假命题,所以綈p 且綈q 为真命题,綈p 或綈q 为真命题.答案:③④5.解析:由题意可知,“至少有一位学员没有降落在指定范围”意味着“甲没有或乙没有降落在指定范围”,使用“非”和“或”联结词即可表示该复合命题为(綈p )∨(綈q ).答案:①6.解:(1)p 或q :5是有理数或5是整数;p 且q :5是有理数且5是整数;非p :5不是有理数.因为p 假,q 假,所以p 或q 为假,p 且q 为假,非p 为真.(2)p 或q :不等式x 2-2x -3>0的解集是(-∞,-1)或不等式x 2-2x -3>0的解集是(3,+∞);p 且q :不等式x 2-2x -3>0的解集是(-∞,-1)且不等式x 2-2x -3>0的解集是(3,+∞);非p :不等式x 2-2x -3>0的解集不是(-∞,-1).因为p 假,q 假,所以p 或q 假,p 且q 假,非p 为真.7.解:(1)由于a =1,则x 2-4ax +3a 2<0⇔x 2-4x +3<0⇔1<x <3.所以p :1<x <3.解不等式组⎩⎪⎨⎪⎧|x -1|≤2,x +3x -2≥0得2<x ≤3,所以q :2<x ≤3.由于p ∧q 为真,所以p ,q 均是真命题,解不等式组⎩⎪⎨⎪⎧1<x <3,2<x ≤3得2<x <3, 所以实数x 的取值范围是(2,3).(2)綈p :x 2-4ax +3a 2≥0,a >0,x 2-4ax +3a 2≥0⇔(x -a )(x -3a )≥0⇔x ≤a 或x ≥3a ,所以綈p :x ≤a 或x ≥3a ,设A ={x |x ≤a 或x ≥3a },由(1)知q :2<x ≤3,设B ={x |2<x ≤3}.由于q ⇒綈p ,所以B A ,所以3≤a 或3a ≤2,即0<a ≤23或a ≥3, 所以实数a 的取值范围是⎝⎛⎦⎤0,23∪[3,+∞). 8.解:命题p 为真时,Δ=(a -1)2-4a 2<0,即a >13或a <-1.① 命题q 为真时,2a 2-a >1,即a >1或a <-12.② (1)当p ∨q 为真时,即p 、q 至少有一个是真命题,即上面两个范围的并集为⎩⎨⎧⎭⎬⎫a |a <-12或a >13; ∴“p ∨q ”为真时,a 的取值范围是⎩⎨⎧⎭⎬⎫a | a <-12或a >13. (2)当“p ∨q ”为真,“p ∧q ”为假,即p ,q 有且只有一个是真命题时,有两种情况:当p 真q 假时,13<a ≤1;当p 假q 真时,-1≤a <-12. ∴“p ∨q ”为真,“p ∧q ”为假时,a 的取值范围是⎩⎨⎧⎭⎬⎫a | 13<a ≤1或-1≤a <-12.课时跟踪训练(五) 量 词1.下列命题:①有的质数是偶数;②与同一平面所成的角相等的两条直线平行;③有的三角形的三个内角成等差数列;④与圆只有一个公共点的直线是圆的切线,其中是全称命题的是________,是存在性命题的是________.(只填序号)2.下列命题中的假命题是________.①∀x ∈R,2x -1>0; ②∀x ∈N *,(x -1)2>0;③∃x ∈R ,lg x <1;④∃x ∈R ,tan x =2.3.用符号“∀”或“∃”表示下面含有量词的命题:(1)实数的平方大于或等于0: _________________________________________________;(2)存在一对实数,使3x -2y +1≥0成立: ________________________________.4.命题“∀x ∈R +,2x +1x>a 成立”是真命题,则a 的取值范围是________. 5.已知“∀x ∈R ,ax 2+2ax +1>0”为真命题,则实数a 的取值范围是________.6.判断下列命题是全称命题还是存在性命题,并判断其真假:(1)对任意x ∈R ,z x >0(z >0);(2)对任意非零实数x 1,x 2,若x 1<x 2,则1x 1>1x 2; (3)∃α∈R ,使得sin(α+π3)=sin α; (4)∃x ∈R ,使得x 2+1=0.7.判断下列命题的真假,并说明理由.(1)∀x ∈R ,都有x 2-x +1>12; (2)∃α,β,使cos(α-β)=cos α-cos β;(3)∀x ,y ∈N ,都有(x -y )∈N ;(4)∃x ,y ∈Z ,使2x +y =3.8.(1)对于任意实数x ,不等式sin x +cos x >m 恒成立,求实数m 的取值范围;(2)存在实数x ,不等式sin x +cos x >m 有解,求实数m 的取值范围.答 案1.解析:根据所含量词可知②④是全称命题,①③是存在性命题.答案:②④ ①③2.解析:对②,x =1时,(1-1)2=0,∴②假.答案:②3.(1)∀x ∈R ,x 2≥0(2)∃x ∈R ,y ∈R,3x -2y +1≥04.解析:∵x ∈R +,∴2x +1x≥22,∵命题为真,∴a <2 2. 答案:(-∞,22)5.解析:当a =0时,不等式为1>0,对∀x ∈R,1>0成立.当a ≠0时,若∀x ∈R ,ax 2+2ax +1>0,则⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a <0,解得0<a <1.综上,a 的取值范围为[0,1). 答案:[0,1)6.解:(1)(2)是全称命题,(3)(4)是存在性命题.(1)∵z x >0(z >0)恒成立,∴命题(1)是真命题.(2)存在x 1=-1,x 2=1,x 1<x 2,但1x 1<1x 2, ∴命题(2)是假命题.(3)当α=π3时,sin(α+π3)=sin α成立, ∴命题(3)为真命题.(4)对任意x ∈R ,x 2+1>0,∴命题(4)是假命题.7.解:(1)法一:当x ∈R 时,x 2-x +1=⎝⎛⎭⎫x -122+34≥34>12,所以该命题是真命题.法二:x 2-x +1>12⇔x 2-x +12>0,由于Δ=1-4×12=-1<0,所以不等式x 2-x +1>12的解集是R ,所以该命题是真命题.(2)当α=π4,β=π2时,cos(α-β)=cos ⎝⎛⎭⎫π4-π2=cos ⎝⎛⎭⎫-π4=cos π4=22,cos α-cos β=cos π4-cos π2=22-0=22,此时cos (α-β)=cos α-cos β,所以该命题是真命题. (3)当x =2,y =4时,x -y =-2∉N ,所以该命题是假命题.(4)当x =0,y =3时,2x +y =3,即∃x ,y ∈Z ,使2x +y =3,所以该命题是真命题.8.解:(1)令y =sin x +cos x ,x ∈R .∵y =sin x +cos x =2sin(x +π4)≥- 2. 又∵∀x ∈R ,sin x +cos x >m 恒成立.∴只要m <-2即可.∴所求m 的取值范围是(-∞,-2).(1)令y =sin x +cos x ,x ∈R .∵y =sin x +cos x =2sin(x +π4)∈[-2, 2 ], 又∵∃x ∈R ,sin x +cos x >m 有解.∴只要m <2即可.∴所求m 的取值范围是(-∞,2).课时跟踪训练(六) 含有一个量词的命题的否定1.(重庆高考改编)命题“对任意x ∈R ,都有x 2≥0”的否定是______________.2.命题“∃x ∈∁R Q ,x 3∈Q ”的否定是________________.3.命题“∀x ∈R ,x 2-x +3>0”的否定是_________________________________.4.命题“所有能被2整除的整数都是偶数”的否定是___________________.5.若命题“∃x ∈R ,使得x 2+(a -1)x +1≤0”为假命题,则实数a 的取值范围是________.6.设语句q (x ):cos ⎝⎛⎭⎫x -π2=sin x : (1)写出q ⎝⎛⎭⎫π2,并判定它是不是真命题;(2)写出“∀a ∈R ,q (a )”,并判断它是不是真命题.7.写出下列命题的否定,并判断其真假:(1)p:不论m取何实数,方程x2+x-m=0必有实数根;(2)q:存在一个实数x,使得x2+x+1≤0;(3)r:等圆的面积相等,周长相等.8.∀x∈[-1,2],使4x-2x+1+2-a<0恒成立,求实数a的取值范围.答案1.解析:因为“∀x∈M,p(x)”的否定是“∃x∈M,綈p(x)”故“对任意x∈R,都有x2≥0”的否定是“存在x∈R,使得x2<0”.答案:存在x∈R,使得x2<02.解析:存在性命题的否定是全称命题.答案:∀x∈∁R Q,x3∉Q3.解析:全称命题的否定是存在性命题.答案:∃x∈R,x2-x+3≤04.解析:此命题是一个全称命题,全称命题的否定是存在性命题.故该命题的否定是:“存在能被2整除的整数不是偶数”.答案:存在能被2整除的整数不是偶数5.解析:该命题p的否定是綈p:“∀x∈R,x2+(a-1)x+1>0”,即关于x的一元二次不等式x2+(a-1)x+1>0的解集为R,由于命题p是假命题,所以綈p是真命题,所以Δ=(a -1)2-4<0,解得-1<a <3,所以实数a 的取值范围是(-1,3).答案:(-1,3)6.解:(1)q ⎝⎛⎭⎫π2:cos ⎝⎛⎭⎫π2-π2=sin π2, 因为cos 0=1,sin π2=1, 所以q ⎝⎛⎭⎫π2是真命题.(2)∀a ∈R ,q (a ):cos ⎝⎛⎭⎫a -π2=sin a , 因为cos ⎝⎛⎭⎫a -π2=cos ⎝⎛⎭⎫π2-a =sin a , 所以“∀a ∈R ,q (a )”是真命题.7.解:(1)这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0有实数根”,其否定形式是綈p :“存在实数m ,使得x 2+x -m =0没有实数根”.当Δ=1+4m <0,即m <-14时,一元二次方程没有实数根,所以綈p 是真命题. (2)这一命题的否定形式是綈q :对所有实数x ,都有x 2+x +1>0.利用配方法可以验证綈q 是一个真命题.(3)这一命题的否定形式是綈r :存在一对等圆,其面积不相等或周长不相等,由平面几何知识知綈r 是一个假命题.8.解:已知不等式化为22x -2·2x +2-a <0.①令t =2x ,∵x ∈[-1,2],∴t ∈⎣⎡⎦⎤12,4,则不等式①化为:t 2-2t +2-a <0,即a >t 2-2t +2,原命题等价于:∀t ∈⎣⎡⎦⎤12,4,a >t 2-2t +2恒成立,令y =t 2-2t +2=(t -1)2+1,当t∈⎣⎡⎦⎤12,4时,y max =10.所以只须a >10即可.即所求实数a 的取值范围是(10,+∞).课时跟踪训练(七) 圆锥曲线1.平面内到一定点F 和到一定直线l (F 在l 上)的距离相等的点的轨迹是________________________.2.设F 1、F 2为定点,PF 1-PF 2=5,F 1F 2=8,则动点P 的轨迹是________.3.以F 1、F 2为焦点作椭圆,椭圆上一点P 1到F 1、F 2的距离之和为10,椭圆上另一点P 2满足P 2F 1=P 2F 2,则P 2F 1=________.4.平面内动点P 到两定点F 1(-2,0),F 2(2,0)的距离之差为m ,若动点P 的轨迹是双曲线,则m 的取值范围是________.5.已知椭圆上一点P 到两焦点F 1、F 2的距离之和为20,则PF 1·PF 2的最大值为________.6.已知抛物线的焦点为F ,准线为l ,过F 作直线与抛物线相交于A 、B 两点,试判断以AB 为直径的圆与l 的位置关系.7.动点P (x ,y )的坐标满足(x -2)2+y 2+(x +2)2+y 2=8.试确定点P 的轨迹.8.在相距1 600 m 的两个哨所A ,B ,听远处传来的炮弹爆炸声,已知当时的声速是340 m/s ,在A 哨所听到爆炸声的时间比在B 哨所听到时间早3 s .试判断爆炸点在怎样的曲线上?答 案1.过点F 且垂直于l 的直线2.解析:∵5<8,满足双曲线的定义,∴轨迹是双曲线.答案:双曲线3.解析:∵P 2在椭圆上,∴P 2F 1+P 2F 2=10,又∵P 2F 1=P 2F 2,∴P 2F 1=5.答案:54.解析:由题意可知,|m |<4,且m ≠0,∴-4<m <4,且m ≠0.答案:(-4,0)∪(0,4)5.解析:∵PF 1+PF 2=20,∴PF 1·PF 2≤(PF 1+PF 22)2=(202)2=100.答案:1006.解:如图,取AB 的中点O2,过A 、B 、O 2分别作AA 1⊥l ,BB 1⊥l ,O 2O 1⊥l ,根据抛物线的定义,知AA 1=AF ,BB 1=BF ,∴O 2O 1=AA 1+BB 12=AF +BF 2=AB 2=R (R 为圆的半径), ∴以AB 为直径的圆与l 相切.7.解:设A (2,0),B (-2,0), 则(x -2)2+y 2表示P A ,(x +2)2+y 2表示PB ,又AB =4,∴P A +PB =8>4,∴点P 的轨迹是以A 、B 为焦点的椭圆.8.解:由题意可知点P 离B 比离A 远,且PB -P A =340×3=1 020 m ,而AB =1 600 m >1 020 m ,满足双曲线的定义,∴爆炸点应在以A ,B 为焦点的双曲线的靠近A 的一支上.课时跟踪训练(八) 椭圆的标准方程1.若椭圆x 225+y 29=1上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为________.2.椭圆25x 2+16y 2=1的焦点坐标是________.3.已知方程(k 2-1)x 2+3y 2=1是焦点在y 轴上的椭圆,则k 的取值范围是________.4.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点.若|F 2A |+|F 2B |=12,则|AB |=________.5.已知P 为椭圆x 225+4y 275=1上一点,F 1,F 2是椭圆的焦点,∠F 1PF 2=60°,则△F 1PF 2的面积为________.6.求适合下列条件的椭圆的标准方程:(1)以(0,5)和(0,-5)为焦点,且椭圆上一点P 到两焦点的距离之和为26;(2)以椭圆9x 2+5y 2=45的焦点为焦点,且经过M (2,6).7.如图,设点P 是圆x 2+y 2=25上的动点,点D 是点P 在x 轴上的投影,M 为PD 上一点,且MD =45PD ,当P 在圆上运动时,求点M 的轨迹C 的方程.8.已知动圆M 过定点A (-3,0),并且内切于定圆B :(x -3)2+y 2=64,求动圆圆心M 的轨迹方程.答 案1.解析:由椭圆定义知,a =5,P 到两个焦点的距离之和为2a =10,因此,到另一个焦点的距离为5.答案:52.解析:椭圆的标准方程为x 2125+y 2116=1,故焦点在y 轴上,其中a 2=116,b 2=125,所以c 2=a 2-b 2=116-125=9400,故c =320.所以该椭圆的焦点坐标为⎝⎛⎭⎫0,±320. 答案:⎝⎛⎭⎫0,±320 3.解析:方程(k 2-1)x 2+3y 2=1可化为x 21k 2-1+y 213=1. 由椭圆焦点在y 轴上,得⎩⎪⎨⎪⎧k 2-1>0,1k 2-1<13.解之得k >2或k <-2. 答案:(-∞,-2)∪(2,+∞)4.解析:由题意,知(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=|AB |+|AF 2|+|BF 2|=2a +2a ,又由a =5,可得|AB |+(|BF 2|+|AF 2|)=20,即|AB |=8.答案:85.解析:在△F 1PF 2中,F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 60°, 即25=PF 21+PF 22-PF 1·PF 2.① 由椭圆的定义,得10=PF 1+PF 2.②由①②,得PF 1·PF 2=25,∴S △F 1PF 2=12PF 1·PF 2sin 60°=25 34. 答案:25 346.解:(1)∵椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b2=1(a >b >0). ∵2a =26,2c =10,∴a =13,c =5.∴b 2=a 2-c 2=144.∴所求椭圆的标准方程为y 2169+x 2144=1. (2)法一:由9x 2+5y 2=45,得y 29+x 25=1,c 2=9-5=4, 所以其焦点坐标为F 1(0,2),F 2(0,-2).设所求椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0). 由点M (2,6)在椭圆上,所以MF 1+MF 2=2a ,即2a =(2-0)2+(6-2)2+(2-0)2+(6+2)2=43,所以a =23,又c =2,所以b 2=a 2-c 2=8,所以所求椭圆的标准方程为y 212+x 28=1. 法二:由法一知,椭圆9x 2+5y 2=45的焦点坐标为F 1(0,2),F 2(0,-2),则设所求椭圆方程为y 2λ+4+x 2λ=1(λ>0), 将M (2,6)代入,得6λ+4+4λ=1(λ>0), 解得λ=8或λ=-2(舍去).所以所求椭圆的标准方程为y 212+x 28=1.7.解:设M 点的坐标为(x ,y ),P 点的坐标为(x P ,y P ),由已知易得⎩⎪⎨⎪⎧ x P=x ,y P =54y . ∵P 在圆上,∴x 2+(54y )2=25. 即轨迹C 的方程为x 225+y 216=1. 8.解:设动圆M 的半径为r ,则|MA |=r ,|MB |=8-r ,∴|MA |+|MB |=8,且8>|AB |=6,∴动点M 的轨迹是椭圆,且焦点分别是A (-3,0),B (3,0),且2a =8,∴a =4,c =3,∴b 2=a 2-c 2=16-9=7.∴所求动圆圆心M 的轨迹方程是x 216+y 27=1.课时跟踪训练(九) 椭圆的几何性质1.(新课标全国卷Ⅱ改编)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.2.(广东高考改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是________________________________________________________________________.3.曲线x 225+y 29=1与曲线x 225-k +y 29-k=1(k <9)的________相等.(填“长轴长”或“短轴长”或“离心率”或“焦距”)4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率是63,过椭圆上一点M 作直线MA ,MB 分别交椭圆于A ,B 两点,且斜率分别为k 1,k 2,若点A ,B 关于原点对称,则k 1·k 2的值为________.5.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率是________.6.已知焦点在x 轴上的椭圆的离心率e =35,经过点A (5 32,-2),求椭圆的标准方程.7.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.8.若椭圆的中心在原点,焦点在x 轴上,点P 是椭圆上的一点,P 在x 轴上的射影恰为椭圆的左焦点,P 与中心O 的连线平行于右顶点与上顶点的连线,且左焦点与左顶点的距离等于10-5,试求椭圆的离心率及其方程.答 案1.解析:法一:由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|=3m ,故离心率e =c a =2c 2a =|F 1F 2||PF 1|+|PF 2|=3m 2m +m =33.法二:由PF 2⊥F 1F 2可知P 点的横坐标为c ,将x =c 代入椭圆方程可解得y =±b 2a ,所以|PF 2|=b 2a .又由∠PF 1F 2=30°可得|F 1F 2|=3|PF 2|,故2c =3·b 2a ,变形可得3(a 2-c 2)=2ac ,等式两边同除以a 2,得3(1-e 2)=2e ,解得e =33或e =-3(舍去). 答案:332.解析:依题意,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =12,c 2=a 2-b 2,解得a 2=4,b 2=3.答案:x 24+y 23=13.解析:c 2=25-k -(9-k )=16,c =4.故两条曲线有相同的焦距. 答案:焦距4.解析:设点M (x ,y ),A (x 1,y 1),B (-x 1,-y 1),则y 2=b 2-b 2x 2a 2,y 21=b 2-b 2x 21a2.所以k 1·k 2=y -y 1x -x 1·y +y 1x +x 1=y 2-y 21x 2-x 21=-b 2a 2=c 2a 2-1=e 2-1=-13,即k 1·k 2的值为-13.答案:-135.解析:设直线x =3a2与x 轴交于点M ,则∠PF 2M =60°.由题意知,F 1F 2=PF 2=2c ,F 2M =3a 2-c .在Rt △PF 2M 中,F 2M =12PF 2,即3a 2-c =c .∴e =c a =34.答案:346.解:设椭圆的标准方程为 x 2a 2+y 2b 2=1(a >b >0),则754a 2+4b 2=1.① 由已知e =35,∴c a =35,∴c =35a .∴b 2=a 2-c 2=a 2-(35a )2,即b 2=1625a 2.②把②代入①,得754a 2+4×2516a 2=1,解得a 2=25,∴b 2=16,∴所求方程为x 225+y 216=1.7.解:椭圆方程可化为x 2m +y 2mm +3=1,由m >0,易知m >mm +3,∴a 2=m ,b 2=mm +3.∴c =a 2-b 2=m (m +2)m +3. 由e =32,得 m +2m +3=32,解得m =1, ∴椭圆的标准方程为x 2+y 214=1.∴a =1,b =12,c =32.∴椭圆的长轴长为2,短轴长为1, 两焦点坐标分别为F 1⎝⎛⎭⎫-32,0,F 2⎝⎛⎭⎫32,0,顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝⎛⎭⎫0,-12,B 2⎝⎛⎭⎫0,12. 8.解:令x =-c ,代入x 2a 2+y 2b 2=1(a >b >0),得y 2=b 2(1-c 2a 2)=b 4a 2,∴y =±b 2a.设P (-c ,b 2a ),椭圆的右顶点A (a,0),上顶点B (0,b ).∵OP ∥AB ,∴k OP =k AB ,∴-b 2ac =-ba,∴b =c .而a 2=b 2+c 2=2c 2,∴a =2c ,∴e =c a =22.又∵a -c =10-5,解得a =10,c =5,∴b =5, ∴所求椭圆的标准方程为x 210+y 25=1.课时跟踪训练(十) 双曲线的标准方程1.双曲线x 225-y 224=1上的点P 到一个焦点的距离为11,则它到另一个焦点的距离为________.2.已知点F 1,F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF2=S △IPF 1-λS △IF 1F 2,则λ=________.3.若方程x 2k -3+y 2k +3=1(k ∈R )表示双曲线,则k 的范围是________.4.已知椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则实数a =________.5.已知双曲线的两个焦点为F 1(-10,0),F 2=(10,0),M 是此双曲线上的一点,且满足1MF ·2MF =0,|1MF |·|2MF |=2,则该双曲线的方程是__________. 6.求适合下列条件的双曲线的标准方程:(1)以椭圆x 225+y 29=1的长轴端点为焦点,且经过点P (5,94);(2)过点P 1(3,-4 2),P 2(94,5).7.设F 1,F 2为双曲线x 24-y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=120°.求△F 1PF 2的面积.8.如图,在△ABC 中,已知|AB |=4 2,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.答 案1.解析:设双曲线的左、右焦点分别为F 1,F 2,不妨设PF 1=11,根据双曲线的定义知|PF 1-PF 2|=2a =10,∴PF 2=1或PF 2=21,而F 1F 2=14,∴当PF 2=1时,1+11<14(舍去),∴PF 2=21.答案:212.解析:设△PF 1F 2内切圆的半径为r ,则由S △IPF 2=S △IPF 1-λS △IF1F 2⇒12×PF 2×r=12×PF 1×r -12λ×F 1F 2×r ⇒PF 1-PF 2=λF 1F 2,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45. 答案:453.解析:依题意可知:(k -3)(k +3)<0,求得-3<k <3.答案:-3<k <34.解析:由双曲线x 2a -y 22=1可知a >0,且焦点在x 轴上,根据题意知4-a 2=a +2,即a 2+a -2=0,解得a =1或a =-2(舍去).故实数a =1.答案:15.解析:∵1MF ·2MF =0,∴1MF ⊥2MF .∴|1MF |2+|2MF |2=40.∴(|1MF |-|2MF |)2=|1MF |2-2|1MF |·|2MF |+|2MF |2=40-2×2=36.∴||1MF |-|2MF ||=6=2a ,a =3.又c =10,∴b 2=c 2-a 2=1,∴双曲线方程为x 29-y 2=1.答案:x 29-y 2=16.解:(1)因为椭圆x 225+y 29=1的长轴端点为A 1(-5,0),A 2(5,0),所以所求双曲线的焦点为F 1(-5,0),F 2(5,0).由双曲线的定义知,|PF 1-PF 2| =⎪⎪⎪⎪(5+5)2+(94-0)2-(5-5)2+(94-0)2 =⎪⎪⎪⎪(414)2- (94)2=8,即2a =8,则a =4. 又c =5,所以b 2=c 2-a 2=9. 故所求双曲线的标准方程为x 216-y 29=1.(2)设双曲线的方程为Ax 2+By 2=1(AB <0),分别将点P 1(3,-4 2),P 2(94,5)代入,得⎩⎪⎨⎪⎧9A +32B =1,8116A +25B =1,解得⎩⎨⎧A =-19,B =116,故所求双曲线的标准方程为y 216-x 29=1.7.解:由已知得a =2,b =1;c = a 2+b 2=5,由余弦定理得:F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 120° 即(2 5)2=(PF 1-PF 2)2+3PF 1·PF 2 ∵|PF 1-PF 2|=4.∴PF 1·PF 2=43.∴S △F 1PF 2=12PF 1·PF 2·sin 120°=12×43×32=33.8.解:以AB 边所在直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系(如图所示).则A (-2 2,0),B (2 2,0).设边BC 、AC 、AB 的长分别为a 、b 、c ,由正弦定理得sin A =a 2R ,sin B =b2R ,sinC =c2R(R 为△ABC 外接圆的半径).∵2sin A +sin C =2sin B ,∴2a +c =2b ,即b -a =c2.从而有|CA |-|CB |=12|AB |=2 2<|AB |.由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点).∵a =2,c =2 2,∴b 2=6.∴顶点C 的轨迹方程为x 22-y 26=1(x >2).课时跟踪训练(十一) 双曲线的几何性质1.(陕西高考)双曲线x 216-y 2m =1的离心率为54.则m =________.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),两条渐近线的夹角为60°,则双曲线的离心率为________.3.焦点为(0,6),且与双曲线x 22-y 2=1有相同的渐近线的双曲线方程是___________.4.(新课标全国卷Ⅰ改编)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为____________________.5.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点分别为F 1、F 2,P 为双曲线上一点,且|PF 1|=3|PF 2|,则该双曲线离心率e 的取值范围是________.6.根据下列条件求双曲线的标准方程:(1)经过点(154,3),且一条渐近线方程为4x +3y =0.(2)P (0,6)与两个焦点的连线互相垂直,与两个顶点连线的夹角为π3.7.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.8.已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2且过点(4,-10). (1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:点M 在以F 1F 2为直径的圆上; (3)求△F 1MF 2的面积.答 案1.解析:∵a =4,b =m ,∴c 2=16+m ,e =ca =16+m 4=54,∴m =9.答案:92.解析:根据题意,由于双曲线x 2a 2-y 2b 2=1(a >0,b >0),两条渐近线的夹角为60°,则可知b a =3或b a =33,那么可知双曲线的离心率为e =1+⎝⎛⎭⎫b a 2,所以结果为2或233. 答案:2或2333.解析:由x 22-y 2=1,得双曲线的渐近线为y =±22x .设双曲线方程为:x 22-y 2=λ(λ<0),∴x 22λ-y 2λ=1.∴-λ-2λ=36,∴λ=-12.故双曲线方程为y 212-x 224=1. 答案:y 212-x 224=14.解析:∵e 2=c 2a 2=a 2+b 2a 2=1+b 2a 2=54,∴b 2a 2=14,∴b a =12,∴y =±12x .答案:y =±12x5.解析:依题意得⎩⎪⎨⎪⎧|PF 1|=3|PF 2|,|PF 1|-|PF 2|=2a ,由此解得|PF 2|=a ,|PF 1|=3a ,∵|PF 1|+|PF 2|≥|F 1F 2|,即c ≤2a ,e =ca≤2.又e >1,∴离心率e 的取值范围是(1,2].答案:(1,2]6.解:(1)∵双曲线的一条渐近线方程为4x +3y =0, ∴可设双曲线方程为x 29-y 216=λ(λ≠0).∵双曲线经过点⎝⎛⎭⎫154,3,∴19×15216-3216=λ.即λ=1. ∴所求双曲线的标准方程为x 29-y 216=1.(2)设F 1、F 2为双曲线的两个焦点,依题意,它的焦点在x 轴上, ∵PF 1⊥PF 2,且OP =6, ∴2c =F 1F 2=2OP =12,∴c =6. 又P 与两顶点连线夹角为π3,∴a =|OP |·tan π6=2 3,∴b 2=c 2-a 2=24.故所求双曲线的标准方程为x 212-y 224=1.7.解:设F 1(c,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a .由PF 2=QF 2,∠PF 2Q =90°,知|PF 1|=|F 1F 2|, ∴b 2a =2c ,∴b 2=2ac . 由a 2+b 2=c 2, 得c 2-2ac -a 2=0, ∴⎝⎛⎭⎫c a 2-2×c a -1=0. 即e 2-2e -1=0.∴e =1+2或e =1-2(舍去). 所以所求双曲线的离心率为1+ 2.8.解:(1)∵离心率e =2,∴设所求双曲线方程为x 2-y 2=λ(λ≠0),则由点(4,-10)在双曲线上,知λ=42-(-10)2=6,∴双曲线方程为x 2-y 2=6,即x 26-y 26=1.(2)若点M (3,m )在双曲线上,则32-m 2=6,∴m 2=3. 由双曲线x 2-y 2=6知,F 1(2 3,0),F 2(-2 3,0), ∴MF 1―→·MF 2―→=(2 3-3,-m )·(-2 3-3,-m ) =9-(2 3)2+m 2=0.∴MF 1―→⊥MF 2―→,∴点M 在以F 1F 2为直径的圆上. (3)S △F 1MF 2=12×2c ×|m |=c |m |=2 3×3=6.课时跟踪训练(十二) 抛物线的标准方程1.抛物线x 2=8y 的焦点坐标是________.2.已知抛物线的顶点在原点,焦点在x 轴上,其上的点P (-3,m )到焦点的距离为5,则抛物线方程为________.3.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.4.抛物线x 2=-ay 的准线方程是y =2,则实数a 的值是________.5.双曲线x 2m -y 2n =1(mn ≠0)的离心率为2,有一个焦点与抛物线y 2=4x 的焦点重合,则mn 的值为________.6.根据下列条件,分别求抛物线的标准方程: (1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)抛物线的焦点F 在x 轴上,直线y =-3与抛物线交于点A ,AF =5.7.设抛物线y 2=mx (m ≠0)的准线与直线x =1的距离为3,求抛物线的方程.。
2018-2019学年高中数学 课时跟踪训练(二)充分条件和必要条件(含解析)苏教版选修2-1

课时跟踪训练(二) 充分条件和必要条件1.(安徽高考改编)“(2x-1)x=0”是“x=0”的________条件.2.已知直线l1:x+ay+6=0和l2:(a-2)x+3y+2a=0,则l1∥l2的充要条件是a=________.3.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a>b”是“a2>b2”的充分条件;③“a<5”是“a<3”的必要条件;④“a+5是无理数”是“a是无理数”的充要条件.其中真命题的序号为________.4.(北京高考改编)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的____________条件.5.若p:x(x-3)<0是q:2x-3<m的充分不必要条件,则实数m的取值范围是________.6.求证:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.7.求直线l:ax-y+b=0经过两直线l1:2x-2y-3=0和l2:3x-5y+1=0交点的充要条件.8.已知p:-6≤x-4≤6,q:x2-2x+1-m2≤0(m>0),若q是p的充分不必要条件,求实数m的取值范围.答 案1.解析:由(2x -1)x =0可得x =12或x =0,因为“x =12或x =0”是“x =0”的必要不充分条件,所以“(2x -1)x =0”是“x =0”的必要不充分条件.答案:必要不充分2.解析:由1×3-a ×(a -2)=0,得a =3或-1,而a =3时,两条直线重合,所以a =-1. 答案:-13.解析:①“a =b ”是ac =bc 的充分不必要条件,故①错,②a >b 是a 2>b 2的既不充分也不必要条件,故②错.③④正确.答案:③④4.解析:由sin φ=0可得φ=k π(k ∈Z ),此为曲线y =sin(2x +φ)过坐标原点的充要条件,故“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分不必要条件.答案:充分不必要5.解析:p :0<x <3,q :x <3+m 2, 若p 是q 的充分不必要条件,则3+m 2≥3,即m ≥3. 答案:[3,+∞)6.证明:(1)必要性:因为方程ax 2+bx +c =0有一正根和一负根,所以Δ=b 2-4ac >0,x 1x 2=c a <0(x 1,x 2为方程的两根),所以ac <0.(2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=c a <0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程ax 2+bx +c =0有一正根和一负根.综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.7.解:由⎩⎪⎨⎪⎧ 2x -2y -3=0,3x -5y +1=0,得交点P (174,114). 若直线l :ax -y +b =0经过点P ,则a ×174-114+b =0.∴17a +4b =11. 设a ,b 满足17a +4b =11,则b =11-17a 4,代入方程ax -y +b =0,得ax -y +11-17a 4=0, 整理,得⎝⎛⎭⎪⎫y -114-a ⎝ ⎛⎭⎪⎫x -174=0. ∴直线l :ax -y +b =0恒过点⎝ ⎛⎭⎪⎫174,114,此点即为l 1与l 2的交点. 综上,直线l :ax -y +b =0经过两直线l 1:2x -2y -3=0和l 2:3x -5y +1=0交点的充要条件为17a +4b =11.8.解:p :-6≤x -4≤6⇔-2≤x ≤10.q :x 2-2x +1-m 2≤0⇔[x -(1-m )][x -(1+m )]≤0(m >0) ⇔1-m ≤x ≤1+m (m >0).因为q 是p 的充分不必要条件.即{x |1-m ≤x ≤1+m }{x |-2≤x ≤10},如图,故有⎩⎪⎨⎪⎧ 1-m ≥-2,1+m <10,或⎩⎪⎨⎪⎧ 1-m >-2,1+m ≤10,解得m ≤3.又m >0,所以实数m 的范围为{m |0<m ≤3}.。
[推荐学习]2018-2019学年高中数学人教A版选修2-3:课时跟踪检测(十八)独立性检验的基本思
![[推荐学习]2018-2019学年高中数学人教A版选修2-3:课时跟踪检测(十八)独立性检验的基本思](https://img.taocdn.com/s3/m/20ed553410a6f524ccbf8536.png)
课时跟踪检测(十八) 独立性检验的基本思想及其初步应用层级一 学业水平达标1.以下关于独立性检验的说法中, 错误的是( ) A .独立性检验依赖于小概率原理 B .独立性检验得到的结论一定准确C .样本不同,独立性检验的结论可能有差异D .独立性检验不是判断两事物是否相关的唯一方法解析:选B 根据独立性检验的原理可知得到的结论是错误的情况是小概率事件,但并不一定是准确的.2.观察下列各图,其中两个分类变量之间关系最强的是( )解析:选D 在四幅图中,D 图中两个阴影条的高相差最明显,说明两个分类变量之间关系最强,故选D .3.在列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大( ) A .a a +b 与d c +d B .c a +b 与a c +dC .a a +b 与c c +dD .a a +b 与c b +c解析:选C 由等高条形图可知a a +b 与c c +d 的值相差越大,|ad -bc |就越大,相关性就越强.4.对于分类变量X 与Y 的随机变量K 2的观测值k ,下列说法正确的是( ) A .k 越大,“X 与Y 有关系”的可信程度越小 B .k 越小,“X 与Y 有关系”的可信程度越小 C .k 越接近于0,“X 与Y 没有关系”的可信程度越小 D .k 越大,“X 与Y 没有关系”的可信程度越大解析:选B K 2的观测值k 越大,“X 与Y 有关系”的可信程度越大.因此,A 、C 、D 都不正确.5.考察棉花种子经过处理跟生病之间的关系得到下表数据:根据以上数据,可得出( )A .种子是否经过处理跟是否生病有关B .种子是否经过处理跟是否生病无关C .种子是否经过处理决定是否生病D .以上都是错误的解析:选B 由K 2=407×(32×213-61×101)293×314×133×274≈0.164<2.706,即没有把握认为是否经过处理跟是否生病有关.6.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K 2的观测值k =27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(填“有关”或“无关”)解析:∵K 2的观测值k =27.63,∴k >10.828,∴在犯错误的概率不超过0.001的前提下认为打鼾与患心脏病是有关的.答案:有关7.如果根据性别与是否爱好运动的列联表得到K 2≈3.852>3.841,则判断性别与是否爱好运动有关,那么这种判断犯错的可能性不超过________.解析:∵P (K 2≥3.841)≈0.05.∴判断性别与是否爱好运动有关,出错的可能性不超过5%. 答案:5%8.统计推断,当________时,在犯错误的概率不超过0.05的前提下认为事件A 与B 有关;当________时,认为没有充分的证据显示事件A 与B 是有关的.解析:当k >3.841时,就有在犯错误的概率不超过0.05的前提下认为事件A 与B 有关,当k ≤2.706时认为没有充分的证据显示事件A 与B 是有关的.答案:k >3.841 k ≤2.7069.为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共200人.(1)根据以上数据列出2×2列联表;(2)在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关系吗?为什么?解:(1)由已知可列2×2列联表:(2)根据列联表中的数据,由计算公式得K k =540×(20×260-200×60)2220×320×80×460≈9.638.∵9.638>6.635,因此,在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关.10.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到爱打篮球的学生的概率为35.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关;请说明理由. 附参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)列联表补充如下:(2)∵K 2=50×(20×15-10×5)230×20×25×25≈8.333>7.879,∴有99.5%的把握认为喜爱打篮球与性别有关.层级二 应试能力达标1.在第29届北京奥运会上,中国健儿取得了51金、21银、28铜的好成绩,稳居金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2 548名男性中有1 560名持反对意见,2 452名女性中有1 200名持反对意见,在运用这些数据说明性别对判断“中国进入了世界体育强国之列”是否有关系时,用什么方法最有说服力( )A .平均数与方差B .回归直线方程C .独立性检验D .概率解析:选C 由于参加调查的人按性别被分成了两组,而且每一组又被分成了两种情况,判断有关与无关,符合2×2列联表的要求,故用独立性检验最有说服力.2.对于独立性检验,下列说法正确的是( ) A .K 2>3.841时,有95%的把握说事件A 与B 无关 B .K 2>6.635时,有99%的把握说事件A 与B 有关 C .K 2≤3.841时,有95%的把握说事件A 与B 有关 D .K 2>6.635时,有99%的把握说事件A 与B 无关解析:选B 由独立性检验的知识知:K 2>3.841时,有95%的把握认为“变量X 与Y 有关系”;K 2>6.635时,有99%的把握认为“变量X 与Y 有关系”.故选项B 正确.3.想要检验是否喜欢参加体育活动是不是与性别有关,应该检验( ) A .H 0:男性喜欢参加体育活动 B .H 0:女性不喜欢参加体育活动 C .H 0:喜欢参加体育活动与性别有关 D .H 0:喜欢参加体育活动与性别无关解析:选D 独立性检验假设有反证法的意味,应假设两类变量(而非变量的属性)无关,这时的K 2应该很小,如果K 2很大,则可以否定假设,如果K 2很小,则不能够肯定或者否定假设.4.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”,得到如下的列联表:A .在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别无关”C .在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别有关”D .在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别无关”解析:选C 由2×2列联表得到a =45,b =10,c =30,d =15.则a +b =55,c +d =45,a +c =75,b +d =25,ad =675,bc =300,n =100.代入K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得K 2的观测值k =100×(675-300)255×45×75×25≈3.030.因为2.706<3.030<3.841.所以在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别有关”.5.若两个分类变量X 与Y 的列联表为:则“X 与Y 之间有关系”这个结论出错的可能性为________. 解析:由题意可得K 2的观测值k =(10+15+40+16)×(10×16-40×15)2(10+15)×(40+16)×(10+40)×(15+16)≈7.227,∵P (K 2≥6.635)≈1%, 所以“x 与y 之间有关系”出错的可能性为1%. 答案:1%6.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:有差别的结论________(填“能”或“不能”).解析:根据列联表中的数据,可以求得K 2的观测值k =392×(39×167-29×157)268×324×196×196≈1.779.K 2<2.072的概率为0.85.作出这两种手术对病人又发作心脏病的影响有差别的结论. 答案:1.779 不能7.甲、乙两机床加工同一种零件,抽检得到它们加工后的零件尺寸x (单位:cm)及个数y ,如下表:由表中数据得y 关于x 的线性回归方程为y =-91+100x (1.01≤x ≤1.05),其中合格零件尺寸为1.03±0.01(cm).完成下面列联表,并判断是否有99%的把握认为加工零件的质量与甲、乙有关?解:x =1.03,y =a +495,由y^=-91+100x 知,a +495=-91+100×1.03,所以a =11,由于合格零件尺寸为1.03±0.01 cm ,故甲、乙加工的合格与不合格零件的数据表为:所以K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=60×(24×18-6×12)230×30×36×24=10,因K 2=10>6.635,故有99%的把握认为加工零件的质量与甲、乙有关.8.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品.现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.解:(1)将2×2列联表中的数据代入公式计算,得 K 2=100×(60×10-20×10)270×30×80×20=10021≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 1,b 3),(a 1,b 2,b 3),(a 2,b 1,b 2),(a 2,b 1,b 3),(a 2,b 2,b 3),(b 1,b 2,b 3)}.(其中a i 表示喜欢甜品的学生,i =1,2.b j 表示不喜欢甜品的学生,j =1,2,3)Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.事件A是由7个基本事件组成,因而P(A)=710.。
高中数学(苏教版 选修2-3)文档第3章 3.1 独立性检验 Word版含答案

独立性检验
.了解独立性检验的概念,会判断独立性检验事件.
.能列出×列联表,会求χ(卡方统计量的值).
.能够利用临界值,作出正确的判断.(重点)
.应用独立性检验分析实际问题.(难点)
[基础·初探]
教材整理×列联表的意义
阅读教材~“例”以上部分,完成下列问题
一般地,对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值,即类和类(如吸烟与不吸烟);Ⅱ也有两类取值,即类和类(如患呼吸道疾病和未患呼吸道疾病).我们得到如下表所示的抽样数据:
形如上表的表格称为×列联表,×列联表经常用来判断和Ⅱ之间是否有关系.
下面是一个×列联表:
【解析】∵+=,∴=.
又=+=+=.
【答案】
教材整理独立性检验
阅读教材~“例”以上部分完成下列各题.
.独立性检验
×列联表中的数据是样本数据,它只是总体的代表,具有随机性,结果并不唯一.因此,由某个样本得到的推断有可能正确,也有可能错误.为了使不同样本量的数据有统一的评判标准,统计学中引入下面的量(称为卡方统计量):
χ=(*),
其中=+++为样本容量.
用统计量研究这类问题的方法称为独立性检验( ).
.独立性检验的基本步骤
要推断“Ⅰ与Ⅱ有关系”,可按下面的步骤进行:
()提出假设:Ⅰ与Ⅱ没有关系;
()根据×列联表与公式(*)计算χ的值;
()查对临界值(如下表),作出判断.
.关于分类变量与的随机变量χ的观测值,下列说法正确的是.(填序号) ()的值越大,“和有关系”可信程度越小;
()的值越小,“和有关系”可信程度越小;。
2018年高中数学 课下能力提升(十八)独立性检验 苏教版选修2-3

课下能力提升(十八) 独立性检验一、填空题1.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(有关,无关) 2.若两个研究对象X和Y的列联表为:则X与Y之间有关系的概率约为________.3.在吸烟与患肺病这两个对象的独立性检验的计算中,下列说法正确的是________.(填序号)①若χ2=6.635,则我们认为有99%的把握认为吸烟与患肺病有关系.那么在100个吸烟的人中必有99人患肺病.②从独立性检验的计算中求有99%的把握认为吸烟与患肺病有关系时,我们认为如果某人吸烟,那么他有99%的可能患肺病.③若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.2×2列联.(填“有关”二、解答题6.为研究学生的数学成绩与对学习数学的兴趣是否有关,对某年级学生作调查,得到如下数据:学生的数学成绩好坏与对学习数学的兴趣是否有关?7.考察小麦种子经过灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下列联表.8.为了调查某生产线上质量监督员甲是否在生产现场对产品质量好坏有无影响,现统计数据如下:甲在生产现场时,990件产品中有合格品982件,次品8件;甲不在生产现场时,510件产品中有合格品493件,次品17件.试用独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响.查表知P 答案:③4.解析:提出假设H 0:大学生的性别与看不看营养说明无关,由题目中的数据可计算χ2=72×(28×20-16×8)244×28×36×36≈8.42,因为当H 0成立时,P (χ2≥7.879)≈0.005,这里的χ2≈8.42>7.879,所以我们有99.5%的把握认为大学生的性别与看不看营养说明有关.答案:有关5.解析:由公式得χ2=168×(68×38-42×20)2110×58×88×80≈11.377>10.828,所以我们有99.9%的把握说,多看电视与人变冷漠有关.答案:99.9%6.解析:提出假设H 0:学生数学成绩的好坏与对学习数学的兴趣无关.由公式得χ2的值为χ2=189×(64×73-22×30)286×103×95×94≈38.459.∵当H 0成立时,χ2≥10.828的概率约为0.001,而这里χ2≈38.459>10.828,∴有99.9%的把握认为学生数学成绩的好坏与对学习数学的兴趣是有关的. 7.解:提出假设H 0:种子是否灭菌与有无黑穗病无关. 由公式得,χ2=460×(26×200-184×50)2210×250×76×384≈4.804.由于4.804>3.841,即当H 0成立时,χ2>3.841的概率约为0.05,所以我们有95%的把握认为种子是否灭菌与有无黑穗病是有关系的.8.解:2×2列联表如下提出假设H 0:质量监督员甲是否在生产现场与产品质量的好坏无明显关系.根据χ2公式得χ2=1 500(982×17-493×8)2990×510×1 475×25≈13.097.因为H 0成立时,χ2>10.828的概率约为0.001,而这里χ2≈13.097>10.828,所以有99.9%的把握认为质量监督员甲是否在生产现场与产品质量的好坏有关系.。
2018-2019学年高中数学人教A版选修2-3检测:课时跟踪检测(一)两..

课时跟踪检测(一) 两个计数原理及其简单应用层级一 学业水平达标1.某同学从4本不同的科普杂志,3本不同的文摘杂志,2本不同的娱乐新闻杂志中任选一本阅读,则不同的选法共有( )A.24种 B.9种C.3种 D.26种解析:选B 不同的杂志本数为4+3+2=9种,从其中任选一本阅读,共有9种选法. 2.已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是( )A.1 B.3C.6 D.9解析:选D 这件事可分为两步完成:第一步,在集合{2,3,7}中任取一个值x有3种方法;第二步,在集合{-31,-24,4}中任取一个值y有3种方法.根据分步乘法计数原理知,有3×3=9个不同的点.3.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有( ) A.30个 B.42个C.36个 D.35个解析:选C 要完成这件事可分两步,第一步确定b(b≠0)有6种方法,第二步确定a 有6种方法,故由分步乘法计数原理知共有6×6=36个虚数.4.5名同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A.10种 B.20种C.25种 D.32种解析:选D 每位同学限报其中的一个小组,各有2种报名方法,根据分步乘法计数原理,不同的报名方法共有25=32种.5.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( )A.60 B.48C.36 D.24解析:选B 长方体的6个表面构成的“平行线面组”有6×6=36(个),另外含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12(个),所以共有36+12=48(个). 6.已知a∈{2,4,6,8},b∈{3,5,7,9},能组成log a b>1的对数值有________个.解析:分四类,当a=2时,b取3,5,7,9四种情况;当a=4时,b取5,7,9三种情况;当a=6时,b取7,9两种情况;当a=8时,b取9一种情况,所以总共有4+3+2+1=10种,又log23=log49,所以对数值有9个.答案:97.用0到9这十个数字,可以组成没有重复数字的三位偶数的个数为________. 解析:由题意知本题是一个分类计数问题,若个位数字为0,前两位的排法种数为9×8=72;若个位数字不为0,则确定个位数字有4种方法,确定百位数字有8种方法,确定十位数字有8种方法,所以排法种数为4×8×8=256.所以可以组成256+72=328个没有重复数字的三位偶数.答案:3288.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有________种.解析:按照焊接点脱落的个数进行分类:第1类,脱落1个,有1,4,共2种;第2类,脱落2个,有(1,4),(2,3),(1,2),(1,3),(4,2),(4,3),共6种;第3类,脱落3个,有(1,2,3),(1,2,4),(2,3,4),(1,3,4),共4种;第4类,脱落4个,有(1,2,3,4),共1种.根据分类加法计数原理,共有2+6+4+1=13种焊接点脱落的情况.答案:139.用0,1,2,3,4,5这6个数字组成无重复数字的四位数,若把每位数字比其左邻的数字小的数叫做“渐降数”,求上述四位数中“渐降数”的个数.解:分三类:第一类,千位数字为3时,要使四位数为“渐降数”,则四位数只有3 210,共1个;第二类,千位数字为4时,“渐降数”有4 321,4 320,4 310,4 210,共4个;第三类,千位数字为5时,“渐降数”有5 432,5 431,5 430,5 421,5 420,5 410,5 321,5 320,5 310,5 210,共10个.由分类加法计数原理,得共有1+4+10=15个“渐降数”.10.现有高一四个班的学生34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以共有不同的选法N=7+8+9+10=34(种).(2)分四步:第一、二、三、四步分别从一、二、三、四班学生中选一人任组长.所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步:从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以,共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).层级二 应试能力达标1.由数字1,2,3,4可以组成有重复数字的三位奇数的个数为( )A.12 B.24C.48 D.32解析:选D 依据分步乘法计数原理,由数字1,2,3,4组成有重复数字的三位奇数共有2×4×4=32个.2.(2016·全国卷Ⅰ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24 B.18C.12 D.9解析:选B 由题意可知E→F有6种走法,F→G有3种走法,由分步乘法计数原理知,共6×3=18种走法.3.将3个不同的小球放入4个盒子中,则不同放法种数有( )A.81 B.64C.14 D.12解析:选B 对于第一个小球有4种不同的放法,第二个小球也有4种不同的放法,第三个小球也有4种不同的放法,即每个小球都有4种可能的放法,根据分步乘法计数原理知共有4×4×4=64种放法.4.定义集合A与B的运算A*B如下:A*B={(x,y)|x∈A,y∈B}.若A={a,b,c},B={a,c,d,e},则集合A*B的元素个数为( )A.34 B.43C.12 D.以上都不对解析:选C 由分步乘法计数原理可知,A*B中有3×4=12个元素.5.圆周上有2n个等分点(n大于2),任取3个点可得一个三角形,恰为直角三角形的个数为________.解析:先在圆周上找一点,因为有2n个等分点,所以应有n条直径,不过该点的直径应有n-1条,这n-1条直径都可以与该点形成直角三角形,即一个点可形成n-1个直角三角形,而这样的点有2n个,所以一共可形成2n(n-1)个符合条件的直角三角形. 答案:2n(n-1)6.某运动会上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种. 解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排,共有4×3×2=24种方法;第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,共有5×4×3×2×1=120种方法.所以安排这8人的方式共有24×120=2 880种.答案:2 8807.某校高二共有三个班,各班人数如下表.男生人数 女生人数 总人数高二(1)班 30 20 50高二(2)班 30 30 60高二(3)班 35 20 55(1)从三个班中选1名学生任学生会主席,有多少种不同的选法?(2)从高二(1)班、(2)班男生中或从高二(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?解:(1)从三个班中选1名学生任学生会主席,共有3类不同的方案:第1类,从高二(1)班中选出1名学生,有50种不同的选法;第2类,从高二(2)班中选出1名学生,有60种不同的选法;第3类,从高二(3)班中选出1名学生,有55种不同的选法.根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165种不同的选法.(2)从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:第1类,从高二(1)班男生中选出1名学生,有30种不同的选法;第2类,从高二(2)班男生中选出1名学生,有30种不同的选法;第3类,从高二(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高二(1)班、(2)班男生或高二(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80种不同的选法.8.标号为A,B,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球的颜色不同,有多少种取法?(2)若取出的两个小球颜色相同,有多少种取法?解:(1)若两个球颜色不同,则应在A,B袋中各取1个,或A,C袋中各取1个,或B,C袋中各取1个,共有1×2+1×3+2×3=11种取法.(2)若两个球颜色相同,则应在B袋中取出两个,或在C袋中取出两个,共有1+3=4种取法.。
[推荐学习]2018-2019学年高中数学苏教版选修2-3:课时跟踪训练(八) 二项式定理-含解析
![[推荐学习]2018-2019学年高中数学苏教版选修2-3:课时跟踪训练(八) 二项式定理-含解析](https://img.taocdn.com/s3/m/aefe11f8b14e852458fb575d.png)
课时跟踪训练(八) 二项式定理一、填空题1.(a +2b )10展开式中第3项的二项式系数为________.2.(四川高考改编)在x (1+x )6的展开式中,含x 3项的系数为________.3.二项式⎝⎛⎭⎫x 3-1x 25的展开式中的常数项为________. 4.若(x +1)n =x n +…+ax 3+bx 2+nx +1(n ∈N *),且a ∶b =3∶1,那么n =________.5.⎝⎛⎭⎫x 2+1x 9的展开式中有理项共有________项.(用数作答) 二、解答题6.求()x -2y 37的第4项,指出第4项的二项式系数与第4项的系数分别是什么?7.若⎝⎛⎭⎫x -a x 26展开式的常数项为60,则常数a 的值.8.已知⎝⎛⎭⎫x +12x n 的展开式中,前三项的系数成等差数列,求展开式中含x 项的系数及二项式系数.答 案1.解析:第3项的二项式系数为C 210=10!8!×2!=45. 答案:452.解析:只需求(1+x )6的展开式中含x 2项的系数即可,而含x 2项的系数为C 26=15. 答案:153.解析:∵T r +1=C r 5(-1)r x15-5r ,令15-5r =0,∴r =3. 故展开式中的常数项为C 35(-1)3=-10. 答案:-104.解析:a =C n -3n ,b =C n -2n,又∵a ∶b =3∶1, ∴C n -3n C n -2n =C 3n C 2n =31,即n (n -1)(n -2)·26n (n -1)=3,解得n =11. 答案:115.解析:由T r +1=C r 9(x 2)9-r ⎝⎛⎭⎫1x r =C r 9x18-3r, 依题意需使18-3r 为整数,故18-3r ≥0,r ≤6,即r =0,1,2,3,4,5,6共7项.答案:76.解:∵T 4=C 37()x 7-3(-2y 3)3=C 37x 2(-2)3y 9=-280x 2y 9,∴第四项的二项式系数为C 37=35,第四项的系数为-280.7.解:二项式⎝⎛⎭⎫x -a x 26展开式的通项公式是T r +1=C r 6x 6-r ()-a r x -2r =C r 6x 6-3r ()-a r .当r =2时,T r +1为常数项,即常数项是C 26a , 根据已知C 26a =60,解得a =4.8.解:⎝⎛⎭⎫x +12x n 展开式的通项公式为 T r +1=C r n ·()x n -r ⎝⎛⎭⎫12x r =⎝⎛⎭⎫12r C r n x n -2r 2. 由题意知,C 0n ,12C 1n ,14C 2n 成等差数列, 则C 1n =C 0n +14C 2n ,即n 2-9n +8=0, 解得n =8或n =1(舍去).∴T r +1=⎝⎛⎭⎫12r C r 8x 4-r .令4-r =1,得r =3.∴含x 项的系数为⎝⎛⎭⎫123C 38=7,二项式系数为C 38=56.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪训练(十八)独立性检验
一、填空题
1.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(有关,无关) 2.若两个研究对象X和Y的列联表为:
则X与Y之间有关系的概率约为________.
3.在吸烟与患肺病这两个对象的独立性检验的计算中,下列说法正确的是________.(填序号)
①若χ2=6.635,则我们认为有99%的把握认为吸烟与患肺病有关系.那么在100个吸烟的人中必有99人患肺病.
②从独立性检验的计算中求有99%的把握认为吸烟与患肺病有关系时,我们认为如果某人吸烟,那么他有99%的可能患肺病.
③若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.
④以上三种说法都不正确.
4.调查者询问了72名男女大学生在购买食品时是否观看营养说明得到如下2×2列联表:
从表中数据分析大学生的性别与看不看营养说明之间的关系是________.(填“有关”或“无关”)
5.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:
则由表可知大约有________的把握认为多看电视与人变冷漠有关系.
二、解答题
6.为研究学生的数学成绩与对学习数学的兴趣是否有关,对某年级学生作调查,得到如下数据:
7.考察小麦种子经过灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下列联表.
8.为了调查某生产线上质量监督员甲是否在生产现场对产品质量好坏有无影响,现统计数据如下:甲在生产现场时,990件产品中有合格品982件,次品8件;甲不在生产现场时,510件产品中有合格品493件,次品17件.试用独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响.
答 案
1.解析:由χ2值可判断有关. 答案:有关
2.解析:因为χ2=(5+15+40+10)×(5×10-40×15)2(5+15)×(40+10)×(5+40)×(15+10)
≈18.8,查表知
P (χ2≥10.828)≈0.001.
答案:99.9%
3.解析:由独立性检验的意义可知,③正确. 答案:③
4.解析:提出假设H 0:大学生的性别与看不看营养说明无关,由题目中的数据可计算
χ2=72×(28×20-16×8)2
44×28×36×36
≈8.42,因为当H 0成立时,P (χ2≥7.879)≈0.005,这里的
χ2≈8.42>7.879,所以我们有99.5%的把握认为大学生的性别与看不看营养说明有关.
答案:有关
5.解析:由公式得χ2
=168×(68×38-42×20)2
110×58×88×80
≈11.377>10.828,所以我们有99.9%的
把握说,多看电视与人变冷漠有关.。