2020高考数学一轮复习第四章三角函数与解三角形第七节解三角形应用举例课后作业理

合集下载

2025年高考数学总复习课件36第四章第七节解三角形应用举例

2025年高考数学总复习课件36第四章第七节解三角形应用举例
必备知识
落实“四基”
自查自测
知识点 测量中的几个有关术语
1.判断下列说法的正误,正确的画“√”,错误的画“×”.
(1)东南方向与南偏东45˚方向相同.( √ ) (2)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关
系.( √ ) (3)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=
在△ACM中,由正弦定理得sinA6C0˚=siAnM45˚,所以AC=siAnM45˚·sin 60˚,
所以BC=AC·sin 60˚=siAnM45˚·sin260˚=1002 2 × 34=150(m).
2
第七节 解三角形应用举例
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
测量高度问题的求解策略 (1)理解仰角、俯角、方向(位)角是关键. (2)在实际问题中,若遇到空间与平面(地面)同时研究的问题,最好画两个图 形,一个空间图形,一个平面图形. (3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.
(2)若b2+c2=8,求b,c. 解:(方法一)在△ABD与△ACD中,
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
c2=
由余弦定理得൞
b2=
1 4 1 4
a2+1-2×
1 2
a2
+1-2×
1 2
a×1× cos a×1× cos
π-∠ADC ∠ADC,

整理得12a2+2=b2+c2,而b2+c2=8,则a=2 3.
△ABC中,若AD是边BC上的中线,则AB2+AC2=2(BD2+AD2),AD2=14(b2+c2

2023年高考数学一轮复习第四章三角函数与解三角形7正弦定理余弦定理练习含解析

2023年高考数学一轮复习第四章三角函数与解三角形7正弦定理余弦定理练习含解析

正弦定理、余弦定理考试要求 1.掌握正弦定理、余弦定理及其变形.2.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理与余弦定理定理正弦定理余弦定理内容asin A=b sin B =csin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)a sin B =b sin A ,b sin C =c sin B , a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式 (1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论: (1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边. (3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sinA +B2=cosC2;cosA +B2=sin C2. (5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.( × ) 教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于( ) A.π6 B.π3 C.2π3D.5π6答案 C解析 因为在△ABC 中,设AB =c =5,AC =b =3,BC =a =7, 所以由余弦定理得cos∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角, 所以∠BAC =2π3.2.在△ABC 中,若A =60°,a =43,b =42,则B =. 答案 45°解析 由正弦定理知a sin A =bsin B ,则sin B =b sin A a =42×3243=22.又a >b ,则A >B ,所以B 为锐角,故B =45°.3.在△ABC 中,a =2,b =3,C =60°,则c =,△ABC 的面积=. 答案7 332解析 易知c =4+9-2×2×3×12=7,△ABC 的面积等于12×2×3×32=332.题型一 利用正弦定理、余弦定理解三角形例1 (12分)(2021·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD ·sin∠ABC =a sin C . (1)证明:BD =b ;[切入点:角转化为边](2)若AD =2DC ,求cos∠ABC .[关键点:∠BDA 和∠BDC 互补]高考改编在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +a sin A =b sin B +c sin C . (1)求A ;(2)设D 是线段BC 的中点,若c =2,AD =13,求a . 解 (1)根据正弦定理,由b sin C +a sin A =b sin B +c sin C , 可得bc +a 2=b 2+c 2, 即bc =b 2+c 2-a 2,由余弦定理可得,cos A =b 2+c 2-a 22bc =12,因为A 为三角形内角,所以A =π3.(2)因为D 是线段BC 的中点,c =2,AD =13, 所以∠ADB +∠ADC =π, 则cos∠ADB +cos∠ADC =0,所以AD 2+BD 2-AB 22AD ·BD +AD 2+DC 2-AC 22AD ·DC=0,即13+a 24-22213·a 2+13+a 24-b2213·a2=0,整理得a 2=2b 2-44,又a 2=b 2+c 2-2bc cos A =b 2+4-2b , 所以b 2+4-2b =2b 2-44, 解得b =6或b =-8(舍), 因此a 2=2b 2-44=28, 所以a =27.思维升华 解三角形问题的技巧(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.跟踪训练1 (2021·北京)已知在△ABC 中,c =2b cos B ,C =2π3.(1)求B 的大小;(2)在下列三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求出BC 边上的中线的长度.①c =2b ;②周长为4+23;③面积为S △ABC =334.解 (1)∵c =2b cos B ,则由正弦定理可得sin C =2sin B cos B , ∴sin2B =sin2π3=32,∵C =2π3, ∴B ∈⎝ ⎛⎭⎪⎫0,π3,2B ∈⎝⎛⎭⎪⎫0,2π3, ∴2B =π3,解得B =π6.(2)若选择①:由正弦定理结合(1)可得 c b =sin C sin B =3212=3, 与c =2b 矛盾,故这样的△ABC 不存在; 若选择②:由(1)可得A =π6,设△ABC 的外接圆半径为R , 则由正弦定理可得a =b =2R sinπ6=R , c =2R sin2π3=3R , 则周长为a +b +c =2R +3R =4+23, 解得R =2,则a =2,c =23, 由余弦定理可得BC 边上的中线的长度为232+12-2×23×1×cosπ6=7; 若选择③:由(1)可得A =π6,即a =b ,则S △ABC =12ab sin C =12a 2×32=334,解得a =3,则由余弦定理可得BC 边上的中线的长度为b 2+⎝ ⎛⎭⎪⎫a 22-2×b ×a 2×cos 2π3=3+34+3×32=212. 题型二 正弦定理、余弦定理的简单应用 命题点1 三角形形状判断 例2 在△ABC 中,c -a 2c =sin 2 B 2(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案 A解析 由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B2, 即cos B =ac.方法一 由余弦定理得a 2+c 2-b 22ac =ac,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,无法判断两直角边是否相等. 方法二 由正弦定理得cos B =sin Asin C ,又sin A =sin(B +C )=sin B cos C +cos B sin C , 所以cos B sin C =sin B cos C +cos B sin C , 即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为三角形的内角,所以C =π2,所以△ABC 为直角三角形,无法判断两直角边是否相等.延伸探究将“c -a 2c =sin 2 B 2”改为“sin A sin B =a c,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解 因为sin A sin B =ac ,所以a b =a c,所以b =c . 又(b +c +a )(b +c -a )=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3, 所以△ABC 是等边三角形.思维升华 判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论. 命题点2 三角形的面积例3 (2022·沧州模拟)在①sin A ,sin C ,sin B 成等差数列;②a ∶b ∶c =4∶3∶2;③b cos A =1这三个条件中任选一个,补充在下面问题中.若问题中的三角形存在,求该三角形面积的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且a (sin A -sin B )+b sinB =c sinC ,c =1,?注:如果选择多个条件分别解答,按第一个解答计分. 解 因为a (sin A -sin B )+b sin B =c sin C , 由正弦定理得a (a -b )+b 2=c 2, 即a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), 所以C =π3.选择①:因为sin A ,sin C ,sin B 成等差数列, 所以sin A +sin B =2sin C ,即a +b =2c =2, 由a 2+b 2-c 2=a 2+b 2-1=ab , 得(a +b )2-3ab =1,所以ab =1, 故存在满足题意的△ABC ,S △ABC =12ab sin C =12×1×sin π3=34. 选择②:因为a ∶b ∶c =4∶3∶2, 所以A >B >C =π3,这与A +B +C =π矛盾,所以△ABC 不存在. 选择③: 因为b cos A =1,所以b ·b 2+1-a 22b=1,得b 2=1+a 2=c 2+a 2, 所以B =π2,此时△ABC 存在.又C =π3,所以A =π6,所以a =1×tanπ6=33, 所以S △ABC =12ac =36.思维升华 三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 命题点3 与平面几何有关的问题例4 如图,在平面四边形ABCD 中,已知A =π2,B =2π3,AB =6.在AB 边上取点E ,使得BE=1,连接EC ,ED .若∠CED =2π3,EC =7.(1)求sin∠BCE 的值; (2)求CD 的长.解 (1)在△BEC 中,由正弦定理, 知BE sin∠BCE =CEsin B.∵B =2π3,BE =1,CE =7,∴sin∠BCE =BE ·sin B CE =327=2114. (2)∵∠CED =B =2π3,∴∠DEA =∠BCE ,∴cos∠DEA =1-sin 2∠DEA =1-sin 2∠BCE =1-328=5714. ∵A =π2,∴△AED 为直角三角形,又AE =5,∴ED =AE cos∠DEA =55714=27.在△CED 中,CD 2=CE 2+DE 2-2CE ·DE ·cos∠CED=7+28-2×7×27×⎝ ⎛⎭⎪⎫-12=49. ∴CD =7. 教师备选1.在△ABC 中,已知a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,则该三角形的形状是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .钝角三角形答案 C解析 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又C ∈(0,π), ∴C =π3,由2cos A sin B =sin C ,得cos A =sin C 2sin B =c 2b =c 2+b 2-a22bc ,∴b 2=a 2,即b =a ,又C =π3,故三角形为等边三角形.2.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C -c cos(B +C )=-b3cos A +B .(1)求tan C ;(2)若c =3,sin A sin B =1627,求△ABC 的面积.解 (1)∵a cos C -c cos(B +C ) =-b3cos A +B ,∴a cos C +c cos A =b3cos C.由正弦定理得sin A cos C +sin C cos A =sin B3cos C ,∴sin(A +C )=sin B3cos C ,即sin B =sin B3cos C ,又∵sin B ≠0, ∴cos C =13,∴sin C =1-⎝ ⎛⎭⎪⎫132=223, tan C =sin Ccos C =2 2.(2)若c =3,由正弦定理asin A =bsin B =csin C,得asin A =b sin B =3223=924, 则a =924sin A ,b =924sin B ,则ab =924sin A ·924sin B =16216sin A sin B=16216×1627=6, ∴S △ABC =12ab sin C =12×6×223=2 2.思维升华 平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,解之,若研究最值,常使用函数思想.跟踪训练 2 (1)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c -a cos B = (2a -b )cos A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案 D解析 因为c -a cos B =(2a -b )cos A ,C =π-(A +B ),所以由正弦定理得sin C -sin A cos B=2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B=2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去), 所以△ABC 为等腰或直角三角形.(2)(2022·郑州模拟)如图,在△ABC 中,AB =9,cos B =23,点D 在BC 边上,AD =7,∠ADB 为锐角.①求BD ;②若∠BAD =∠DAC ,求sin C 的值及CD 的长.解 ①在△ABD 中,由余弦定理得AB 2+BD 2-2AB ·BD ·cos B =AD 2,整理得BD 2-12BD +32=0,所以BD =8或BD =4.当BD =4时,cos∠ADB =16+49-812×4×7=-27,则∠ADB >π2,不符合题意,舍去; 当BD =8时,cos∠ADB =64+49-812×8×7=27,则∠ADB <π2,符合题意,所以BD =8.②在△ABD 中,cos∠BAD =AB 2+AD 2-BD 22AB ·AD =92+72-822×9×7=1121,所以sin∠BAD =8521,又sin∠ADB =357,所以sin C =sin(∠ADB -∠CAD )=sin(∠ADB -∠BAD )=sin∠ADB cos∠BAD -cos∠ADB sin∠BAD=357×1121-27×8521=175147,在△ACD 中,由正弦定理得CD sin∠CAD =ADsin C ,即CD =ADsin C ·sin∠CAD =7175147×8521=39217.课时精练1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C 等于() A.π2 B.π3C.π4D.π6答案 C 解析 根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24, 所以sin C =a 2+b 2-c 22ab=cos C , 所以在△ABC 中,C =π4. 2.(2022·北京西城区模拟)在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于( ) A.35 B.31 C .6D .5答案 B解析 因为sin A =6sin B ,由正弦定理可得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×1×6×12, 解得c =31.3.(2022·济南质检)已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,a =4,cos2A = -725,则△ABC 外接圆半径为( ) A .5B .3C.52D.32答案 C解析 因为cos2A =-725, 所以1-2sin 2A =-725, 解得sin A =±45, 因为A ∈(0,π),所以sin A =45,又a =4,所以2R =a sin A =445=5, 所以R =52. 4.(2022·河南九师联盟联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c =2b ,sin 2A -3sin 2B =12sin A sin C ,则角C 等于( ) A.π6B.π3C.π2D.2π3答案 B解析 ∵sin 2A -3sin 2B =12sin A sin C , 由正弦定理可得a 2-3b 2=12ac , ∵c =2b ,∴a 2-3b 2=12a ·2b =ab , 由余弦定理可得cos C =a 2+b 2-c 22ab =a 2-3b 22ab =12, ∵0<C <π,∴C =π3. 5.(多选)(2022·山东多校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2b sin A =5a cos B ,AB =2,AC =26,D 为BC 的中点,E 为AC 上的点,且BE 为∠ABC 的平分线,下列结论正确的是( )A .cos∠BAC =-66 B .S △ABC =3 5 C .BE =2D .AD = 5答案 AD解析 由正弦定理可知2sin B sin A =5sin A cos B ,∵sin A ≠0,∴2sin B =5cos B .又sin 2B +cos 2B =1,∴sin B =53,cos B =23,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC =6.A 项,cos∠BAC =AB 2+AC 2-BC 22AB ·AC =4+24-362×2×26=-66;B 项,S △ABC =12AB ·BC sin B =12×2×6×53=25;C 项,由角平分线性质可知AEEC =AB BC =13,∴AE =62.BE 2=AB 2+AE 2-2AB ·AE cos A =4+32-2×2×62×⎝ ⎛⎭⎪⎫-66=152,∴BE =302;D 项,在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD cos B=4+9-2×2×3×23=5,∴AD = 5.6.(多选)(2022·张家口质检)下列命题中,正确的是( )A .在△ABC 中,A >B ,则sin A >sin BB .在锐角△ABC 中,不等式sin A >cos B 恒成立C .在△ABC 中,若a cos A =b cos B ,则△ABC 必是等腰直角三角形D .在△ABC 中,若B =60°,b 2=ac ,则△ABC 必是等边三角形答案 ABD解析 对于A ,由A >B ,可得a >b ,利用正弦定理可得sin A >sin B ,正确;对于B ,在锐角△ABC 中,A ,B ∈⎝ ⎛⎭⎪⎫0,π2,∵A +B >π2, ∴π2>A >π2-B >0, ∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B , ∴不等式sin A >cos B 恒成立,正确;对于C ,在△ABC 中,由a cos A =b cos B ,利用正弦定理可得sin A cos A =sin B cos B ,∴sin2A =sin2B ,∵A ,B ∈(0,π),∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2, ∴△ABC 是等腰三角形或直角三角形,∴是假命题,错误;对于D ,由于B =60°,b 2=ac ,由余弦定理可得b 2=ac =a 2+c 2-ac ,可得(a -c )2=0,解得a =c ,可得A =C =B =60°,故正确.7.(2022·潍坊质检)已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且b =3,a -c =2,A =2π3.则△ABC 的面积为. 答案 1534解析 由余弦定理得a 2=b 2+c 2-2bc cos A ,∵b =3,a -c =2,A =2π3, ∴(c +2)2=32+c 2-2×3c ×⎝ ⎛⎭⎪⎫-12, 解得c =5,则△ABC 的面积为S =12bc sin A =12×3×5×32=1534. 8.(2021·全国乙卷)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,B =60°,a 2+c 2=3ac ,则b =.答案 2 2解析 由题意得S △ABC =12ac sin B =34ac =3,则ac =4,所以a 2+c 2=3ac =3×4=12,所以b 2=a 2+c 2-2ac cos B =12-2×4×12=8,则b =22(负值舍去).9.(2022·南平模拟)在①2c cos B =2a -b ,②△ABC 的面积为34(a 2+b 2-c 2),③cos 2A -cos 2C =sin 2B -sin A sin B ,这三个条件中任选一个,补充在下面的问题中,并加以解答.(如果选择多个条件作答,则按所选的第一个条件给分)已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且.(1)求角C 的大小;(2)若c =2且4sin A sin B =3,求△ABC 的面积.解 (1)若选条件①2c cos B =2a -b ,则2c ·a 2+c 2-b 22ac=2a -b , 即a 2+b 2-c 2=ab ,所以cos C =12, 又因为C ∈(0,π),所以C =π3. 若选条件②△ABC 的面积为34(a 2+b 2-c 2), 则34(a 2+b 2-c 2)=12ab sin C , 即sin C =3cos C ,所以tan C =3,又因为C ∈(0,π),所以C =π3. 若选条件③cos 2A -cos 2C =sin 2B -sin A sin B ,则(1-sin 2A )-(1-sin 2C )=sin 2B -sin A sin B ,即sin 2A +sin 2B -sin 2C =sin A sin B ,即a 2+b 2-c 2=ab ,所以cos C =12,又因为C ∈(0,π),所以C =π3. (2)因为c =2, 所以a sin A =b sin B =c sin C =2sin π3=43, 所以sin A =34a ,sin B =34b , 又因为4sin A sin B =3,所以ab =4,△ABC 的面积为12ab sin C = 3. 10.(2022·湘豫联盟联考)如图,在△ABC 中,∠B =60°,AB =8,AD =7,点D 在BC 上,且cos∠ADC =17.(1)求BD ;(2)若cos∠CAD =32,求△ABC 的面积. 解 (1)∵cos∠ADB =cos(π-∠ADC )=-cos∠ADC =-17. 在△ABD 中,由余弦定理得82=BD 2+72-2·BD ·7·cos∠ADB ,解得BD =3或BD =-5(舍).(2)由已知sin∠ADC =437,sin∠CAD =12, ∴sin C =sin(∠ADC +∠CAD )=437×32+17×12=1314. 由正弦定理得CD =AD sin∠CAD sin C =7×121314=4913, ∴BC =3+4913=8813,∴S △ABC =12×8×8813×32=176313.11.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且4S =(a+b )2-c 2,则sin ⎝ ⎛⎭⎪⎫π4+C 等于 ( ) A .1B .-22C.22D.32 答案 C解析 因为S =12ab sin C , cos C =a 2+b 2-c 22ab, 所以2S =ab sin C ,a 2+b 2-c 2=2ab cos C .又4S =(a +b )2-c 2=a 2+b 2-c 2+2ab ,所以2ab sin C =2ab cos C +2ab .因为ab ≠0,所以sin C =cos C +1.因为sin 2C +cos 2C =1,所以(cos C +1)2+cos 2C =1,解得cos C =-1(舍去)或cos C =0,所以sin C =1,则sin ⎝ ⎛⎭⎪⎫π4+C =22(sin C +cos C )=22. 12.(2022·焦作模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 依次成等差数列,△ABC 的周长为15,且(sin A +sin B )2+cos 2C =1+sin A sin B ,则cos B 等于( )A.1314B.1114C.12D .-12答案 B解析 因为(sin A +sin B )2+cos 2C=1+sin A sin B ,所以sin 2A +sin 2B +2sin A ·sin B +1-sin 2C=1+sin A ·sin B ,所以由正弦定理得a 2+b 2-c 2=-ab ,又a ,b ,c 依次成等差数列,△ABC 的周长为15,即a +c =2b ,a +b +c =15, 由⎩⎪⎨⎪⎧ a 2+b 2-c 2=-ab ,a +c =2b ,a +b +c =15,解得⎩⎪⎨⎪⎧ a =3,b =5,c =7.cos B =a 2+c 2-b 22ac =32+72-522×3×7=1114. 13.(2022·开封模拟)在平面四边形ABCD 中,BC ⊥CD ,∠B =3π4,AB =32,AD =210,若AC =35,则CD 为.答案 1或5解析 因为在△ABC 中,∠B =3π4,AB =32, AC =35,由正弦定理可得AC sin B =AB sin∠ACB, 所以sin∠ACB =AB ·sin B AC =32×2235=55, 又BC ⊥CD ,所以∠ACB 与∠ACD 互余,因此cos∠ACD =sin∠ACB =55, 在△ACD 中,AD =210,AC =35,由余弦定理可得cos∠ACD =55=AC 2+CD 2-AD 22AC ·CD =5+CD 265CD, 所以CD 2-6CD +5=0,解得CD =1或CD =5.14.(2022·大连模拟)托勒密(Ptolemy)是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理指出:圆的内接凸四边形两组对边乘积的和等于两条对角线的乘积.已知凸四边形ABCD 的四个顶点在同一个圆的圆周上,AC ,BD 是其两条对角线,AB =AD ,∠BAD =120°,AC =6,则四边形ABCD 的面积为.答案 9 3 解析 在△ABD 中,设AB =a ,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD =3a 2,所以BD =3a ,由托勒密定理可得a (BC +CD )=AC ·3a ,即BC +CD =3AC ,又∠ABD =∠ACD =30°,所以四边形ABCD 的面积 S =12BC ·AC sin30°+12CD ·AC sin30°=14(BC +CD )·AC =34AC 2=9 3.15.(多选)中国南宋时期杰出数学家秦九韶在《数书九章》中提出了“三斜求积术”,即以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之,为实;一为从隅,开平方得积.把以上文字写成公式,即S =14⎣⎢⎡⎦⎥⎤c 2a 2-⎝ ⎛⎭⎪⎫c 2+a 2-b 222(S 为三角形的面积,a ,b ,c 为三角形的三边).现有△ABC 满足sin A ∶si n B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =63,则下列结论正确的是( )A .△ABC 的周长为10+27B .△ABC 的三个内角满足A +B =2CC .△ABC 的外接圆半径为4213D .△ABC 的中线CD 的长为3 2答案 AB解析 A 项,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,因为sin A ∶sin B ∶sin C =2∶3∶7,所以由正弦定理可得a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t (t >0),因为S △ABC =63,所以63=14⎣⎢⎡⎦⎥⎤7t 2×4t 2-⎝ ⎛⎭⎪⎫7t 2+4t 2-9t 222,解得t =2,则a =4,b =6,c =27,故△ABC 的周长为10+27,A 正确;B 项,因为cos C =a 2+b 2-c 22ab =16+36-282×4×6=12, 所以C =π3,A +B =π-π3=2π3=2C , 故B 正确;C 项,因为C =π3,所以sin C =32, 由正弦定理得2R =c sin C =2732=4213, R =2213, C 错误;D 项,由余弦定理得cos B =a 2+c 2-b 22ac =16+28-362×4×27=714, 在△BCD 中,BC =4,BD =7,由余弦定理得cos B =16+7-CD 22×4×7=714, 解得CD =19,D 错误.16.(2021·新高考全国Ⅱ)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b =a +1,c =a +2.(1)若2sin C =3sin A ,求△ABC 的面积;(2)是否存在正整数a ,使得△ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由. 解 (1)因为2sin C =3sin A ,则2c =2(a +2)=3a ,则a =4,故b =5,c =6,cos C =a 2+b 2-c 22ab =18,所以C 为锐角, 则sin C =1-cos 2C =378,因此, S △ABC =12ab sin C =12×4×5×378=1574. (2)显然c >b >a ,若△ABC 为钝角三角形,则C 为钝角,由余弦定理可得cos C =a 2+b 2-c 22ab =a 2+a +12-a +222a a +1=a 2-2a -32a a +1<0,则0<a <3,由三角形三边关系可得a +a +1>a +2, 可得a >1,因为a ∈N *,故a =2.。

2020届高三理数一轮讲义:4.7-解三角形应用举例(含答案)

2020届高三理数一轮讲义:4.7-解三角形应用举例(含答案)

第7节解三角形应用举例最新考纲能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题.知识梳理1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).3.方向角:正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.5.解决与平面几何有关的计算问题关键是找清各量之间的关系,从而应用正、余弦定理求解.[微点提醒]1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混.2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误.基础自测1.判断下列结论正误(在括号内打“√”或“×”) (1)东北方向就是北偏东45°的方向.( )(2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( )(3)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.( )(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )解析 (2)α=β;(3)俯角是视线与水平线所构成的角. 答案 (1)√ (2)× (3)× (4)√2.(必修5P11例1改编)如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为()A.50 2 mB.50 3 mC.25 2 mD.2522 m解析 由正弦定理得AB sin ∠ACB =ACsin ∠CBA ,又∵∠CBA =30°,∴AB =AC sin ∠ACBsin ∠CBA=50×2212=502(m).答案 A3. (必修5P15练习T3改编)如图所示,D ,C ,B 三点在地面的同一条直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.解析 由已知得∠DAC =30°,△ADC 为等腰三角形, AD =3a ,所以在Rt △ADB 中,AB =12AD =32a .答案 32a4.(2019·雅礼中学月考)如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A.北偏东10°B.北偏西10°C.南偏东80°D.南偏西80°解析 由条件及图可知,∠A =∠CBA =40°, 又∠BCD =60°,所以∠CBD =30°, 所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 答案 D5.(2017·浙江卷)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年.“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6=________.解析 如图,连接正六边形的对角线,将正六边形分成六个边长为1的正三角形,从而S 6=6×12×12×sin 60°=332.答案3326.(2018·福州模拟)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.解析 因为sin ∠BAC =223,且AD ⊥AC ,所以sin ⎝ ⎛⎭⎪⎫π2+∠BAD =223,所以cos ∠BAD =223,在△BAD 中,由余弦定理, 得BD =AB 2+AD 2-2AB ·AD cos ∠BAD=(32)2+32-2×32×3×223= 3. 答案3考点一 求距离、高度问题 多维探究角度1 测量高度问题【例1-1】 如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.解析 由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°, 解得BC =3002(m).在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). 答案 100 6规律方法 1.在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.3.注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.【训练1】 如图,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于( )A.5 6B.15 3C.5 2D.15 6解析 在△BCD 中,∠CBD =180°-15°-30°=135°. 由正弦定理得BC sin 30°=30sin 135°, 所以BC =15 2. 在Rt △ABC 中,AB =BC tan ∠ACB =152×3=15 6. 答案 D角度2测量距离问题【例1-2】如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登,已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250米,请问:两位登山爱好者能否在2个小时内徒步登上山峰?(即从B点出发到达C点)解在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1 km,因为∠ABD=120°,由正弦定理得ABsin ∠ADB=ADsin ∠ABD,解得AD= 3 km,在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32CD,即CD2+3CD-6=0,解得CD=33-32km(负值舍去),BC=BD+CD=33-12km,两个小时小王和小李可徒步攀登1 250×2=2 500米,即2.5千米,而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.规律方法 1.选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解. 2.确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.【训练2】海轮“和谐号”从A处以每小时21海里的速度出发,海轮“奋斗号”在A处北偏东45°的方向,且与A相距10海里的C处,沿北偏东105°的方向以每小时9海里的速度行驶,则海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为________小时.解析 设海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为x 小时,如图,则由已知得△ABC 中,AC =10,AB =21x ,BC =9x ,∠ACB =120°. 由余弦定理得:(21x )2=100+(9x )2-2×10×9x ×cos 120°, 整理,得36x 2-9x -10=0,解得x =23或x =-512(舍).所以海轮“和谐号”与海轮“奋斗号”相遇所需的最短时间为23小时. 答案 23考点二 测量角度问题【例2】 已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/时的速度向岛屿北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船? ⎝ ⎛⎭⎪⎫参考数据:sin 38°≈5314,sin 22°=3314解 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为每小时x 海里,则BC =0.5x ,AC =5,依题意, ∠BAC =180°-38°-22°=120°,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos 120°, 所以BC 2=49,所以BC =0.5x =7,解得x =14.又由正弦定理得sin ∠ABC =AC ·sin ∠BAC BC =5×327=5314,所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船. 规律方法 1.测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.2.方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.【训练3】 如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD 等于( )A.30°B.45°C.60°D.75°解析 依题意可得AD =2010 m ,AC =30 5 m , 又CD =50 m ,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD =(305)2+(2010)2-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°. 答案 B考点三 正(余)弦定理在平面几何中的应用【例3】 (2019·洛阳二模)如图,已知扇形的圆心角∠AOB =2π3,半径为42,若点C 是AB ︵上的一动点(不与点A ,B 重合).(1)若弦BC =4(3-1),求BC ︵的长; (2)求四边形OACB 面积的最大值.解 (1)在△OBC 中,BC =4(3-1),OB =OC =42,所以由余弦定理得cos ∠BOC =OB 2+OC 2-BC 22OB ·OC =32,所以∠BOC =π6,于是BC ︵的长为π6×42=223π.(2)设∠AOC =θ,θ∈⎝ ⎛⎭⎪⎫0,2π3,则∠BOC =2π3-θ,S 四边形OACB =S △AOC +S △BOC =12×42×42sin θ+12×42×42·sin ⎝ ⎛⎭⎪⎫2π3-θ=24sinθ+83cos θ=163sin ⎝ ⎛⎭⎪⎫θ+π6,由于θ∈⎝ ⎛⎭⎪⎫0,2π3,所以θ+π6∈⎝ ⎛⎭⎪⎫π6,5π6,当θ=π3时,四边形OACB 的面积取得最大值16 3.规律方法 1.把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解.2.寻找各个三角形之间的联系,交叉使用公共条件,求出结果,求解时要灵活利用平面几何的性质,将几何性质与正弦、余弦定理有机结合起来.【训练4】(2019·成都诊断)如图,在平面四边形ABCD中,已知A=π2,B=2π3,AB=6.在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=2π3,EC=7.(1)求sin∠BCE的值;(2)求CD的长.解(1)在△BEC中,由正弦定理,知BEsin∠BCE=CEsin B,因为B=2π3,BE=1,CE=7,所以sin∠BCE=BE·sin BCE=327=2114.(2)因为∠CED=B=2π3,所以∠DEA=∠BCE,所以cos∠DEA=1-sin2∠DEA=1-sin2∠BCE=1-328=5714.因为A=π2,所以△AED为直角三角形,又AE=5,所以ED=AEcos∠DEA=55714=27.在△CED中,CD2=CE2+DE2-2CE·DE·cos∠CED=7+28-2×7×27×⎝⎛⎭⎪⎫-12=49.所以CD=7.[思维升华]利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型;(2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义. [易错防范]在三角形和三角函数的综合问题中,要注意边角关系相互制约,推理题中的隐含条件.基础巩固题组(建议用时:40分钟)一、选择题1.在相距2 km的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离为()A. 6 kmB. 2 kmC. 3 kmD.2 km解析如图,在△ABC中,由已知可得∠ACB=45°,∴ACsin 60°=2sin 45°,∴AC=22×32=6(km).答案 A2.如图所示,为了测量某湖泊两侧A,B间的距离,李宁同学首先选定了与A,B 不共线的一点C(△ABC的角A,B,C所对的边分别记为a,b,c),然后给出了三种测量方案:①测量A,C,b;②测量a,b,C;③测量A,B,a.则一定能确定A,B间的距离的所有方案的序号为()A.①②B.②③C.①③D.①②③解析对于①③可以利用正弦定理确定唯一的A,B两点间的距离,对于②直接利用余弦定理即可确定A ,B 两点间的距离. 答案 D3.一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( ) A.102海里 B.103海里 C.203海里D.202海里解析 如图所示,易知,在 △ABC 中,AB =20,∠CAB =30°,∠ACB =45°, 根据正弦定理得BC sin 30°=AB sin 45°,解得BC =102(海里). 答案 A4.(2019·深圳模拟)一架直升飞机在200 m 高度处进行测绘,测得一塔顶与塔底的俯角分别是30°和60°,则塔高为( ) A.4003 m B.40033 m C.20033 mD.2003 m 解析 如图所示.在Rt △ACD 中可得CD =20033=BE ,在△ABE 中,由正弦定理得AB sin 30°=BEsin 60°,则AB =2003,所以DE =BC =200-2003=4003(m). 答案 A5.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A.240(3-1)mB.180(2-1)mC.120(3-1)mD.30(3+1)m解析 如图,∠ACD =30°,∠ABD =75°,AD =60 m ,在Rt △ACD 中,CD =AD tan ∠ACD =60tan 30°=603(m),在Rt △ABD 中,BD =AD tan ∠ABD =60tan 75°=602+3=60(2-3)(m),∴BC =CD -BD =603-60(2-3)=120(3-1)(m). 答案 C 二、填空题6.如图,在△ABC 中,B =45°,D 是BC 边上一点,AD =5,AC =7,DC =3,则AB =________.解析 在△ACD 中,由余弦定理可得 cos C =49+9-252×7×3=1114,则sin C =5314.在△ABC 中,由正弦定理可得AB sin C =ACsin B ,则AB =AC sin C sin B =7×531422=562.答案5627.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.解析 连接OC ,由题意知CD =150米,OD =100米,∠CDO =60°.在△COD 中,由余弦定理得OC 2=CD 2+OD 2-2CD ·OD ·cos 60°,即OC =507. 答案 5078.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为________.解析 在△ABC 中,AB =40,AC =20,∠BAC =120°, 由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207. 由正弦定理,得AB sin ∠ACB =BC sin ∠BAC⇒sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277. 由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°) =cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114.答案 2114 三、解答题9.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m ,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s 后看山顶的俯角为45°,则山顶的高度为多少米?(取2=1.4,3=1.7)解 如图,作CD 垂直于AB 的延长线于点D ,由题意知∠A =15°,∠DBC =45°,所以∠ACB =30°,AB =50×420=21 000(m).又在△ABC 中,BC sin A =ABsin ∠ACB,所以BC=21 00012×sin 15°=10 500(6-2).因为CD⊥AD,所以CD=BC·sin∠DBC=10 500(6-2)×22=10 500(3-1)≈7 350(m).故山顶的高度为10 000-7 350=2 650(m).10.在△ABC中,A=3π4,AB=6,AC=32,点D在BC边上,AD=BD,求AD的长.解设△ABC的内角A,B,C所对边的长分别是a,b,c,由余弦定理,得a2=b2+c2-2bc cos∠BAC=(32)2+62-2×32×6×cos 3π4=18+36-(-36)=90,所以a=310.又由正弦定理,得sin B=b sin∠BACa=3310=1010,由题设知0<B<π4,所以cos B=1-sin2B=1-110=31010.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B.由正弦定理,得AD=AB·sin Bsin(π-2B)=6sin B2sin B cos B=3cos B=10.能力提升题组(建议用时:20分钟)11.(2018·衡水质检)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:在C处(点C在水平地面下方,O为CH与水平地面ABO 的交点)进行该仪器的垂直弹射,水平地面上两个观察点A,B两地相距100米,∠BAC=60°,其中A到C的距离比B到C的距离远40米.A地测得该仪器在C 处的俯角为∠OAC=15°,A地测得最高点H的仰角为∠HAO=30°,则该仪器的垂直弹射高度CH 为( )A.210(6+2)米B.1406米C.2102米D.20(6-2)米解析 由题意,设AC =x 米,则BC =(x -40)米,在△ABC 内,由余弦定理:BC 2=BA 2+CA 2-2BA ·CA ·cos ∠BAC ,即(x -40)2=x 2+10 000-100x ,解得x =420(米).在△ACH 中,AC =420米,∠CAH =30°+15°=45°,∠CHA =90°-30°=60°, 由正弦定理:CH sin ∠CAH =AC sin ∠AHC .可得CH =AC ·sin ∠CAHsin ∠AHC =1406(米).答案 B12.校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10 6 m(如图所示),旗杆底部与第一排在一个水平面上.若国歌时长为50 s ,升旗手应以________m/s 的速度匀速升旗.解析 依题意可知∠AEC =45°,∠ACE =180°-60°-15°=105°, ∴∠EAC =180°-45°-105°=30°. 由正弦定理可知CE sin ∠EAC =AC sin ∠CEA,∴AC =CEsin ∠EAC·sin ∠CEA =20 3 m.∴在Rt △ABC 中,AB =AC ·sin ∠ACB =203×32=30 m.∵国歌时长为50 s ,∴升旗速度为3050=0.6 m/s. 答案 0.613.某人为测出所住小区的面积,进行了一些测量工作,最后将所住小区近似地画成如图所示的四边形,测得的数据如图所示,则该图所示的小区的面积是________km 2.解析 如图,连接AC ,由余弦定理可知AC =AB 2+BC 2-2AB ·BC ·cos B=3,故∠ACB =90°,∠CAB =30°,∠DAC =∠DCA =15°,∠ADC =150°, 由AC sin ∠ADC =ADsin ∠DCA,得AD =AC sin ∠DCA sin ∠ADC=32-62,故S 四边形ABCD =S △ABC +S △ADC =12×1×3+12×⎝ ⎛⎭⎪⎫32-622×12=6-34(km 2).答案6-3414.如图,在四边形ABCD 中,∠DAB =π3,AD ∶AB =2∶3,BD =7,AB ⊥BC .(1)求sin∠ABD的值;(2)若∠BCD=2π3,求CD的长.解(1)∵AD∶AB=2∶3,∴可设AD=2k,AB=3k(k>0).又BD=7,∠DAB=π3,∴由余弦定理,得(7)2=(3k)2+(2k)2-2×3k×2k cos π3,解得k=1,∴AD=2,AB=3,sin∠ABD=AD sin∠DABBD=2×327=217.(2)∵AB⊥BC,∴cos∠DBC=sin∠ABD=21 7,∴sin∠DBC=277,∴BDsin∠BCD=CDsin∠DBC,∴CD=7×27732=433.。

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第七节解三角形应用举例一、教材概念·结论·性质重现1.仰角和俯角意义图示在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.2.方位角意义图示从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α.3.方向角意义图示相对于某一正方向的水平角(1)北偏东α,即由指北方向顺时针旋转α到达目标方向;(2)北偏西α,即由指北方向逆时针旋转α到达目标方向;(3)南偏西等其他方向角类似.4.坡角与坡度意义图示(1)坡角:坡面与水平面所成的二面角的度数(如图,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图,i为坡度).坡度又称为坡比.解三角形应用问题的步骤1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.(√) (2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.(×) (3)若点P 在点Q 的北偏东44°,则点Q 在点P 的东偏北46°. (×) (4)方位角大小的范围是[0,π),方向角大小的范围是⎣⎢⎡⎭⎪⎫0,π2.(×)2.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D 解析:由条件及图可知,∠A =∠CBA =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 3.如图,为测量一棵树OP 的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.30+303解析:在△PAB中,∠PAB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=22×32-22×12=6-2 4.由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度OP=PB sin 45°=30(6+2)×22=(30+303)(m).4.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________ km.64解析:因为∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,所以∠DAC=60°,所以AC=CD=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=CDsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.所以AB=64km.所以A,B两点间的距离为64km.5.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为________.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,由余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=40或x=-20(舍去).故电视塔的高度为40 m.考点1解三角形的实际应用——应用性考向1测量距离问题如图,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250m,请问:两位登山爱好者能否在2个小时内徒步登上山峰.(即从B点出发到达C点)解:在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1.因为∠ABD=120°,由正弦定理ABsin∠ADB=ADsin∠ABD,解得AD=3(km).在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32×CD.即CD2+3CD-6=0,解得CD=33-32(km),BC=BD+CD=33-12(km).两个小时小王和小李可徒步攀登1 250×2=2 500(m),即2.5km , 而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.1.若将本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,求这条索道AC 的长.解:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD , 所以200sin 30°=ADsin 120°. 所以AD =200×sin 120°sin 30°=200 3 (m). 在△ABC 中,DC =300 m ,∠ADC =150°,所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(2003)2+3002-2×2003×300×cos 150°=390 000,所以AC =10039 m.故这条索道AC 长为10039 m.2.若将本例条件“∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km ”变为“∠ADC =135°,∠CAD =15°,AD =100 m ,作CO ⊥AB ,垂足为O ,延长AD 交CO 于点E ,且CE =50 m ,如图”,求角θ的余弦值.解:在△ACD 中,∠ADC =135°, ∠CAD =15°,所以∠ACD =30°. 由正弦定理可得AC =100×sin 135°sin 30°=100 2.在△ACE 中,由正弦定理可得sin ∠CEA =AC ·sin ∠CAE CE=3-1,所以cos θ=cos ⎝ ⎛⎭⎪⎫∠CEA -π2=sin ∠CEA =3-1.距离问题的解题思路这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.提醒:①基线的选取要恰当准确;②选取的三角形及正弦、余弦定理要恰当. 考向2 测量高度问题如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°.若山高AD =100 m ,汽车从B 点到C 点历时14 s ,则这辆汽车的速度约为________m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.22.6 解析:因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°, 所以∠BAD =60°,∠CAD =45°. 设这辆汽车的速度为v m/s ,则BC =14v . 在Rt △ABD 中,AB =AD cos ∠BAD =100cos 60°=200. 在Rt △ACD 中,AC =AD cos ∠CAD =100cos 45°=100 2. 在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC , 所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6 m/s.解决高度问题的注意事项(1)在解决有关高度问题时,理解仰角、俯角是关键.(2)高度问题一般是把它转化成解三角形问题,要注意三角形中的边角关系的应用.若是空间的问题要注意空间图形向平面图形的转化.1.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表” )和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭” ).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即∠ABC)为26.5°,夏至正午太阳高度角(即∠ADC)为73.5°,圭面上冬至线与夏至线之间的距离(即BD的长)为a,则表高(即AC的长)为()A.a sin 53°2sin 47°B.2sin 47°a sin 53°C.a tan 26.5°tan 73.5°tan 47°D.a sin 26.5°sin 73.5°sin 47°D解析:由题意得,∠BAD=73.5°-26.5°=47°.在△ABD中,由正弦定理可得,BDsin∠BAD=ADsin∠ABD,即asin 47°=ADsin 26.5°,则AD=a sin 26.5°sin 47°.在△ACD中,ACAD=sin∠ADC=sin 73.5°,所以AC=a sin 26.5°·sin 73.5°sin 47°.故选D.2.如图是改革开放四十周年大型展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).在地面上的A ,B 两点测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =50米,则OP 为( )A .15米B .25米C .35米D .45米B 解析:如图所示:由于∠OAP =30°,∠PBO =45°,∠ABO =60°,AB =50米,OP ⊥AO ,OP ⊥OB .设OP =x ,则OA =3x ,OB =x ,在△OAB 中,由余弦定理得OA 2=OB 2+AB 2-2OB ·AB ·cos ∠ABO , 即(3x )2=502+x 2-2×50x ×12,所以x 2+25x -1 250=0,解得x =25或x =-50(舍).3.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =80米,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则A ,B 两点间的距离为________米.805 解析:如图,在△ACD 中,∠DCA =15°,∠ADC =150°,所以∠DAC =15°.由正弦定理,得AC=80sin 150°sin 15°=406-24=40(6+2)(米).在△BCD中,∠BDC=15°,∠BCD=135°,所以∠CBD=30°.由正弦定理,得CDsin∠CBD=BCsin∠BDC,所以BC=CD·sin∠BDCsin∠CBD=80×sin 15°sin 30°=40(6-2)(米).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=1 600(8+43)+1 600(8-43)+2×1 600(6+2)×(6-2)×12=1 600×16+1 600×4=1 600×20,解得AB=805(米),则A,B两点间的距离为805米.考点2正余弦定理在平面几何中的应用(2020·青岛模拟)如图,在平面四边形ABCD中,AB⊥AD,AB=1,AD =3,BC= 2.(1)若CD=1+3,求四边形ABCD的面积;(2)若sin∠BCD=325,∠ADC∈⎝⎛⎭⎪⎫0,π2,求sin∠ADC.解:(1)如图,连接BD,在Rt△ABD中,由勾股定理可得,BD2=AB2+AD2=4,所以BD=2.在△BCD 中,由余弦定理可得,cos C =BC 2+CD 2-BD 22BC ·CD =2+(1+3)2-222×2×(1+3)=22. 因为C 为三角形的内角,故C =π4, 所以S △ABD =12AB ·AD =12×1×3=32, S △BCD =12BC ·CD sin C =12×2×(1+3)×22=1+32, 故四边形ABCD 的面积S =1+232.(2)在△BCD 中,由正弦定理可得BC sin ∠BDC =BDsin ∠BCD , 所以sin ∠BDC =BC ·sin ∠BCD BD=35. 因为∠ADC ∈⎝ ⎛⎭⎪⎫0,π2,所以∠BDC ∈⎝ ⎛⎭⎪⎫0,π2, 所以cos ∠BDC =45,在Rt △ABD 中,tan ∠ADB =AB AD =33, 故∠ADB =π6,所以sin ∠ADC =sin ⎝ ⎛⎭⎪⎫∠BDC +π6=35×32+45×12=4+3310.正余弦定理解平面几何问题的注意点(1)图形中几何性质的挖掘往往是解题的切入点,或是问题求解的转折点. (2)根据条件或图形,找出已知,未知及求解中需要的三角形,用好三角恒等变换公式,运用正弦定理,余弦定理解题.(3)养成应用方程思想解题的意识.1.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),AB =5,BC =8,CD =3,AD =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 kmA 解析:在△ACD 中,由余弦定理得cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230. 在△ABC 中,由余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=89-AC 280. 因为∠B +∠D =180°,所以cos B +cos D =0,即34-AC 230+89-AC 280=0,解得AC 2=49.所以AC =7.2.(2020·山师附中高三模拟)如图,在平面四边形ABCD 中,已知AB =26,AD =3,∠ADB =2∠ABD ,∠BCD =π3.(1)求BD ;(2)求△BCD 周长的最大值.解:在△ABD 中,设BD =x ,∠ABD =α,则∠ADB =2α, 因为AB sin 2α=AD sin α, 所以cos α=63.由余弦定理得cos α=x 2+24-946x =63. 整理得x 2-8x +15=0,解得x =5或x =3. 当x =3时,得∠ADB =2α=π2, 与AD 2+BD 2≠AB 2矛盾,故舍去, 所以BD =5.(2)在△BCD 中,设∠CBD =β, 所以BD sin π3=BC sin ⎝ ⎛⎭⎪⎫2π3-β=CD sin β,所以BC =1033sin ⎝ ⎛⎭⎪⎫2π3-β,CD =1033sin β,所以BC +CD =1033·⎝ ⎛⎭⎪⎫32sin β+32cos β=10sin ⎝ ⎛⎭⎪⎫β+π6≤10. 所以△BCD 周长的最大值为15.考点3 解三角形与三角函数的综合问题(2020·合肥模拟)已知函数f (x )=cos 2x +3sin(π-x )sin ⎝ ⎛⎭⎪⎫x -π2-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)锐角△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,已知f (A )=-1,a =2,求△ABC 的面积的最大值.解:(1)f (x )=1+cos 2x 2-3sin x cos x -12=12cos 2x -32sin 2x =-sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2, 得k π-π6≤x ≤k π+π3(k ∈Z ),所以函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π. (2)因为△ABC 为锐角三角形,所以0<A <π2,所以-π6<2A -π6<5π6. 又f (A )=-sin ⎝ ⎛⎭⎪⎫2A -π6=-1, 所以2A -π6=π2,即A =π3.因为a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥2bc -bc =bc ,当且仅当b =c =2时,等号成立.又a =2,所以bc ≤4, 所以S △ABC =12bc sin A ≤ 3. 即△ABC 的面积的最大值为 3.解三角形与三角函数综合问题的一般步骤已知函数f (x )=32sin 2x -cos 2x -12(x ∈R ),设△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =3,f (C )=0.(1)求角C ;(2)若向量m =(1,sin A )与向量n =(2,sin B )共线,求△ABC 的周长. 解:(1)f (x )=32sin 2x -cos 2x -12=32sin 2x -12cos 2x -1=sin ⎝ ⎛⎭⎪⎫2x -π6-1. 因为f (C )=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0且C 为三角形内角,所以C =π3. (2)若向量m =(1,sin A )与向量n =(2,sin B )共线, 则sin B -2sin A =0. 由正弦定理得b =2a ,由余弦定理得cos π3=a2+4a2-3 2·a·2a=12,解得a=1,b=2,故△ABC的周长为3+ 3.。

2020届高考数学一轮复习学霸提分秘籍专题4.5 函数y=Asin(ωx+ψ)的图像与性质(解析版)

2020届高考数学一轮复习学霸提分秘籍专题4.5 函数y=Asin(ωx+ψ)的图像与性质(解析版)

第四篇三角函数与解三角形专题4.05函数y=Asin(ωx+φ)的图象与性质【考试要求】1.结合具体实例,了解y=A sin(ωx+φ)的实际意义;能借助图象理解参数ω,φ,A的意义,了解参数的变化对函数图象的影响;2.会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型.【知识梳理】1.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个关键点,如下表所示.2.函数y=Asin(ωx+φ)的有关概念3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)的图象的两种途径4.三角函数应用(1)用正弦函数可以刻画三种周期变化的现象:简谐振动(单摆、弹簧等),声波(音叉发出的纯音),交变电流.(2)三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f (x )=A sin(ωx +φ)+k 中的待定系数.(3)把实际问题翻译为函数f (x )的性质,得出函数性质后,再把函数性质翻译为实际问题的答案.【微点提醒】1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换:向左平移φω个单位长度而非φ个单位长度.2.函数y =A sin(ωx +φ)的对称轴由ωx +φ=k π+π2(k ∈Z )确定;对称中心由ωx +φ=k π(k ∈Z )确定其横坐标.3.音叉发出的纯音振动可以用三角函数表达为y =A sin ωx ,其中x 表示时间,y 表示纯音振动时音叉的位移,|ω|2π表示纯音振动的频率(对应音高),A 表示纯音振动的振幅(对应音强).4.交变电流可以用三角函数表达为y =A sin(ωx +φ),其中x 表示时间,y 表示电流,A 表示最大电流,|ω|2π表示频率,φ表示初相位.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)将函数y =3sin 2x 的图象左移π4个单位长度后所得图象的解析式是y =3sin ⎝⎛⎭⎫2x +π4.( ) (2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( ) (3)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( ) (4)由图象求解析式时,振幅A 的大小是由一个周期内图象中最高点的值与最低点的值确定的.( )【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)将函数y =3sin 2x 的图象向左平移π4个单位长度后所得图象的解析式是y =3cos2x .(2)“先平移,后伸缩”的平移单位长度为|φ|,而“先伸缩,后平移”的平移单位长度为⎪⎪⎪⎪φω.故当ω≠1时平移的长度不相等.【教材衍化】2.(必修4P56T3改编)y =2sin ⎝⎛⎭⎫12x -π3的振幅、频率和初相分别为( ) A.2,4π,π3B.2,14π,π3C.2,14π,-π3D.2,4π,-π3【答案】 C【解析】 由题意知A =2,f =1T =ω2π=14π,初相为-π3.3.(必修4P62例4改编)某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现.下表是今年前四个月的统计情况:选用一个正弦型函数来近似描述收购价格(元/斤)与相应月份之间的函数关系为________________________. 【答案】 y =6-cos π2x【解析】 设y =A sin(ωx +φ)+B (A >0,ω>0),由题意得A =1,B =6,T =4,因为T =2πω,所以ω=π2,所以y =sin ⎝⎛⎭⎫π2x +φ+6.因为当x =2时,y =7,所以sin(π+φ)+6=7,即sin φ=-1,则φ=-π2+2k π(k ∈Z ),可取φ=-π2.所以y =sin ⎝⎛⎭⎫π2x -π2+6=6-cos π2x . 【真题体验】4.(2019·北京通州区模拟)函数y =2cos ⎝⎛⎭⎫2x +π6的部分图象是( )【答案】 A【解析】 由y =2cos ⎝⎛⎭⎫2x +π6可知,函数的最大值为2,故排除D ;又因为函数图象过点⎝⎛⎭⎫π6,0,故排除B ;又因为函数图象过点⎝⎛⎭⎫-π12,2,故排除C. 5.(2016·全国Ⅰ卷)若将函数y =2sin ⎝⎛⎭⎫2x +π6的图象向右平移14个周期后,所得图象对应的函数为( )A.y =2sin ⎝⎛⎭⎫2x +π4 B.y =2sin ⎝⎛⎭⎫2x +π3 C.y =2sin ⎝⎛⎭⎫2x -π4D.y =2sin ⎝⎛⎭⎫2x -π3 【答案】 D【解析】 函数y =2sin ⎝⎛⎭⎫2x +π6的周期为π,将函数y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向右平移14个周期即π4个单位,所得函数为y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=2sin ⎝⎛⎭⎫2x -π3,故选D. 6.(2018·济南模拟改编)y =cos(x +1)图象上相邻的最高点和最低点之间的距离是________. 【答案】π2+4【解析】 相邻最高点与最低点的纵坐标之差为2,横坐标之差恰为半个周期π,故它们之间的距离为π2+4.【考点聚焦】考点一 函数y =A sin(ωx +φ)的图象及变换【例1】 某同学用“五点法”画函数f (x )=A sin(ωx +φ) ⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值. 【答案】见解析【解析】(1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数解析式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为函数y =sin x 图象的对称中心为(k π,0)(k ∈Z ). 令2x +2θ-π6=k π,k ∈Z ,解得x =k π2+π12-θ(k ∈Z ).由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0成中心对称,所以令k π2+π12-θ=5π12(k ∈Z ),解得θ=k π2-π3(k ∈Z ). 由θ>0可知,当k =1时,θ取得最小值π6.【规律方法】 作函数y =A sin(ωx +φ)(A >0,ω>0)的图象常用如下两种方法:(1)五点法作图,用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象;(2)图象的变换法,由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后平移”.【训练1】 (1)(2017·全国Ⅰ卷)已知曲线C 1:y =cos x ,C 2:y =sin ⎝⎛⎭⎫2x +2π3,则下面结论正确的是( )A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2)(2018·青岛调研)若把函数y =sin ⎝⎛⎭⎫ωx -π6的图象向左平移π3个单位长度,所得到的图象与函数y =cos ωx 的图象重合,则ω的一个可能取值是( ) A.2B.32C.23D.12【答案】 (1)D (2)A【解析】 (1)易知C 1:y =cos x =sin ⎝⎛⎭⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝⎛⎭⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π2=sin ⎝⎛⎭⎫2x +2π3的图象,即曲线C 2,因此D 项正确. (2)y =sin ⎝⎛⎭⎫ωx +ω3π-π6和函数y =cos ωx 的图象重合,可得ω3π-π6=π2+2k π,k ∈Z ,则ω=6k +2,k ∈Z .∴2是ω的一个可能值. 考点二 求函数y =A sin(ωx +φ)的解析式【例2】 (1)(一题多解)函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则函数f (x )的解析式为________.(2)(2019·长郡中学、衡阳八中联考)函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的部分图象如图所示,已知A ⎝⎛⎭⎫5π12,1,B ⎝⎛⎭⎫11π12,-1,则f (x )图象的对称中心为( )A.⎝⎛⎭⎫k π2+5π6,0(k ∈Z ) B.⎝⎛⎭⎫k π+5π6,0(k ∈Z ) C.⎝⎛⎭⎫k π2+π6,0(k ∈Z )D.⎝⎛⎭⎫k π+π6,0(k ∈Z ) 【答案】 (1)f (x )=2sin ⎝⎛⎭⎫2x +π3 (2)C 【解析】 (1)由题图可知A =2, 法一T 4=7π12-π3=π4, 所以T =π,故ω=2, 因此f (x )=2sin(2x +φ),又⎝⎛⎭⎫π3,0对应五点法作图中的第三个点,因此2×π3+φ=π+2k π(k ∈Z ),所以φ=π3+2k π(k ∈Z ).又|φ|<π2,所以φ=π3.故f (x )=2sin ⎝⎛⎭⎫2x +π3. 法二 以⎝⎛⎭⎫π3,0为第二个“零点”,⎝⎛⎭⎫7π12,-2为最小值点, 列方程组⎩⎨⎧ω·π3+φ=π,ω·7π12+φ=3π2,解得⎩⎪⎨⎪⎧ω=2,φ=π3, 故f (x )=2sin ⎝⎛⎭⎫2x +π3.(2)T =2⎝⎛⎭⎫11π12-5π12=π=2πω,∴ω=2, 因此f (x )=sin(2x +φ).由五点作图法知A ⎝⎛⎭⎫5π12,1是第二点,得2×5π12+φ=π2, 2×5π12+φ=π2+2k π(k ∈Z ),所以φ=-π3+2k π(k ∈Z ),又|φ|<π2,所以φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3. 由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ).∴f (x )图象的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z ).【规律方法】 1.已知f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,利用周期性求ω,难点是“φ”的确定. 2.y =A sin(ωx +φ)中φ的确定方法(1)代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.(2)五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.【训练2】 (1)(2019·衡水中学一模)已知函数f (x )=-2cos ωx (ω>0)的图象向左平移φ⎝⎛⎭⎫0<φ<π2个单位,所得的部分函数图象如图所示,则φ的值为( )A.π6B.5π6C.π12D.5π12(2)(2019·山东省重点中学质检)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,|φ|<π2,ω>0的图象的一部分如图所示,则f (x )图象的对称轴方程是________.【答案】 (1)C (2)x =k π2+π6(k ∈Z )【解析】 (1)由题图知,T =2⎝⎛⎭⎫11π12-5π12=π, ∴ω=2πT =2,∴f (x )=-2cos 2x ,∴f (x +φ)=-2cos(2x +2φ),则由图象知,f ⎝⎛⎭⎫512π+φ=-2cos ⎝⎛⎭⎫56π+2φ=2. ∴5π6+2φ=2k π+π(k ∈Z ),则φ=π12+k π(k ∈Z ). 又0<φ<π2,所以φ=π12.(2)由图象知A =2,又1=2sin(ω×0+φ),即sin φ=12,又|φ|<π2,∴φ=π6.又11π12×ω+π6=2π,∴ω=2, ∴f (x )=2sin ⎝⎛⎭⎫2x +π6, 令2x +π6=π2+k π(k ∈Z ),得x =k π2+π6(k ∈Z ).∴f (x )=2sin ⎝⎛⎭⎫2x +π6的对称轴方程为x =k π2+π6(k ∈Z ). 考点三 y =A sin(ωx +φ)图象与性质的应用 角度1 三角函数模型的应用【例3-1】 如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O 离地面1米,点O 在地面上的射影为A .风车圆周上一点M 从最低点O 开始,逆时针方向旋转40秒后到达P 点,则点P 到地面的距离是________米.【答案】 4【解析】 以圆心O 1为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O 离地面1米,12秒转动一周,设∠OO 1P =θ,运动t (秒)后与地面的距离为f (t ),又周期T =12,所以θ=π6t ,则f (t )=3+2sin ⎝⎛⎭⎫θ-π2=3-2cos π6t (t ≥0), 当t =40 s 时,f (t )=3-2cos ⎝⎛⎭⎫π6×40=4. 角度2 三角函数性质与图象的综合应用【例3-2】 已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π. (1)求函数f (x )的单调递增区间;(2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值. 【答案】见解析【解析】(1)f (x )=2sin ωx cos ωx +3(2sin 2ωx -1) =sin 2ωx -3cos 2ωx =2sin ⎝⎛⎭⎫2ωx -π3. 由最小正周期为π,得ω=1, 所以f (x )=2sin ⎝⎛⎭⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),整理得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin 2x +1的图象;所以g (x )=2sin 2x +1.令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ),所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可.所以b 的最小值为4π+11π12=59π12.【规律方法】1.三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题,二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题. 2.方程根的个数可转化为两个函数图象的交点个数.3.研究y =A sin(ωx +φ)的性质时可将ωx +φ视为一个整体,利用换元法和数形结合思想进行解题.【训练3】 (1)某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃. 【答案】 20.5【解析】 因为当x =6时,y =a +A =28; 当x =12时,y =a -A =18,所以a =23,A =5, 所以y =f (x )=23+5cos ⎣⎡⎦⎤π6(x -6), 所以当x =10时,f (10)=23+5cos ⎝⎛⎭⎫π6×4 =23-5×12=20.5.(2)已知函数f (x )=5sin x cos x -53cos 2x +523(其中x ∈R ),求:①函数f (x )的最小正周期;②函数f (x )的单调区间;③函数f (x )图象的对称轴和对称中心. 【答案】见解析【解析】①因为f (x )=52sin 2x -532(1+cos 2x )+532=5(12sin 2x -32cos 2x )=5sin ⎝⎛⎭⎫2x -π3, 所以函数的最小正周期T =2π2=π. ②由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以函数f (x )的递增区间为⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ). 由2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),得k π+5π12≤x ≤k π+11π12(k ∈Z ),所以函数f (x )的递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z ). ③由2x -π3=k π+π2(k ∈Z ),得x =k π2+5π12(k ∈Z ),所以函数f (x )的对称轴方程为x =k π2+5π12(k ∈Z ).由2x -π3=k π(k ∈Z ),得x =k π2+π6(k ∈Z ),所以函数f (x )的对称中心为⎝⎛⎭⎫k π2+π6,0(k ∈Z ). 【反思与感悟】1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式解决由函数y =A sin(ωx +φ)的图象确定A ,ω,φ的问题时,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准第一个“零点”和第二个“零点”的位置.要善于抓住特殊量和特殊点. 【易错防范】1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩再平移时,要把x 前面的系数提取出来.2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看作一个整体.若ω<0,要先根据诱导公式进行转化.3.求函数y =A sin(ωx +φ)在x ∈[m ,n ]上的最值,可先求t =ωx +φ的范围,再结合图象得出y =A sin t 的值域. 【核心素养提升】【逻辑推理与数学运算】——三角函数中有关ω的求解数学运算是解决数学问题的基本手段,通过运算可促进学生思维的发展;而逻辑推理是得到数学结论、构建数学体系的重要方式.运算和推理贯穿于探究数学问题的始终,可交替使用,相辅相成.类型1 三角函数的周期T 与ω的关系【例1】 为了使函数y =sin ωx (ω>0)在区间[0,1]上至少出现50次最大值,则ω的最小值为( ) A.98π B.1972π C.1992π D.100π【答案】 B【解析】 由题意,至少出现50次最大值即至少需用4914个周期,所以1974T =1974·2πω≤1,所以ω≥1972π.【评析】 解决此类问题的关键在于结合条件弄清周期T =2πω与所给区间的关系,从而建立不等关系.类型2 三角函数的单调性与ω的关系【例2】 若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤π3,π2上单调递减,则ω的取值范围是( )A.0≤ω≤23B.0≤ω≤32C.23≤ω≤3D.32≤ω≤3 【答案】 D【解析】 令π2+2k π≤ωx ≤32π+2k π(k ∈Z ),得π2ω+2k πω≤x ≤3π2ω+2k πω,因为f (x )在⎣⎡⎦⎤π3,π2上单调递减,所以⎩⎨⎧π2ω+2k πω≤π3,π2≤3π2ω+2k πω,得6k +32≤ω≤4k +3.又ω>0,所以k ≥0,又6k +32<4k +3,得0≤k <34,所以k =0.故32≤ω≤3. 【评析】 根据正弦函数的单调递减区间,确定函数f (x )的单调递减区间,根据函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤π3,π2上单调递减,建立不等式,即可求ω的取值范围. 类型3 三角函数对称性、最值与ω的关系【例3】 (1)(2019·枣庄模拟)已知f (x )=sin ωx -cos ωx ⎝⎛⎭⎫ω>23,若函数f (x )图象的任何一条对称轴与x 轴交点的横坐标都不属于区间(π,2π),则ω的取值范围是________.(结果用区间表示)(2)已知函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,则ω的取值范围是________. 【答案】 (1)⎣⎡⎦⎤34,78 (2)⎩⎨⎧⎭⎬⎫ω|ω≤-2或ω≥32 【解析】 (1)f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4, 令ωx -π4=π2+k π(k ∈Z ),解得x =3π4ω+k πω(k ∈Z ).当k =0时,3π4ω≤π,即34≤ω,当k =1时,3π4ω+πω≥2π,即ω≤78.综上,34≤ω≤78.(2)显然ω≠0,分两种情况:若ω>0,当x ∈⎣⎡⎦⎤-π3,π4时,-π3ω≤ωx ≤π4ω. 因函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,所以-π3ω≤-π2,解得ω≥32. 若ω<0,当x ∈⎣⎡⎦⎤-π3,π4时,π4ω≤ωx ≤-π3ω, 因函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,所以π4ω≤-π2,解得ω≤-2. 综上所述,符合条件的实数ω≤-2或ω≥32.【评析】 这类三角函数题除了需要熟练掌握正弦函数、余弦函数、正切函数的单调性外,还必须知晓一个周期里函数最值的变化,以及何时取到最值,函数取到最值的区间要求与题目给定的区间的关系如何. 【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A.y =2sin ⎝⎛⎭⎫2x -π6B.y =2sin ⎝⎛⎭⎫2x -π3C.y =2sin ⎝⎛⎭⎫x +π6D.y =2sin ⎝⎛⎭⎫x +π3 【答案】 A【解析】 由题图可知,A =2,T =2⎣⎡⎦⎤π3-⎝⎛⎭⎫-π6=π, 所以ω=2,由五点作图法知2×π3+φ=π2+2k π(k ∈Z ),所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎫2x -π6. 2.(2019·杭州期中)将函数y =sin ⎝⎛⎭⎫x +φ2·cos ⎝⎛⎭⎫x +φ2的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的取值不可能是( ) A.-3π4B.-π4C.π4D.5π4【答案】 B【解析】 将y =sin ⎝⎛⎭⎫x +φ2cos ⎝⎛⎭⎫x +φ2=12sin(2x +φ)的图象向左平移π8个单位后得到的图象对应的函数为y =12sin ⎝⎛⎭⎫2x +π4+φ,由题意得π4+φ=k π+π2(k ∈Z ),∴φ=k π+π4(k ∈Z ),当k =-1,0,1时,φ的值分别为-3π4,π4,5π4,φ的取值不可能是-π4. 3.(2019·咸阳模拟)已知点P (32,-332)是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与点P 相邻的两个最高点,若∠MPN =60°,则该函数的最小正周期是( ) A.3 B.4 C.5 D.6 【答案】 D【解析】 由P 是函数y =A sin(ωx +φ)(ω>0)图象上的一个最低点,M ,N 是与P 相邻的两个最高点,知|MP |=|NP |,又∠MPN =60°,所以△MPN 为等边三角形. 由P (32,-332),得|MN |=2×3323×2=6.∴该函数的最小正周期T =6.4.(2018·天津卷)将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数( )A.在区间⎣⎡⎦⎤-π4,π4上单调递增 B.在区间⎣⎡⎦⎤-π4,0上单调递减 C.在区间⎣⎡⎦⎤π4,π2上单调递增 D.在区间⎣⎡⎦⎤π2,π上单调递减【解析】 y =sin ⎝⎛⎭⎫2x +π5=sin 2⎝⎛⎭⎫x +π10,将其图象向右平移π10个单位长度,得到函数y =sin 2x 的图象.由2k π-π2≤2x ≤2k π+π2,k ∈Z ,得k π-π4≤x ≤k π+π4,k ∈Z .令k =0,可知函数y=sin 2x 在区间⎣⎡⎦⎤-π4,π4上单调递增. 5.(2019·张家界模拟)将函数f (x )=3sin 2x -cos 2x 的图象向左平移t (t >0)个单位后,得到函数g (x )的图象,若g (x )=g ⎝⎛⎭⎫π12-x ,则实数t 的最小值为( ) A.5π24 B.7π24C.5π12D.7π12【答案】 B【解析】 由题意得,f (x )=2sin ⎝⎛⎭⎫2x -π6, 则g (x )=2sin ⎝⎛⎭⎫2x +2t -π6, 从而2sin ⎝⎛⎭⎫2x +2t -π6=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫π12-x +2t -π6=-2sin(2x -2t )=2sin(2x -2t +π),又t >0, 所以当2t -π6=-2t +π+2k π(k ∈Z )时,即t =7π24+k π2(k ∈Z ),实数t min =724π.二、填空题6.将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________________. 【答案】 y =sin ⎝⎛⎭⎫12x -π10―————————―→横坐标伸长到原来的2倍y =sin ⎝⎛⎭⎫12x -π10. 7.(2018·沈阳质检)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,则f ⎝⎛⎭⎫π4=________.【解析】 由图象可知A =2,34T =11π12-π6=3π4,∴T =π,∴ω=2.∵当x =π6时,函数f (x )取得最大值,∴2×π6+φ=π2+2k π(k ∈Z ),∴φ=π6+2k π(k ∈Z ),∵0<φ<π,∴φ=π6,∴f (x )=2sin ⎝⎛⎭⎫2x +π6, 则f ⎝⎛⎭⎫π4=2sin ⎝⎛⎭⎫π2+π6=2cos π6= 3. 8.已知f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=____________________________________. 【答案】143【解析】 依题意,x =π6+π32=π4时,y 有最小值,∴sin ⎝⎛⎭⎫π4·ω+π3=-1,∴π4ω+π3=2k π+3π2 (k ∈Z ). ∴ω=8k +143(k ∈Z ),因为f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值, 所以π3-π4≤πω,即ω≤12,令k =0,得ω=143.三、解答题9.某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24). (1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差. 【答案】见解析【解析】(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8 =10-3cos2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2(32cos π12t +12sin π12t ) =10-2sin ⎝⎛⎭⎫π12t +π3, 又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝⎛⎭⎫π12t +π3≤1. 当t =2时,sin ⎝⎛⎭⎫π12t +π3=1; 当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.10.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π. (1)求f ⎝⎛⎭⎫π4的值;(2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.【答案】见解析【解析】(1)因为f (x )的图象上相邻最高点的距离为π, 所以f (x )的最小正周期T =π,从而ω=2πT =2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2(k ∈Z ),因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝⎛⎭⎫2x -π6, 则f ⎝⎛⎭⎫π4=3sin ⎝⎛⎭⎫2×π4-π6=3sin π3=32. (2)将f (x )的图象向右平移π12个单位后,得到f ⎝⎛⎭⎫x -π12的图象, 所以g (x )=f ⎝⎛⎭⎫x -π12=3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6=3sin ⎝⎛⎭⎫2x -π3. 当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),即k π+5π12≤x ≤k π+11π12(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎡⎦⎤k π+5π12,k π+11π12(k ∈Z ). 【能力提升题组】(建议用时:20分钟)11.(2019·天津和平区调研)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎡⎦⎤-π4,π6上的最小值为( ) A.-2 B.-1C.- 2D.- 3【答案】 B【解析】 ∵x =π12是f (x )=2sin ⎝⎛⎭⎫2x +π6+φ图象的一条对称轴,∴π3+φ=k π+π2(k ∈Z ),即φ=k π+π6(k ∈Z ).∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝⎛⎭⎫2x +π3, ∴g (x )=-2sin ⎝⎛⎭⎫2x -π6在⎣⎡⎦⎤-π4,π6上的最小值为g ⎝⎛⎭⎫π6=-1. 12.函数f (x )=220sin 100πx -220sin ⎝⎛⎭⎫100πx +2π3,且已知对任意x ∈R ,有f (x 1)≤f (x )≤f (x 2)恒成立,则|x 2-x 1|的最小值为( ) A.50π B.1100πC.1100D.440【答案】 C【解析】 f (x )=220sin 100πx -220sin ⎝⎛⎭⎫100πx +2π3 =220⎣⎡⎦⎤sin 100πx -⎝⎛⎭⎫sin 100πx ·cos 2π3+cos 100πx sin 2π3 =220⎝⎛⎭⎫sin 100πx +12sin 100πx -32cos 100πx=2203⎝⎛⎭⎫32sin 100πx -12cos 100πx=2203×sin ⎝⎛⎭⎫100πx -π6, 则由对任意x ∈R ,有f (x 1)≤f (x )≤f (x 2)恒成立得当x =x 2时,f (x )取得最大值,当x =x 1时,f (x )取得最小值,所以|x 2-x 1|的最小值为12T =12×2π100π=1100(T 为f (x )的最小正周期),故选C.13.(2019·广东省际名校联考)将函数f (x )=1-23·cos 2x -(sin x -cos x )2的图象向左平移π3个单位,得到函数y =g (x )的图象,若x ∈⎣⎡⎦⎤-π2,π2,则函数g (x )的单调递增区间是________. 【答案】 ⎣⎡⎦⎤-5π12,π12 【解析】 ∵f (x )=1-23cos 2 x -(sin x -cos x )2=sin 2x -3cos 2x -3=2sin ⎝⎛⎭⎫2x -π3-3, ∴g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π3-3=2sin ⎝⎛⎭⎫2x +π3-3, 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z ), 得-5π12+k π≤x ≤π12+k π(k ∈Z ), ∵x ∈⎣⎡⎦⎤-π2,π2, ∴函数g (x )在⎣⎡⎦⎤-π2,π2上的单调递增区间是⎣⎡⎦⎤-5π12,π12. 14.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)将函数y =f (x )的图象上各点的纵坐标保持不变,横坐标缩短到原来的12倍,再把所得的函数图象向左平移π6个单位长度,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎡⎦⎤0,π8上的最小值.【答案】见解析【解析】(1)设函数f (x )的最小正周期为T ,由题图可知A =1,T 2=2π3-π6=π2, 即T =π,所以π=2πω,解得ω=2, 所以f (x )=sin(2x +φ),又过点⎝⎛⎭⎫π6,0,由0=sin ⎝⎛⎭⎫2×π6+φ可得π3+φ=2k π(k ∈Z ),则φ=2k π-π3(k ∈Z ),因为|φ|<π2,所以φ=-π3, 故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x -π3. (2)根据条件得g (x )=sin ⎝⎛⎭⎫4x +π3, 当x ∈⎣⎡⎦⎤0,π8时,4x +π3∈⎣⎡⎦⎤π3,5π6, 所以当x =π8时,g (x )取得最小值,且g (x )min =12. 【新高考创新预测】15.(多填题)已知函数f (x )=23sin ωx 2cos ωx 2+2cos 2ωx 2-1(ω>0)的最小正周期为π,当x ∈⎣⎡⎦⎤0,π2时,方程f (x )=m 恰有两个不同的实数解x 1,x 2,则x 1+x 2=________,f (x 1+x 2)=________.【答案】 π31 【解析】 函数f (x )=23sin ωx 2cos ωx 2+2cos 2ωx 2-1=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6. 由T =2πω=π,可得ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6. ∵x ∈⎣⎡⎦⎤0,π2,∴π6≤2x +π6≤7π6,∴-1≤f (x )≤2. 画出f (x )的图象(图略),结合图象知x 1+x 2=π3, 则f (x 1+x 2)=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2π3+π6=2sin 5π6=1.。

超实用高考数学专题复习:第四章三角函数解三角形 三角函数与解三角形热点问题

超实用高考数学专题复习:第四章三角函数解三角形  三角函数与解三角形热点问题

【尝试训练】 (2020·郑州质检)在△ABC 中,内角 A,B,C 的对边分别为 a,b,c, 若向量 m=2cos2C2 ,cos A-2 B,n=58,cos A-2 B,m·n=98. (1)求 tan Atan B 的值; (2)求c2a-bsai2n-Cb2的最小值. 解 (1)由题意可得 m·n=54cos2C2+cos2A-2 B=98, 即-58cos(A+B)+12cos(A-B)=0,展开可得 cos Acos B=9sin Asin B,
所以 f(x)的最小正周期 T=22π=π.
(2)由-π2+2kπ≤2x-π3≤π2+2kπ(k∈Z),得-1π2+kπ≤x≤51π2+kπ(k∈Z). 设 A=-4π,π4,B=x-1π2+kπ≤x≤51π2+kπ,k∈Z,易知 A∩B=-1π2,π4.
所以当 x∈-π4,π4时,f(x)在区间-1π2,π4上单调递增,在区间-π4,-1π2上单调 递减.
6+ 4
2 .
两角差正弦公式的应用
12′
[高考状元满分心得]
❶写全得步骤分:对于解题过程中得分点的步骤有则给分,无则没分,所以得分点
步骤一定要写全,如第(1)问中只要写出 0°<A<180°就有分,没写就扣 1 分,第(2)
问中 0°<C<120°也是如此.
❷写明得关键分:对于解题过程中的关键点,有则给分,无则没分,所以在答题时
教你如何审题——三角函数与平面向量
【例题】 (2020·湘赣十四校联考)已知向量 m=(sin x,-1),n=( 3,cos x),且函
数 f(x)=m·n. (1)若 x∈0,2π,且 f(x)=23,求 sin x 的值;
(2)在锐角三角形 ABC 中,内角 A,B,C 的对边分别为 a,b,c.若 a= 7,△ABC

2020版高考数学大一轮复习第四章三角函数、解三角形微专题五三角函数问题的多解探究教案(含解析)

2020版高考数学大一轮复习第四章三角函数、解三角形微专题五三角函数问题的多解探究教案(含解析)

微专题五 三角函数问题的多解探究[解题技法]三角函数是高中数学的重要内容,是每年高考的必考知识点,也是与其它知识交汇频率较高的知识点,它与数列、向量、方程、不等式、解析几何等知识紧密联系,历来倍受各级各类命题者的青睐.题目 已知3cos x +4sin x =5,求tan x 的值.解 方法一 构造方程由3cos x +4sin x =5两边平方,得9cos 2x +24sin x cos x +16sin 2x =25.而25=25(sin 2x +cos 2x ),所以上式可整理为9sin 2x -24sin x cos x +16cos 2x =0.即(3sin x -4cos x )2=0.所以3sin x -4cos x =0,解得tan x =43. 方法二 构造方程组由⎩⎪⎨⎪⎧ sin 2x +cos 2x =1,3cos x +4sin x =5,消去cos x , 整理得(5sin x -4)2=0.解得sin x =45,cos x =35. 故tan x =sin x cos x =43. 方法三 构造辅助角由3cos x +4sin x =5⎝ ⎛⎭⎪⎫45sin x +35 cos x =5sin(x +φ)=5,其中cos φ=45,sin φ=35.所以tan φ=34. 所以x +φ=2k π+π2(k ∈Z ), 于是tan x =tan ⎝ ⎛⎭⎪⎫2k π+π2-φ=cot φ=43. 方法四 代数换元令tan x =t ,即t cos x =sin x ,代入3cos x +4sin x =5,得3cos x +4t cos x =5,cos x =54t +3,sin x =5t 4t +3. 再代入sin 2x +cos 2x =1,得⎝⎛⎭⎪⎫54t +32+⎝ ⎛⎭⎪⎫5t 4t +32=1. 解得t =43,即tan x =43. 方法五 运用三角函数定义设P (m ,n )为角x 终边上任意一点,P 点到原点O 的距离为r ,则r =m 2+n 2.把sin x =n r ,cos x =m r 代入已知等式得3·m r +4·n r=5.即(3m +4n )2=(5r )2=25(m 2+n 2).整理得(4m -3n )2=0.所以4m =3n ,显然m ≠0. 故tan x =n m =43. 方法六 构造直线斜率由3cos x +4sin x =5可知点A (cos x ,sin x )在直线3x +4y =5上,同时也在单位圆x 2+y 2=1上,所以点A 为直线与单位圆的切点.由于直线的斜率为-34,所以OA 的斜率为43, 即tan x =43. 方法七 构造单位圆因为3cos x +4sin x =5,即35cos x +45sin x =1. 设A (cos x ,sin x ),B ⎝ ⎛⎭⎪⎫35,45, 则点A ,B 均在单位圆x 2+y 2=1上.所以过B 点的切线方程为35x +45y =1. 可知点A (cos x ,sin x )也在切线35x +45y =1上, 从而点A 也是切点,由切点的唯一性也可知A ,B 两点重合,所以cos x =35,sin x =45,即tan x =43. 方法八 构造平面向量因为35cos x +45sin x =1,不妨令m =(cos x ,sin x ),n =⎝ ⎛⎭⎪⎫35,45,可知|m |=1,|n |=1. 所以m ,n 均为单位向量,且m ·n =1.由|m ||n |≥|m ·n |,等号成立的条件为:m ∥n ,则有45cos x =35sin x ,即tan x =43.。

高考数学(理科)一轮复习:单元四 三角函数、解三角形 4.4 函数y=Asin(ωx+φ)的图像及应用

高考数学(理科)一轮复习:单元四 三角函数、解三角形 4.4 函数y=Asin(ωx+φ)的图像及应用

π 3
∴n· = (n∈N+), ������ 3 ∴ω=6n(n∈N+), ∴当 n=1 时,ω 取得最小值 6.
6
解析 答案
关闭

π
第四章
知识梳理 考点自测
4.4
函数y=Asin(ωx+φ)的图像及应用
关键能力
必备知识
-9-
1
2
简谐运动对应的函数 f (x)=2sin ������ + ������ |������| < 的图 3 2 像经过点(0,1),则该函数的最小正周期T和初相φ分别 为 .
关闭
由题意知 1=2sin φ,得 sin φ= . 又|φ|< ,得 φ= .
2 6 π π 2
1
函数 f(x)的最小正周期为 T=2π÷ =6.
3
关闭
π
6,
π 6
解析
答案
第四章
考点1 考点2 考点3
4.4
函数y=Asin(ωx+φ)的图像及应用
关键能力
必备知识
-10-
考点 1 函数 y=Asin(ωx+φ)的图像及变换
A. ������π- 4 , ������π + 4 (k ∈Z) B. C. D.
π 3π ������π + 4 , ������π + 4 (k ∈Z) 2π π ������π- 3 , ������π- 6 (k ∈Z) π π ������π- , ������π + (k ∈Z) 12 12
(
π
)
关闭
(5)若函数 y=Asin(ωx+φ)为偶函数,则 φ=2k π+2 (k ∈Z).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【2019最新】精选高考数学一轮复习第四章三角函数与解三角形第七节解三角形应用举例课后作业理一、选择题1.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40°,灯塔B在观察站南偏东60°,则灯塔A在灯塔B的( )A.北偏东10°B.北偏西10°C.南偏东80° D.南偏西80°2.如图所示,为了测量某湖泊两侧A,B间的距离,李宁同学首先选定了与A,B 不共线的一点C(△ABC的角A,B,C所对的边分别记为a,b,c),然后给出了三种测量方案:①测量A,C,b;②测量a,b,C;③测量A,B,a.则一定能确定A,B 间的距离的所有方案的序号为( )A.①② B.②③C.①③ D.①②③3.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高是( )A. 米B. 米C.200 米 D.200 米4.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处.在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( ) A.10 海里 B.10 海里C.20 海里D.20 海里5.如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为( )A.8 km/h B.6 km/hC.2 km/h D.10 km/h二、填空题6.江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.7.某同学骑电动车以24 km/h的速度沿正北方向的公路行驶,在点A处测得电视塔S在电动车的北偏东30°方向上,15 min后到点B处,测得电视塔S在电动车的北偏东75°方向上,则点B与电视塔的距离是________km.8.如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是________米.三、解答题9.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s后看山顶的俯角为45°,则山顶的海拔高度为多少米?(取=1.4,=1.7)10.如图,在海岸A处发现北偏东45°方向,距A处(-1)海里的B处有一艘走私船.在A处北偏西75°方向,距A处2海里的C处的我方缉私船奉命以10 海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度,从B处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.1.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC等于( )A.240(-1)m B.180(-1)mC.120(-1)m D.30(+1)m2.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在点B测得水柱顶端的仰角为30°,则水柱的高度是( ) A.50 m B.100 mC.120 m D.150 m3.如图所示,某炮兵阵地位于地面A处,两观察所分别位于地面C处和D处,已知CD=6 000 m,∠ACD=45°,∠ADC=75°,目标出现于地面B处时测得∠BCD =30°,∠BDC=15°,则炮兵阵地到目标的距离是________ m.(结果保留根号) 4.如图所示,长为3.5 m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C 处1.4 m的地面上,另一端B在离堤足C处2.8 m的石堤上,石堤的倾斜角为α,则坡度值tan α=________.5.已知岛A南偏西38° 方向,距岛A 3海里的B处有一艘缉私艇.岛A处的一艘走私船正以10海里/时的速度向岛北偏西22° 方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?6.(2016·辽宁沈阳二中月考)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域,点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40 海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45°+θ且与点A相距10 海里的位置C.(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶,判断它是否会进入警戒水域,并说明理由.答案一、选择题1.解析:选D 由条件及图可知,∠A=∠CBA=40°,又∠BCD=60°,所以∠CBD =30°,所以∠DBA=10°,因此灯塔A在灯塔B南偏西80°.2.解析:选D 由题意可知,在①②③三个条件下三角形均可唯一确定,通过解三角形的知识可求出AB.3.解析:选A 如图所示,AB为山高,CD为塔高,则由题意知,在Rt△ABC中,∠BAC=30°,AB=200(米).则AC==(米).在△ACD中,∠CAD=60°-30°=30°,∠ACD=30°,∴∠ADC=120°.由正弦定理得=,∴CD==(米).4.解析:选A 如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB =45°,根据正弦定理得=,解得BC=10(海里).5.解析:选B 设AB与河岸线所成的角为θ,客船在静水中的速度为v km/h,由题意知,sin θ==,从而cos θ=,所以由余弦定理得2=2+12-2××2×1×,解得v=6.二、填空题6.解析:如图,OM=AO·tan 45°=30(m),ON=AO·tan 30°=×30=10(m),在△MON中,由余弦定理得,MN=900+300-2×30×103×32==10(m).答案:10 37.解析:由题意知AB=24×=6,在△ABS中,∠BAS=30°,AB=6,∠A BS=180°-75°=105°,∴∠ASB=45°,由正弦定理知=,∴BS==3.答案:3 28.解析:在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC =30°,由正弦定理,得=,即BC==10.在Rt△ABC中tan 60°=,即AB=BC·tan 60°=10.答案:10 6三、解答题9.解:如图,作CD垂直于AB的延长线于点D,由题意知∠A=15°,∠DBC=45°,∴∠ACB=30°,AB=50×420=21 000(m).又在△ABC中,=,∴BC=×sin 15°=10 500(-)(m).∵CD⊥AD,∴CD=BC·sin∠DBC=10 500(-)×=10 500(-1)=7 350(m).故山顶的海拔高度h=10 000-7 350=2 650(m).10.解:设缉私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,则CD=10t海里,BD=10t海里,在△ABC中,由余弦定理,有BC2=AB2+AC2-2AB·AC·cos A=(-1)2+22-2(-1)·2·cos 120°=6,解得BC=.又∵=,∴sin∠ABC===,∴∠ABC=45°,故B点在C点的正东方向上,∴∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得=,∴sin∠BCD===.∴∠BCD=30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD中,∠CBD=120°,∠BCD=30°,∴∠D=30°,∴BD=BC,即10t=,解得t=小时≈15分钟.∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.1.解析:选C ∵tan 15°=tan (60°-45°)==2-,∴BC=60tan 60°-60tan 15°=120(-1)(m).2.解析:选A 设水柱高度是h m,水柱底端为C,则在△ABC中,A=60°,AC=h,AB=100,BC=h,根据余弦定理,得(h)2=h2+1002-2·h·100·cos 60°,整理得h2+50h-5 000=0,即(h-50)(h+100)=0,解得h=50 m,故水柱的高度是50 m.3.解析:∵∠ACD=45°,∠ADC=75°,∴∠CAD=60°.在△ACD中,由正弦定理可得=,∴AD=6 000×=2 000(m).在△BCD中,由正弦定理得=,∴BD==3 000(m),在Rt△ABD中,由勾股定理可得AB2=BD2+AD2,∴AB==1 000(m).答案:1 000424.解析:由题意,可得在△ABC中,AB=3.5 m,AC=1.4 m,BC=2.8 m,且∠α+∠ACB=π.由余弦定理,可得AB2=AC2+BC2-2×AC×BC×cos∠ACB,即3.52=1.42+2.82-2×1.4×2.8×cos(π-α),解得cos α=,所以sin α=,所以tan α==.答案:23155.解:如图,设缉私艇在C处截住走私船,D为岛A正南方向上一点,缉私艇的速度为每小时x海里,则BC=0.5x,AC=5海里,依题意,∠BAC=180°-38°-22°=120°,由余弦定理可得BC2=AB2+AC2-2AB·ACcos 120°,所以BC2=49,BC=0.5x=7,解得x=14.又由正弦定理得sin∠ABC===,所以∠ABC=38°,又∠BAD=38°,所以BC∥AD,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.6.解:(1)如图,AB=40,AC=10,∠BAC=θ,sin θ=.由于0°<θ<90°,所以cos θ==.由余弦定理得BC==10.所以船的行驶速度为=15(海里/小时).(2)如图所示,设直线AE与BC的延长线相交于点Q.在△ABC中,由余弦定理得,cos∠ABC=AB2+BC2-AC22AB·BC==.从而sin∠ABC===.在△ABQ中,由正弦定理得, AQ===40,由于AE=55>40=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.过点E作EP⊥BC于点P,则EP为点E到直线BC的距离.在Rt△QPE中,PE=QE·sin∠PQE=QE·sin∠AQC=QE·sin(45°-∠ABC)=15×=3<7.所以船会进入警戒水域.。

相关文档
最新文档