表面等离子共振光谱-V2
表面等离子体共振的共振波长-概述说明以及解释

表面等离子体共振的共振波长-概述说明以及解释1.引言1.1 概述表面等离子体共振是一种在纳米尺度上发生的现象,它在光学和电磁学领域具有重要意义。
表面等离子体共振可以简单地理解为,当光波与金属或半导体等材料界面上的自由电子相互作用时,会引起电子在表面上的集体振荡。
这种振荡在特定波长下达到最大,即共振波长,这是表面等离子体共振的现象。
表面等离子体共振现象由于其特殊的光学性质,在各个领域均有重要的应用。
在生物传感器中,表面等离子体共振可以用来检测微生物的存在并进行分析。
在纳米光子学领域,表面等离子体共振可以用来增强光与物质的相互作用,从而提高光学器件的性能。
在太阳能电池中,表面等离子体共振可以提高光吸收效率,从而增加光电转化效率。
此外,表面等离子体共振还可以用于光子集成电路、图像传感和信息存储等领域。
本文将重点介绍表面等离子体共振的共振波长及其产生机制。
通过深入了解共振波长的特性和调节机制,我们可以更好地应用表面等离子体共振现象,并在各个领域中取得更大的突破和进展。
综上所述,本文旨在全面介绍表面等离子体共振的共振波长,通过对其概念和产生机制的研究,探讨其在各个领域中的应用前景。
最后,我们将总结表面等离子体共振的重要特性,并展望其在未来的发展趋势。
文章结构的目的是为了帮助读者更好地理解和组织文章的内容。
通过清晰的结构,读者可以更容易地跟随文章的思路和逻辑。
本文的文章结构如下:1. 引言1.1 概述1.2 文章结构1.3 目的2. 正文2.1 表面等离子体共振的概念2.2 表面等离子体共振的产生机制3. 结论3.1 表面等离子体共振的应用前景3.2 总结文章结构部分主要起到向读者介绍整篇文章的组织框架和目的的作用。
通过明确列出各个章节的标题和内容大致涵盖的内容,读者可以更好地了解接下来的文章会包含哪些方面的知识,并有助于从整体上把握文章的思路和结构。
文章结构的呈现方式可以采用类似上述的列表形式,清晰明了地展示出不同章节的层次关系。
表面等离子体共振技术的原理和应用

表面等离子体共振技术的原理和应用表面等离子体共振技术(Surface Plasmon Resonance,简称SPR)是一种现代分析技术,主要用于检测生物分子相互作用。
该技术基于表面等离子体共振现象,通过测量试样与金属表面的相互作用,从而推断出与试样相互作用的生物分子的性质和相互作用力的强度。
表面等离子体共振现象是指当有一束光线斜入垂直于金属表面时,会与金属表面上的自由电子相互作用产生共振,这种共振就是表面等离子体共振。
而当试样溶液在金属表面形成一层薄膜时,这层薄膜的折射率会影响共振的位置和强度,因此可以检测到试样与金属表面的相互作用。
SPR技术的检测原理是通过将金属薄膜与含有生物分子(例如蛋白质)的溶液相接触,从而使生物分子吸附在金属薄膜表面,进而测量吸附和解离过程中的表面等离子体共振信号变化。
通常情况下,自发结合和亲和力大的生物分子会在金属表面上呈现强信号,在SPR曲线上表现为峰;而不结合或结合较弱的生物分子,其曲线相对平坦,表现出较小的信号。
SPR技术的应用SPR技术具有广泛的应用,特别在生物医学、生物化学和生命科学领域具有重要意义。
以下是一些SPR技术的应用:1. 生物分子相互作用研究SPR技术可以用于生物分子之间相互作用的研究,例如酶和配体、抗体和抗原、蛋白质和DNA/RNA等。
通过检测生物分子之间的相互作用,可以揭示生物分子相互作用的动力学和热力学参数,包括关联常数、解离常数、亲和力和熵变等。
2. 药物筛选SPR技术也可以应用于药物筛选。
在药物开发过程中,药物分子需要与靶分子相互作用,以达到治疗作用。
利用SPR技术可以对候选化合物进行筛选,通过检测不同药物候选物与目标分子之间的相互作用,从而选择最有效的药物分子。
3. 诊断应用SPR技术还可以应用于诊断,例如慢性阻塞性肺病(COPD)的检测。
据研究,COPD患者的血清中含有一特定蛋白胆固醇酯转移酶,而正常人的血清中不含。
利用SPR技术,可以检测出胆固醇酯转移酶的存在,从而诊断COPD。
表面等离子体共振的原理

表面等离子体共振的原理一、表面等离子体的原理表面等离子体(Surface Plasmon)是紫外线照射在金属表面上产生的一种特殊的电磁波,也叫做表面等离子体共振,即表面等离子体和表面电场(SPE)的共振结果。
它是由金属表面的电子以及周围介质中的电子,以特殊频率的共振而产生的。
表面等离子体的共振机制具体是这样的:当紫外线照射到金属表面上时,金属表面电子会被激发,而介质中的电子也会受到牵引,把紫外线的能量吸收,并产生表面等离子体波。
此时,介质中的电子和金属表面上的电子会以特定的频率产生共振,从而产生表面等离子体共振效应。
表面等离子体的共振频率受紫外线频率、金属表面尺寸以及介质介电常数等多种因素的影响。
通常情况下,金属表面尺寸比较小,介质介电常数比较大,表面等离子体的频率会比紫外线频率高得多。
当紫外线频率等于表面等离子体的共振频率时,就会发生表面等离子体共振效应。
此时,金属表面就会发出一种微弱的金色闪光。
当金属表面尺寸改变或介质介电常数改变时,共振频率也会随之改变,从而产生不同的表面等离子体共振效应。
当电场发生变化时,表面等离子体和表面电场的共振频率也会有所变化,从而改变表面等离子体共振所产生的电磁波形状。
表面等离子体共振是一个非常重要的物理现象,它可以用来检测物质的存在,传感或测量物质的特性。
它也可以用来提高紫外线的分辨率,从而提高紫外光谱的精确度。
表面等离子体共振也在生物学和化学等多个领域中被广泛应用,例如用于研究病毒和细胞表面的表面等离子体共振成像(SPR Imaging)技术,以及用于病原体和抗原检测的表面等离子体共振耦合分析(SPR-MSD)技术。
总之,表面等离子体共振是一种具有重要意义的现象,它的许多应用对我们的研究和生活都有着重大的意义。
表面等离子共振技术介绍

SPR仪的结构及工作原理
朱倩 90513126
表面等离子共振技术介绍
Biacore 3000
Biacore Control
工作仪器
表面等离子共振技术介绍
Biacore 3000工作仪器
核心部件: 传感器芯片 液体处理系统 光学系统
其他: LED状态指示器 温度控制系统
表面等离子共振技术介绍
发展简史
1902年,Wood在光学实验中发现SPR现象 1941年,Fano解释了SPR现象 1971年,Kretschmann为SPR传感器结构奠定了基础 1983年,Liedberg将SPR用于IgG与其抗原的反应测定 1987年,Knoll等人开始SPR成像研究 1990年,Biacore AB公司开发出首台商品化SPR仪器
2.等离子波
等离子体 等离子体通常是指由密度相当高的自由正、 负电荷组成的气体,其中正、负带电粒子数目 几乎相等。
金属表面等离子波 把金属的价电子看成是均匀正电荷背景下运 动的电子气体,这实际上也是一种等离子体。 由于电磁振荡形成了等离子波。
表面等离子共振技术介绍
3.SPR光学原理
表面等离子共振技术介绍
表面等离子共振原理
1. 消逝波 2. 等离子波 3. SPR的光学原理
表面等离子共振技术介绍
1.消逝波
菲涅尔定理: n1 sinθ1 = n2 sinθ2
当光从光密介质 密 入射到光疏介质 时(n1>n2)就 会有全反射现象 疏 的产生。
密
疏
表面等离子共振技术介绍
1.消逝波
密
界面 疏 这表示沿X轴方向传播而振幅衰减的一个波,这就是消逝波。 全反射的光波会透过光疏介质约为光波波长的一个深度,再 沿界面流动约半个波长再返回光密介质。光的总能量没有发 生改变。透入光疏介质的光波成为消逝波。 表面等离子共振技术介绍
表面等离子体共振

表面等离子体共振
表面等离子体共振是一种在纳米尺度下的表面增强光谱学技术,在化学、生物、物理等领域中具有重要的应用价值。
表面等离子体共振通过激发金属纳米结构表面的等离子体共振激元,实现对吸附在金属表面或与金属表面相互作用的样品进行高灵敏度的光谱检测。
我们知道,等离子体共振是指金属或其他导体中的自由电子在外界电场作用下
的振荡现象。
当这种振荡发生在金属纳米结构的表面时,就形成了表面等离子体共振。
之所以称为“表面”,是因为这种共振只发生在金属表面附近几十到几百纳米的
范围内,具有高度局域的特点。
在表面等离子体共振技术中,研究人员通常利用纳米结构的阵列、膜、颗粒等
作为表面等离子体共振的基底。
这些纳米结构的形状、尺寸和材料可以被精心设计,以调控其共振特性,从而实现对不同样品的选择性检测和分析。
通过表面等离子体共振技术,科研人员可以实现对生物分子、药物、化学物质
等样品的高灵敏度检测,甚至可以实现单分子检测。
表面等离子体共振在生物传感、化学分析、光电器件等领域具有广泛的应用前景,为科学研究和工业技术的发展带来了新的机遇。
总的来说,表面等离子体共振作为一种重要的纳米技术手段,具有丰富的理论
基础和广泛的实际应用。
随着纳米科技的不断进步,表面等离子体共振技术在材料科学、化学分析、生命科学等领域中将发挥越来越重要的作用,为人类社会的进步和发展做出更多贡献。
表面等离子体共振的原理及其应用

表面等离子体共振的原理及其应用简介表面等离子体共振(Surface Plasmon Resonance,SPR)是一种现代生物分子相互作用研究技术,该技术基于感测芯片表面与待检测样品中生物分子之间的互作用,通过检测共振角偏移量实现实时监测目标分子与生物集体之间的互作用过程。
SPR技术的研究不仅在基础科学领域有广泛应用,同时在生物医学研究、药物研发、生物传感器等领域也得到了广泛的应用。
原理SPR是一种表面等离子体共振现象,它发生在感测芯片表面和样品中的生物分子之间。
感测芯片表面一般涂覆上金属薄层,如50纳米左右的金膜,这样能让电磁波激发芯片表面产生等离子体振动。
当感测芯片表面上有生物分子与目标物质产生相互作用时,这种振动受到阻碍,产生了共振角偏移,这个角度的值和表面等离子体共振现象发生的位置和时间相关。
应用1.生物医学研究SPR技术可以实时监测酶动力学研究、抗体识别、蛋白质相互作用、细胞膜内递质运输、病毒侵入等方面的生物分子的相互作用过程。
这些过程的实时检测可以加深我们对于生物分子的行为和功能的认识。
2.药物研发SPR技术可以用于药物研发中药物分子和蛋白质相互作用的研究,从而评估药物分子的亲和性、特异性、疗效和毒性。
3.生物传感器SPR技术通过探测生物体内发生的分子相互作用,对真实样本中的生物分子进行实时监测。
因此,SPR技术被广泛应用于生物传感器的设计和研发,可以用于疾病预警、环境污染等方面的监测。
4.生物芯片SPR技术的应用在微流控芯片技术上比较广泛,可以实现高通量、精确、标本省、操作简单、自动化等方面的检测。
因此,SPR 技术被广泛应用于病原体检测、毒素检测、药物筛选等方面,可以为医学诊断提供新的手段。
结论SPR技术是一种快速、准确、敏感的生物分子相互作用检测技术,在生命科学研究和生物医学领域有广泛应用,同时也是生物芯片和生物传感器等技术的核心。
随着新兴技术的不断涌现,可以预见,SPR技术在生命科学和生物医学领域会有更广阔的应用前景。
表面等离子共振

表面等离子共振编辑词条表面等离子共振(SPR)是一种物理现象,(Surface Plasmon Resonance, SPR)当入射光以临界角入射到两种不同折射率的介质界面(比如玻璃表面的金或银镀层)时,可引起金属自由电子的共振,由于共振致使电子吸收了光能量,从而使反射光在一定角度内大大减弱。
(Surface Plasmon Resonance, SPR)当入射光以临界角入射到两种不同折射率的介质界面(比如玻璃表面的金或银镀层)时,可引起金属自由电子的共振,由于共振致使电子吸收了光能量,从而使反射光在一定角度内大大减弱。
其中,使反射光在一定角度内完全消失的入射角称为SPR角。
SPR随表面折射率的变化而变化,而折射率的变化又和结合在金属表面的生物分子质量成正比。
因此可以通过获取生物反应过程中SPR角的动态变化,得到生物分子之间相互作用的特异性信号(图1)。
生物分子相互作用分析是基于SPR原理的新型生物传感分析技术,无须进行标记,也可以无须纯化各种生物组分。
在天然条件下通过传感器芯片实时、原位和动态测量各种生物分子如多肽、蛋白质、寡核苷酸、寡聚糖,以及病毒、细菌、细胞、小分子化合物之间的相互作用过程。
表面等离子共振是表面增强拉曼的重要增强机理之一,由于贵金属纳米粒子的尺寸效应及量子效应通过激发光照射能引起表面等离子共振,从而大大增强拉曼散射信号,已达到痕量检测的目的。
表面等离子共振广泛应用于研究结合特异性、抗体选择、抗体质控、疾病机制、药物发明、生物治疗、生物处理、生物标记物、配体垂钓、基因调控、细胞信号传导、亲和层析、结构-功能关系、小分子间相互作用等。
表面等离子共振(SPR)是一种光学现象,可被用来实时跟踪在天然状态下生物分子间的相互作用。
这种方法对生物分子无任何损伤,且不需任何标记物。
先将一种生物分子(靶分子)键合在生物传感器表面,再将含有另一种能与靶分子产生相互作用的生物分子(分析物)的溶液注入并流经生物传感器表面。
表面等离子共振实验技术及应用方法

表面等离子共振实验技术及应用方法表面等离子共振(surface plasmon resonance,SPR)是一种重要的实验技术,广泛应用于生物医学、环境监测等领域。
本文将介绍SPR的原理、实验方法以及应用。
一、SPR的原理SPR基于光的全反射现象,利用金属表面上的等离子体共振使得光波与金属表面上的等离子体波获得强烈的耦合。
当入射角达到特定的角度(共振角)时,反射光最弱。
这个共振角取决于金属的折射率,而折射率受溶液或界面上吸附物质的影响。
因此,通过检测反射光的强度变化,可以实时监测溶液中的生物分子相互作用、吸附行为等。
二、SPR的实验方法1. 典型实验装置SPR实验通常通过激光器、偏振器、折射率检测系统、样品池以及计算机控制系统构成。
激光器产生单色光,经过偏振器选择S波或P波,接着经过金属薄膜和与样品接触的溶液。
折射率检测系统测量反射光的强度,并将其转化为与样品相互作用的信号。
计算机控制系统负责数据采集和处理。
2. 工作原理样品溶液通过样品池流动,溶液中的目标分子与金属表面上的探针分子发生相互作用。
这些相互作用引起金属的折射率发生变化,导致共振角发生偏移。
通过测量共振角的变化,可以得到样品中目标分子的浓度或相互作用的强度。
三、SPR的应用1. 生物传感器SPR可以实现对生物分子相互作用的实时监测,因此被广泛应用于生物传感器的研究与开发。
例如,用SPR技术可以检测肿瘤标记物、病原体、药物等,用于快速、灵敏的分析和诊断。
2. 药物筛选与研究SPR也可以用于药物筛选和研究。
通过SPR技术可以实时监测药物与受体蛋白之间的相互作用,从而评估药物的效果和亲和性,加速新药研发的过程。
3. 环境监测SPR还可以应用于环境监测领域。
例如,可以利用SPR检测土壤或水中的有毒重金属、污染物等,实现对环境污染程度的快速准确分析。
4. 表面修饰和纳米材料研究SPR也被应用于表面修饰和纳米材料研究。
通过调控金属表面的化学组成和结构,可以实现对光学性质的调控,从而拓展SPR技术在生物医学、光电子等领域的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物传感器的在线分析能力和高灵敏度,微量样 品需求的特点,使得这种仪器成为食品及环境安 全监控的理想工具
Biacore 3000的光学系统
Biacore 3000传感器基本结构
1. 光波导耦合器件 2. 金属膜 3. 分子敏感膜
传感芯片——光波导耦合器 件
Krestschmann 棱镜型 光栅型 光纤终端反射式 Otto棱镜型 金属膜 分子敏感膜 光纤在线传输式
棱镜型装置工作原理
(a) Otto 型 (b) Kretschmann 型
光纤型光波导耦合器
在线传输式SPR 光纤传感器
光纤型光波导耦合器
终端反射式SPR 光纤传感器
光栅型光波导耦合器
光源
He2Ne激光器 LED 白炽灯——卤钨灯
传感芯片——金属膜
反射率高 化学稳定性好 厚度合适
金属材料的选择
Ag膜、Au膜的比较
金膜(实线) 和银膜(虚线) SPR 光谱理论值
食品工业及环境监测领域
SPR技术因其高效灵敏、无需额外标记等优 高效灵敏、无需额外标记 势,广泛应用与蛋白质检测和蛋白-蛋白相互作 用等蛋白质组学研究,它能在保持蛋白质天然 状态的情况下实时提供靶蛋白的细胞器分布, 结合动力学及浓度变化等功能信息,为蛋白质 组研究开辟了全新模式
利用生物传感器,可监测和定量测定病人血清 中的生物药剂和抗体滴度的可行性,跟踪检测 动物模型、人类临床试验
3.SPR光学原理
可以从反射光强的响应曲线看到一个最小的尖 峰,此时对应的入射光波长为共振波长,对应 的入射角为SPR角。SPR角随金表面折射率变化 而变化,而折射率的变化又与金表面结合的分 子质量成正比。这就是SPR对物质结合检测的基 本原理。
SPR的响应模式
SPR的检测模式
直接检测: 适用于大分子 (>1000 Da)
3.SPR光学原理
3.SPR光学原理
我们在前面提到光在棱镜与金属膜表面上发生全反射现 象时,会形成消逝波进入到光疏介质中,而在介质(假 设为金属介质)中又存在一定的等离子波。当两波相遇 时可能会发生共振。
3.SPR光学原理
当消逝波与表面等离子波发生共振时,检测到的反射光 强会大幅度地减弱。能量从光子转移到表面等离子,入 射光的大部分能量被表面等离子波吸收,使得反射光的 能量急剧减少。
展简史
1902年,Wood在光学实验中发现SPR现象 1941年,Fano解释了SPR现象 1971年,Kretschmann为SPR传感器结构奠定了基础 1983年,Liedberg将SPR用于IgG与其抗原的反应测定 1987年,Knoll等人开始SPR成像研究 1990年,Biacore AB公司开发出首台商品化SPR仪器
SPR生物传感器用于遗传分析是一个崭新的领域。 如用于检测点突变,用于检测区分野生的和经遗 传修饰的大豆基因序列等
如今, SPR技 术已被 广泛地 用来分 析生物 分子间 的相互 作用
Main Advantages
实时监测 无需标记样品 样品需要极少 检测过程方便快捷,灵敏度较高 应用范围广泛
1.消逝波
菲涅尔定理:
n1 sinθ1 = n2 sinθ2
密
当光从光密介质 入射到光疏介质 时(n1>n2)就 会有全反射现象 的产生。
疏
密 疏
1.消逝波(evanescent waves)
密
界面
疏
这表示沿X轴方向传播而振幅衰减的一个波,这就是消逝波。 全反射的光波会透过光疏介质约为光波波长的一个深度,再 沿界面流动约半个波长再返回光密介质。光的总能量没有发 生改变。透入光疏介质的光波称为消逝波。
SPR的检测模式
抑制模式: 将待测小分 子固定在传感 器表面,在样 品中加入过量 对应大分子。
SPR仪的结构及工作原理
Biacore Control
工作仪器
Biacore 3000工作仪器
核心部件: 传感器芯片 液体处理系统 光学系统 其他: LED状态指示器 温度控制系统
Biacore 3000核心部件
50nm
传感芯片——分子敏感膜
成膜方法: 1. 金属膜直接吸附法 2. 共价连接法(生物素-亲和素、葡聚糖 凝胶、水凝胶、高分子膜、多肽等) 3. 单分子复合膜法 4. 分子印膜技术
Biacore 3000液体处理系统
Biacore 3000的LED状态指示器 LED(light-emitting diode)
恒定波长, 反射系数与入射角度关系 波长: 1 和2 为750nm,3 为600nm, 4 为500nm
恒定入射角度, 反射系数与波长关系 入射角度: 1 为80Ü, 2 为70Ü, 3 为72Ü, 4 为6815Ü,5 为6515Ü
金属膜厚度对SPR 谱的影 响
λ= 632.18nm 介质为水( n = 1.333) 棱镜折射率为1.515
Other Advantages
跟踪监控 不干扰反应的平衡 不需要对样品进行处理 能在混浊的甚至不透明的样品中进行
Disadvantages
传感曲线经常不符合假一级动力学
多价结合 多步结合反应 空间位阻效应 配体或者分析物的不均一 扩散速度限制 重结合现象
Disadvantages
检测成本 易用性 稳定性 检测效率
Ready:亮/灭 Error:亮/灭 Temperature:稳定/闪 烁 Sensor Chip:稳定/闪 烁 Run:亮/灭
Biacore 3000的温度控制系统
SPR 技术的应用
化学应用
通过检测共振角或共振波长的变化 来检测待测分子的成分、浓度以及 参与化学反应的特性
生物学应用
药物领域
联用技术
MALDI-TOF质谱法结合 “二维” SPR—可对相互作用进行 定量分析 MALDI-TOF—提供定性分析的 详细结果
RP-HPLC高效液相层析技术
用于SPR技术中研究溶细胞肽与 抗微生物肽和细胞膜磷脂的相 互作用情况,以了解肽的构想 及溶解活性。
电化学与SPR联用
为固液表面发生的各种电化学现象和过程 提供有价值的信息 电诱导分子吸附/脱附, 吸附物、电沉积和阳极溶出过程中 的结构变化。
SPR用途简介
实时分析,简便快捷地监测DNA与蛋白质之间、蛋白质分 子之间以及药物—蛋白质、核酸—核酸、抗原—抗体、受 体—配体等等生物分子之间的相互作用,在生命科学、医 疗检测、药物筛选、食品检测、环境监测、毒品检测、法 医鉴定等领域具有广泛的应用需求。
表面等离子共振原理
1. 消逝波 2. 等离子波 3. SPR的光学原理
表面等离子共振
——从原理到应用
Surface plasma resonance -Theory and application
简介
表面等离子共振技术(Surface Plasmon Resonance technology,SPR)是20世纪90年代发展起来的,应 用SPR原理检测生物传感芯片(biosensor chip)上配 位体与分析物作用的一种新技术。
2.等离子波
等离子体(Plasmon) 等离子体通常是指由密度相当高的自由正、 负电荷组成的气体,其中正、负带电粒子 数目几乎相等。 金属表面等离子波(surface Plasmon wave, SPW) 把金属的价电子看成是均匀正电荷背景下 运动的电子气体,这实际上也是一种等离 子体。由于电磁振荡形成了等离子波。
改进与发展
增强稳定性 提高检测灵敏度 实现多通道检测 联用 装置微型化 降低成本
稳定性
生物分子&金属薄膜结合 + 一层SAM (self-assembles monolayer) 自组装单分子层 在金属薄膜层上覆盖羧甲基葡聚糖凝胶
微流控多通道SPR检测
SPR Imaging
Layout and photograph of the microfluidic chip designed for coupling with SPR imaging system
微型化
Biacore 2000 Dimensions: 760 x 350 x 610 mm Net Weight: 50 kg Spreeta 2000
Spreeta 传感器 和SPR分析系统示意图
Biosensing Instrument(生物传感 仪器)公司
BI SPR 1100
SPR的应用领域将不断扩大 技术水平及实用程度也将不断提高