人教A版第十章概率综合检测题

合集下载

2020学年新教材高中数学第十章概率章末综合检测(十)新人教A版必修第二册(最新整理)

2020学年新教材高中数学第十章概率章末综合检测(十)新人教A版必修第二册(最新整理)

章末综合检测(十)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;②“当x为某一实数时,可使x2≤0”是不可能事件;③“明天天津市要下雨”是必然事件;④“从100个灯泡(含有10个次品)中取出5个,5个全是次品”是随机事件.其中正确命题的个数是( )A.0 B.1C.2 D.3解析:选C。

①④正确.2.(2019·黑龙江省大庆中学月考)袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.至少有一个白球;红、黑球各一个D.恰有一个白球;一个白球一个黑球解析:选C.袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项:在A中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A不成立;在B中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B不成立;在C中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故C成立;在D中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D 不成立;故选C.3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.错误!B。

错误!C.错误!D。

错误!解析:选C。

从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,共有6种选法.红色和紫色的花不在同一花坛的有4种选法,根据古典概型的概率计算公式,所求的概率为错误!=错误!.故选C。

4.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170。

2024秋高中数学第十章概率章末检测新人教A版必修第二册

2024秋高中数学第十章概率章末检测新人教A版必修第二册

第十章章末检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.以下事务是随机事务的是( ) A .下雨屋顶湿 B .秋后柳叶黄 C .有水就有鱼 D .水结冰体积变大【答案】C2.盘子里有肉馅、素馅和豆沙馅的包子共10个,从中随机取出1个,若是肉馅包子的概率为25,不是豆沙馅包子的概率为710,则素馅包子的个数为( )A .1B .2C .3D .4【答案】C3.据天气预报:在春节假期湖北武汉地区降雪的概率为0.2,湖南长沙地区降雪的概率为0.3.假定这段时间内两地是否降雪相互之间没有影响,则0.44等于( )A .两地都降雪的概率B .两地都不降雪的概率C .至少有一地降雪的概率D .恰有一地降雪的概率 【答案】C4.某年级有12个班,现要从2班到12班中选1个班的学生参与一项活动,有人提议:掷两个骰子,得到的点数之和是几就选几班,这种选法( )A .公允,每个班被选到的概率都为112B .公允,每个班被选到的概率都为16C .不公允,6班被选到的概率最大D .不公允,7班被选到的概率最大 【答案】D5.集合A ={2,3},B ={1,4,5},从A ,B 中各随意取一个数,则这两数之和为偶数的概率是( )A .23B .12C .13D .16【答案】B6.某电视台的夏日水上闯关节目一共有三关,第一关与其次关的过关率分别为23,34.只有通过前一关才能进入下一关,每一关都有两次闯关机会,且通过每关相互独立.一选手参与该节目,则该选手能进入第三关的概率为( )A .12B .56C .89D .1516【答案】B7.某商场对某一商品搞活动,已知该商品每一个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售,该商场统计了近10天这种商品的销售量,如图所示.设x 为这种商品每天的销售量,y 为该商场每天销售这种商品的利润,从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )A .19B .110C .15 D .18【答案】B【解析】日销售量不少于20个时,日利润不少于96元,其中日销售量为20个时,日利润为96元;日销售量为21个时,日利润为97元.从条形统计图可以看出,日销售量为20个的有3天,日销售量为21个的有2天,日销售量为20个的3天记为a ,b ,c ,日销售量为21个的2天记为A ,B ,从这5天中任选2天,可能的状况有10种:(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B ),其中选出的2天日销售量都为21个的状况只有1种,故所求概率p =110.故选B .8.甲、乙、丙三个气象站同时作气象预报,假如甲站、乙站、丙站预报的精确率分别为0.8、0.7和0.6,那么在一次预报中甲、乙两站预报精确,丙站预报错误的概率为( )A .0.336B .0.024C .0.036D .0.224 【答案】D【解析】甲、乙、丙三个气象站同时作气象预报,甲站、乙站、丙站预报的精确率分别为0.8、0.7和0.6,∴在一次预报中甲、乙两站预报精确,丙站预报错误的概率为p =0.8×0.7×(1-0.6)=0.224.故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列事务中是随机事务的是( )A .明年8月18日,北京市不下雨B .在标准大气压下,水在4℃时结冰C .从标有1,2,3,4的四张号签中任取一张,恰为1号签D .向量的模不小于0 【答案】AC【解析】A ,C 为随机事务,B 为不行能事务,D 为必定事务.故选AC . 10.一个人连续射击2次,则下列各事务关系中,说法正确的是( ) A .事务“两次均击中”与事务“至少一次击中”互为对立事务 B .事务“第一次击中”与事务“其次次击中”互斥 C .事务“恰有一次击中”与事务“两次均击中”互斥D .事务“两次均未击中”与事务“至少一次击中”互为对立事务 【答案】CD【解析】对于A ,事务“至少一次击中”包含“一次击中”和“两次均击中”,所以不是对立事务,A 错误;对于B ,事务“第一次击中”包含“第一次击中、其次次击中”和“第一次击中、其次次不中”,所以与事务“其次次击中”不是互斥事务,B 错误;对于C ,事务“恰有一次击中”是“一次击中、一次不中”,它与事务“两次均击中”是互斥事务,C 正确;对于D ,事务“两次均未击中”的对立事务是“至少一次击中”,D 正确.故选CD .11.从装有两个红球和三个黑球的口袋里任取两个球,那么不互斥的两个事务是( ) A .“至少有一个黑球”与“都是黑球” B .“至少有一个黑球”与“至少有一个红球” C .“恰好有一个黑球”与“恰好有两个黑球” D .“至少有一个黑球”与“都是红球” 【答案】AB【解析】“至少有一个黑球”中包含“都是黑球”,A 正确;“至少有一个黑球”与“至少有一个红球”可能同时发生,B 正确;“恰好有一个黑球”与“恰好有两个黑球”不行能同时发生,C 不正确;“至少有一个黑球”与“都是红球”不行能同时发生,D 不正确.故选AB .12.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号车站起先,在每个车站下车是等可能的,则( )A .甲、乙两人下车的全部可能的结果有9种B .甲、乙两人同时在第2号车站下车的概率为19C .甲、乙两人同时在第4号车站下车的概率为13D .甲、乙两人在不同的车站下车的概率为23【答案】ABD【解析】甲、乙两人下车的全部可能的结果为(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4),共9种,A 正确,甲、乙两人同时在第2号车站和第4号车站下车的概率都是19,B 正确,C 错误.甲、乙两人在不同的车站下事的概率为1-3×19=23,D 正确.故选ABD . 三、填空题:本题共4小题,每小题5分,共20分.13.我国西部一个地区的年降水量在下列区间内的概率如表所示:【答案】0.25【解析】“年降水量在[200,300](mm)范围内”由“年降水量在[200,250)(mm)范围内”和“年降水量在[250,300](mm)范围内”两个互斥事务构成,因此概率为0.13+0.12=0.25.14.从装有5只红球、5只白球的袋中随意取出3只球,下列说法正确的有________(填序号).①“取出2只红球和1只白球”与“取出1只红球和2只白球”不互斥; ②“取出2只红球和1只白球”与“取出3只红球”互斥且对立; ③“取出3只红球”与“取出3只球中至少有1只白球”对立; ④“取出3只红球”与“取出3只白球”互斥. 【答案】③④【解析】从装有5只红球、5只白球的袋中随意取出3只球,对于①,“取出2只红球和1只白球”与“取出1只红球和2只白球”是互斥事务,故①错误;对于②,“取出2只红球和1只白球”与“取出3只红球”是互斥但不对立事务,故②错误;对于③,“取出3只红球”与“取出3只球中至少有1只白球”是对立事务,故③正确; 对于④,“取出3只红球”与“取出3只白球”是互斥事务,故④正确.15.在抛掷一颗骰子的试验中,事务A 表示“不大于4的偶数点出现”,事务B 表示“小于5的点出现”,则事务A ∪B 发生的概率为________(B 表示B 的对立事务).【答案】23【解析】事务A 包含的基本领件为“出现2点”或“出现4点”;B 表示“大于等于5的点出现”,包含的基本领件为“出现5点”或“出现6点”.明显A 与B 是互斥的,故P (A ∪B )=P (A )+P (B )=13+13=23.16.随着经济发展,江门市居住环境进一步改善,市民休闲活动的公园越来越多,其中,最新打造的网红公园有儿童公园、湖连潮头中心公园、下沙公园.某个节假日,甲、乙、丙、丁四组家庭到这些网红公园打卡,通过访问和意向筛查,最终将这四组家庭的意向汇总如下:择,则甲、乙两组家庭选择同一个公园打卡的概率为________.【答案】29【解析】①选儿童公园和湖连潮头中心公园时,有以下状况:甲丙、乙丁;乙丙、甲丁;②选儿童公园和下沙公园时,有以下状况:甲乙、丙丁;甲丙、乙丁;③选湖连潮头中心公园和下沙公园时,有以下状况:甲乙、丙丁;甲丁、乙丙;④选3个公园时,有以下几种状况:甲乙、丁、丙;甲丙、乙、丁;甲丙、丁、乙;乙丙、甲、丁;丙、甲乙、丁;乙、甲丁、丙;丙、甲丁、乙;甲、乙丁、丙;甲、丁、乙丙;丙、甲、乙丁;甲、乙、丙丁;乙、甲、丙丁;共有18种选择,其中甲、乙两组家庭选择同一个公园打卡的有4种,则甲、乙两组家庭选择同一个公园打卡的概率为418=29.四、解答题:本题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1,2,3,4.现从盒子中随机抽取卡片.(1)若一次抽取3张卡片,求3张卡片上的数字之和大于7的概率;(2)若第一次抽取1张卡片,放回后再抽取1张卡片,求至少有一次抽到数字3的概率. 解:(1)设A 表示事务“抽取的3张卡片上的数字之和大于7”,任取3张卡片,3张卡片上的数字的全部可能结果是(1,2,3),(1,2,4),(1,3,4),(2,3,4),共4个.其中数字之和大于7的是(1,3,4),(2,3,4),共2个,故P (A )=12.(2)设B 表示事务“至少有一次抽到数字3”,第一次抽取1张卡片,放回后再抽取1张卡片的全部可能结果有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.至少有一次抽到数字3的结果有(1,3),(2,3),(3,1),(3,2),(3,3),(3,4),(4,3),共7个.故所求事务的概率为P (B )=716.18.袋子中放有大小和形态相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,其次次取出的小球标号为b .记事务A 表示“a +b =2”,求事务A 的概率.解:(1)由题意可知n 1+1+n =12,解得n =2.(2)记标号为2的两个小球分别为21,22,不放回地随机抽取2个小球的全部基本领件为(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事务A 包含的基本领件为:(0,21),(0,22),(21,0),(22,0),共4个,所以P (A )=412=13.19.在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)列举出全部可能的抽取结果;(2)求取出的两个球上标号之积能被3整除的概率.解:(1)由题意,设从甲、乙两个盒子中各取1个球,其数字分别为x 、y ,用(x ,y )表示抽取结果,可得全部可能结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)设“取出的两个球上标号的数字之积能被3整除”为事务A ,则A ={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)},事务A 由7个基本领件组成,故取出的两个球上标号之积能被3整除的概率P (A )=716.20.如图,由M 到N 的电路中有4个元件,分别标为元件1,元件2,元件3,元件4,电流能通过元件1,元件2的概率都是p ,电流能通过元件3,元件4的概率都是0.9,电流能否通过各元件相互独立.已知元件1,元件2中至少有一个能通过电流的概率为0.96.(1)求p ;(2)求电流能在M 与N 之间通过的概率.解:(1)依据题意,电流能通过元件1,元件2的概率都是p ,而元件1,元件2中至少有一个能通过电流的概率为0.96.设元件1,元件2中至少有一个能通过电流的概率为P 1,则有1-(1-p )2=0.96,解可得p =0.8.(2)电流能通过元件3,元件4的概率都是0.9,则元件3,元件4中至少有一个能通过电流的概率P 2=1-(1-0.9)2=0.99,故电流能在M 与N 之间通过的概率P ′=P 1P 2=0.950 4.21.第五代移动通信技术(简称5G)是具有高速率、低时延和大连接特点的新一代宽带移动通信技术,是实现人机物互联的网络基础设施.某市工信部门为了解本市5G 手机用户对5G 网络的满足程度,随机抽取了本市300名5G 手机用户进行了调查,所得状况统计如下:满足程度 25岁以下 26岁至50岁 50岁以上 男 女 男 女 男 女 满足 20 21 35 196 25 6 一般 20 20 25 19 12 16 不满足159101588(1)若从样本中任取1人,求此用户年龄不超过50岁的概率;(2)记满足为5分,一般为3分,不满足为1分,依据表中数据,求样本中26岁至50岁5G 手机男用户满足程度的平均分;(3)若从样本中26岁至50岁对5G 网络不满足的5G 手机用户中按性别用分层抽样的方法抽取5人,再从这5人中不放回地依次随机选择2人询问不满足的缘由,求第2次才选择到了女用户的概率.解:(1)超过50岁的5G 手机用户有25+6+12+16+8+8=75人,则所求概率p =300-75300=34. (2)由题意,样本中26岁至50岁5G 手机男用户满足程度的平均分为35×5+25×3+10×135+25+10=267.(3)由题意,用分层抽样的方法抽取的5人中男用户有2人,分别记为a ,b ;女用户有3人,分别记为1,2,3.从这5人中不放回地依次随机选择2人,样本空间Ω={(a ,b ),(a ,1),(a ,2),(a ,3),(b ,a ),(b ,1),(b ,2),(b ,3),(1,a ),(1,b ),(1,2),(1,3),(2,a ),(2,b ),(2,1),(2,3),(3,a ),(3,b ),(3,1),(3,2)},n (Ω)=20,设事务A =“第2次才选择到了女用户”,则A ={(a ,1),(a ,2),(a ,3),(b ,1),(b ,2),(b ,3)},n (A )=6,故第2次才选择到了女用户的概率为310.22.“抢红包”的活动给节假日增加了一份趣味,某组织进行了一次关于“是否参与抢红包活动”的调查活动,在几个大型小区随机抽取50名居民进行问卷调查,对问卷结果进行了统计,并将调查结果统计如下表:年龄/岁[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]调查人数 4 6 14 12 8 6 参与的人数3412632(1)补全如图所示有关调查人数的频率分布直方图,并依据频率分布直方图估计这50名居民年龄的中位数和平均数(结果精确到0.1);(2)在被调查的居民中,若从年龄在[10,20),[20,30)内的居民中各随机选取1人参与抽奖活动,求选中的2人中仅有1人没有参与抢红包活动的概率.解:(1)补全频率分布直方图,如图所示:这50名居民年龄的平均数约为(15×0.008+25×0.012+35×0.028+45×0.024+55×0.016+65×0.012)×10=41.4.设中位数为x ,则0.08+0.12+0.28+0.024(x -40)=0.5,解得x ≈40.8,所以这50名居民年龄的中位数约为40.8.(2)记年龄在[10,20)内的居民为a 1,A 2,A 3,A 4(其中居民a 1没有参与抢红包活动),年龄在[20,30)内的居民为b 1,b 2,B 3,B 4,B 5,B 6(其中居民b 1,b 2没有参与抢红包活动).从年龄在[10,20),[20,30)内的居民中各选取1人的情形有(a 1,b 1),(a 1,b 2),(a 1,B 3),(a 1,B 4),(a 1,B 5),(a 1,B 6),(A 2,b 1),(A 2,b 2),(A 2,B 3),(A 2,B 4),(A 2,B 5),(A 2,B 6),(A 3,b 1),(A 3,b 2),(A 3,B 3),(A 3,B 4),(A 3,B 5),(A 3,B 6),(A 4,b 1),(A 4,b 2),(A 4,B 3),(A 4,B 4),(A 4,B 5),(A 4,B 6),共24种.其中仅有1人没有参与抢红包活动的情形有10种,所以选中的2人中仅有1人没有参与抢红包活动的概率p =1024=512.。

人教A版(新教材〉数学必修第二册第十章概率10.3频率与概率同步测试

人教A版(新教材〉数学必修第二册第十章概率10.3频率与概率同步测试

人教A版(新教材)数学必修第二册第十章概率10.3 频率与概率同步测试共 12 题一、选择题(共6题)1、在区间 ​在随机取两个数 ​x,y​,记p1为事件“​x+y≤”的概率, ​p2为事件“xy≤”的概率,则()A. B.C. D.2、在区间[0,2]上随机地取一个数x,则事件“”发生的概率为()A. B.C. D.3、从装有 ​2个红球和 ​2个黑球的口袋内任取 ​2个球,那么互斥而不对立的两个事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与都是红球C.至少有一个黑球与至少有 1个红球D.恰有1个黑球与恰有2个黑球4、有一个篮球运动员投篮三次,三次投篮命中率均为,则这个篮球运动员投篮至少有一次投中的概率是()A.0.216​B.0.504C.0.72D.0.9365、考查正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3​个点也连成三角形,则所得的两个三角形全等的概率等于()A. B.C. D.6、在正方体上任取三个顶点连成三角形,则所得的三角形是等腰三角形的概率是 ( )A. B.C. D.二、填空题(共3题)7、一堆除颜色外其他特征都相同的红白两种颜色的球若干个,已知红球的个数比白球的多,但比白球的2倍少,若把每一个白球都记作数值2,每一个红球都记作数值3,则所有球的数值的总和等于60,现从中任取一个球,则取到红球的概率等于_________.8、一个口袋中装有大小相同的2个白球和3个黑球,从中摸出一个球,放回后再摸出一个球,则两次摸出的球恰好颜色不同的概率为__________9、有20张卡片,每张卡片上分别标有两个连续的自然数k​,k+1​,其中k=0​,1​,2​,...​,19​从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10 ​的卡片,则卡片上两个数的各位数字之和为9+1+0=10​)不小于14​”为A,则 ​P(A)______ .三、解答题(共3题)10、袋中有大小、形状相同的红、黑球各一个,现依次有放回的随机摸3次,每次摸取一个球。

(2019新教材)人教A版高中数学必修第二册:第十章 概率 章末检测

(2019新教材)人教A版高中数学必修第二册:第十章 概率 章末检测

第十章 概率 章末检测(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件; ②“当x 为某一实数时,可使x 2≤0”是不可能事件; ③“明天天津市要下雨”是必然事件;④“从100个灯泡(含有10个次品)中取出5个,5个全是次品”是随机事件. 其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:选C.①④正确.2.(2019·黑龙江省大庆中学月考)袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .至少有一个白球;红、黑球各一个D .恰有一个白球;一个白球一个黑球解析:选C.袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项:在A 中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A 不成立; 在B 中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B 不成立;在C 中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故C 成立;在D 中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D 不成立;故选C.3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56解析:选C.从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,共有6种选法.红色和紫色的花不在同一花坛的有4种选法,根据古典概型的概率计算公式,所求的概率为46=23.故选C.4.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm )分别为 162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170.5 cm 之间的概率约为( )A.25B.12C.23D.13解析:选A.从已知数据可以看出,在随机抽取的20位学生中,身高在155.5~170.5cm 之间的有8人,其频率为25,故可估计在该校高二年级的所有学生中任抽取一人,其身高在155.5~170.5cm 之间的概率约为25.5.打靶时甲每打10次,可中靶8次;乙每打10次,可中靶7次.若两人同时射击一个目标,则他们都中靶的概率是( )A.35B.34C.1225D.1425解析:选D.由题意知甲中靶的概率为45,乙中靶的概率为710,两人打靶相互独立,同时中靶的概率为45×710=1425.6.一个笼子里有3只白兔,2只灰兔,现让它们一一跑出笼子,假设每一只跑出笼子的概率相同,则先跑出笼子的两只兔子中一只是白兔,另一只是灰兔的概率是( )A.35B.45C.23D.34解析:选A .设3只白兔分别为b 1,b 2,b 3,2只灰兔分别为h 1,h 2,则所有可能的情况有(b 1,h 1),(b 1,h 2),(b 2,h 1),(b 2,h 2),(b 3,h 1),(b 3,h 2),(h 1,b 1),(h 2,b 1),(h 1,b 2),(h 2,b 2),(h 1,b 3),(h 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 1),(b 2,b 3),(b 3,b 1),(b 3,b 2),(h 1,h 2),(h 2,h 1),共20种,其中符合一只是白兔,另一只是灰兔的情况有12种,所以所求概率为1220=35.7.任取一个三位正整数N ,则对数log 2N 是一个正整数的概率是( ) A.1225 B.3899 C.1300D.1450解析:选C.三位正整数有100~999,共900个,而满足log 2N 为正整数的N 有27,28,29,共3个,故所求事件的概率为3900=1300.8.抛掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数为奇数”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512B.12C.712D.34解析:选D.P (A )=12,P (B )=12,P (A -)=12,P (B -)=12.A ,B 中至少有一件发生的概率为1-P (A -)·P (B -)=1-12×12=34,故选D.9.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为( ) A.15 B.25 C.16D.18解析:选B.如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率为615=25.10.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A.29B.118C.13D.23解析:选D.由P (A B -)=P (B A -),得P (A )P (B -)=P (B )P (A -), 即P (A )[1-P (B )]=P (B )[1-P (A )], 所以P (A )=P (B ). 又P (A - B -)=19,则P (A -)=P (B -)=13.所以P (A )=23.11.如果从不包括大、小王的一堆扑克牌中随机抽取一张,那么取到红心牌(事件A )的概率为14,取到方片牌(事件B )的概率是13,则取到红色牌(事件C )的概率和取到黑色牌(事件D )的概率分别是( )A.712,512B.512,712C.12,12D.34,23解析:选A.因为C =A +B ,且A ,B 不会同时发生,即A ,B 是互斥事件,所以P (C )=P (A )+P (B )=14+13=712.又C ,D 是互斥事件,且C +D 是必然事件,所以C ,D 互为对立事件,则P (D )=1-P (C )=1-712=512.12.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.910解析:选D.记3个红球分别为a 1,a 2,a 3,2个白球分别为b 1,b 2.从3个红球、2个白球中任取3个,则所包含的结果有(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 1,b 1,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10个.由于每个结果发生的机会均等,因此这些结果的发生是等可能的.用A 表示“所取的3个球中至少有1个白球”,则其对立事件A -表示“所取的3个球中没有白球”,则事件A -包含的结果有1个:(a 1,a 2,a 3).所以P (A -)=110.故P (A )=1-P (A -)=1-110=910.二、填空题:本题共4小题,每小题5分.13.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y ,来确定点P (x ,y ),那么他们各掷一次所确定的点P (x ,y )落在已知抛物线y =-x 2+4x 上的概率为________.解析:根据题意,两人各掷立方体一次,每人都有6种可能性,则(x ,y )的情况有36种,即P 点有36种可能,而y =-x 2+4x =-(x -2)2+4,即(x -2)2+y =4,易得在抛物线上的点有(2,4),(1,3),(3,3)共3个,因此满足条件的概率为336=112.答案:11214.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________. 解析:甲,乙,丙站成一排有(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲),共6种.甲,乙相邻而站有(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种. 所以甲,乙两人相邻而站的概率为46=23.答案:2315.袋中含有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,至少得到1个白球的概率是910,则从中任意摸出2个球,得到的都是白球的概率为________.解析:因为袋中装有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,共有10种情况,没有得到白球的概率为110,设白球个数为x ,则黑球个数为5-x ,那么,可知白球有3个,黑球有2个,因此可知从中任意摸出2个球,得到的都是白球的概率为310.答案:31016.(2019·高考全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为____________.解析:依题意知,经停该站高铁列车所有车次的平均正点率的估计值为10×0.97+20×0.98+10×0.9940=0.98.答案:0.98三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率. (1)所得的三位数大于400; (2)所得的三位数是偶数.解:1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数. (1)大于400的三位数的个数为4,所以P =46=23.(2)三位数为偶数的有156,516,共2个, 所以相应的概率为P =26=13.18.(本小题满分12分)某社区举办《“环保我参与”有奖问答比赛》活动,某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.若各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.解:(1)记“甲回答正确这道题”“乙回答正确这道题”“丙回答正确这道题”分别为事件A ,B ,C ,则P (A )=34,且有⎩⎨⎧P (A -)·P (C -)=112,P (B )·P (C )=14.即⎩⎨⎧[1-P (A )]·[1-P (C )]=112,P (B )·P (C )=14.所以P (B )=38,P (C )=23.(2)有0个家庭回答正确的概率为P 0=P (A -B -C -)=P (A -)·P (B -)·P (C -)=14×58×13=596.有1个家庭回答正确的概率为P 1=P (A B -C -+A -B C -+A -B -C )=34×58×13+14×38×13+14×58×23=724.所以不少于2个家庭回答正确这道题的概率为P =1-P 0-P 1=1-596-724=2132.19.(本小题满分12分)(2019·河北省枣强中学期末考试)质量监督局检测某种产品的三个质量指标x ,y ,z ,用综合指标Q =x +y +z 核定该产品的等级.若Q ≤5,则核定该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(2)在该样品的一等品中,随机抽取2件产品,设事件B 为“在取出的2件产品中,每件产品的综合指标均满足Q ≤4”,求事件B 的概率.解:(1)计算10件产品的综合指标Q ,如下表:1246910故该样本的一等品率为610=0.6,从而估计该批产品的一等品率为0.6.(2)在该样本的一等品中,随机抽取2件产品的所有可能结果为(A 1,A 2),(A 1,A 4),(A 1,A 6),(A 1,A 9),(A 1,A 10),(A 2,A 4),(A 2,A 6),(A 2,A 9),(A 2,A 10),(A 4,A 6),(A 4,A 9),(A 4,A 10),(A 6,A 9),(A 6,A 10),(A 9,A 10)共15种.在该样本的一等品中,综合指标均满足Q ≤4的产品编号分别为A 1,A 9,A 10, 则事件B 发生的所有可能结果为(A 1,A 9),(A 1,A 10),(A 9,A 10)共3种, 所以P (B )=315=15.20.(本小题满分12分)(2019·辽宁省凌源三校联考)某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在[20,45]内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(第一~五组区间分别为[20,25),[25,30),[30,35),[35,40),[40,45]).(1)求选取的市民年龄在[40,45]内的人数;(2)若从第3,4组用分层随机抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中做重点发言,求做重点发言的市民中至少有一人的年龄在[35,40)内的概率.解:(1)由题意可知,年龄在[40,45]内的频率为P =0.02×5=0.1, 故年龄在[40,45]内的市民人数为200×0.1=20.(2)易知,第3组的人数,第4组人数都多于20,且频率之比为3∶2,所以用分层随机抽样的方法在第3,4两组市民抽取5名参加座谈,应从第3,4组中分别抽取3人,2人.记第3组的3名市民分别为A 1,A 2,A 3,第4组的2名市民分别为B 1,B 2,则从5名中选取2名做重点发言的所有情况为(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共有10种.其中第4组的2名B 1,B 2至少有一名被选中的有:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共有7种,所以至少有一人的年龄在[35,40)内的概率为710.21.(本小题满分12分)A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效,若在一个试验组中,服用A 有效的白鼠的只数比服用B 有效的多,就称该试验组为甲类组,设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12.(1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.解:(1)设A i 表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i =0,1,2.B i 表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i =0,1,2.据题意有:P (A 0)=13×13=19,P (A 1)=2×13×23=49,P (A 2)=23×23=49,P (B 0)=12×12=14,P (B 1)=2×12×12=12. 所求概率为P =P (B 0A 1)+P (B 0A 2)+P (B 1A 2)=14×49+14×49+12×49=49.(2)所求概率P ′=1-⎝⎛⎭⎫1-493=604729. 22.(本小题满分12分)(2019·高考北京卷)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A的学生有27+3=30人,仅使用B的学生有24+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中,A,B两种支付方式都使用的学生有100-30-25-5=40人.估计该校学生中上个月A,B两种支付方式都使用的人数为40100×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)=125=0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.。

高中数学 第十章 概率测评习题(含解析)新人教A版必修第二册-新人教A版高一第二册数学试题

高中数学 第十章 概率测评习题(含解析)新人教A版必修第二册-新人教A版高一第二册数学试题

第十章测评(时间:120分钟满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.“某点P到点A(-2,0)和点B(2,0)的距离之和为5”这一事件是()A.随机事件B.不可能事件C.必然事件D.以上都不对P到点A(-2,0)和点B(2,0)的距离之和大于等于4,故这一事件是随机事件.2.在第3,6,16路公共汽车的一个停靠站,假定这个停靠站在同一时刻只能停靠一辆汽车,有一位乘客需乘3路或6路车到厂里.已知3路车、6路车在5分钟内到此停靠站的概率分别为0.2和0.6,则此乘客在5分钟内能乘到所需车的概率为()A.0.2B.0.6C.0.8D.0.123路车、6路车彼此互斥,故乘客在5分钟内乘到车的概率为0.2+0.6=0.8.3.(2020全国高一课时练习)在平面直角坐标系中,从下列5个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取3个,这三点能构成三角形的概率是()A. B. C. D.15个点中任取3个点,该试验的样本空间Ω={(A,B,C),(A,B,D),(A,B,E),(A,C,D),(A,C,E),(A,D,E),(B,C,D),(B,C,E),(B,D,E),(C,D,E)},共10个样本点,其中(A,C,E),(B,C,D)这两个样本点中的三点不能构成三角形,故三点能构成三角形的概率P=.4.甲、乙同时参加某次法语考试,甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,则甲、乙两人都未达到优秀的概率为()A.0.42B.0.28C.0.18D.0.12甲、乙考试达到优秀的概率分别为0.6,0.7,两人考试相互独立,∴甲、乙两人都未达到优秀的概率为P=(1-0.6)(1-0.7)=0.12.故选D.5.(2020某某某某第六中学高二期末)现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率.先由计算器给出0到9之间取整数值的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数,根据以下数据估计该射击运动员射击4次至少击中3次的概率为() 75270293714098570347437386366947 1417 4698 0371 6233 2616 80456011 3661 9597 7424 7610 4281A.0.4B.0.45C.0.5D.0.5520组数据中,至少击中3次的为7527,9857,8636,6947,4698,8045,9597,7424,共8次,故该射击运动员射击4次至少击中3次的概率为=0.4.6.某城市一年的空气质量状况如下表所示:率P其中当污染指数T≤50时,空气质量为优;当50<T≤100时,空气质量为良;当100<T≤150时,空气质量为轻微污染.该城市一年空气质量达到良或优的概率为() A. B. C. D.,所求概率为.7.若从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是()A. B. C. D.Ω={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5, 2),(5,3)},共有15个样本点,b>a包含的样本点有(1,2),(1,3),(2,3),共3个,所以b>a的概率是.8.甲袋装有m个白球,n个黑球,乙袋装有n个白球,m个黑球(m≠n),现从两袋中各摸一个球,A=“两球同色”,B=“两球异色”,则P(A)与P(B)的大小关系为()A.P(A)<P(B)B.P(A)=P(B)C.P(A)>P(B)D.视m,n的大小而定A1=“取出的都是白球”,A2=“取出的都是黑球”,则A1,A2互斥且A=A1∪A2, P(A)=P(A1)+P(A2)=.设B1=“甲袋取出白球乙袋取出黑球”,B2=“甲袋取出黑球乙袋取出白球”,则B1、B2互斥且B=B1∪B2,P(B)=P(B1)+P(B2)=.由于m≠n,故2mn<m2+n2.故P(A)<P(B).故选A.二、多项选择题(本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.(2020全国高一课时练习)从装有大小和形状完全相同的5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是()A.至少有1个红球与都是红球B.至少有1个红球与至少有1个白球C.恰有1个红球与恰有2个红球D.至多有1个红球与恰有2个红球.A中两事件不是互斥事件,事件“3个球都是红球”是两事件的交事件;B中两事件能同时发生,如“恰有1个红球和2个白球”,故不是互斥事件;C中两事件是互斥而不对立事件;D中至多有1个红球,即有0个或1个红球,与恰有2个红球互斥,除此还有3个都是红球的情况,因此它们不对立.10.甲、乙两人下棋,和棋的概率为,乙获胜的概率为,则下列说法错误的是()A.甲获胜的概率是B.甲不输的概率是C.乙输了的概率是D.乙不输的概率是甲、乙两人下棋,和棋的概率为,乙获胜的概率为,∴甲获胜的概率是1-,故A正确;甲不输的概率是1-,故B不正确;乙输了的概率是1-,故C不正确;乙不输的概率是.故D不正确.故选BCD.11.(2019某某化州期末)若干个人站成一排,其中不是互斥事件的是()A.“甲站排头”与“乙站排头”B.“甲站排头”与“乙不站排尾”C.“甲站排头”与“乙站排尾”D.“甲不站排头”与“乙不站排尾”A,“甲站排头”与“乙站排头”不可能同时发生,是互斥事件;对于B,“甲站排头”时,乙可以“不站排尾”,两者可以同时发生,不是互斥事件;对于C,“甲站排头”时,乙可以“站排尾”,两者可以同时发生,不是互斥事件;对于D,“甲不站排头”时,乙可以“不站排尾”,两者可以同时发生,不是互斥事件.12.(2019全国高一课时练习)以下对各事件发生的概率判断正确的是()A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是B.每个大于2的偶数都可以表示为两个素数的和,例如8=3+5,在不超过14的素数中随机选取两个不同的数,其和等于14的概率为C.将一个质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是A,画树形图如下:从树形图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P(甲获胜)=,P(乙获胜)=,故玩一局甲不输的概率是,故A错误;对于B,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,设x1,x2分别为取得的2个素数,则(x1,x2)表示样本点,该试验的样本空间Ω={(2,3),(2,5),(2,7),(2,11),(2,13),(3,5),(3,7),(3,11),(3,13),(5,7),(5,11),(5,13),(7, 11),(7,13),(11,13)},共15种结果,其中和等于14的只有(3,11),所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为,故B正确;对于C,总共有6×6=36(种)情况,设A=“点数之和是6”,则A={(1,5),(2,4),(3,3),(4,2),(5,1)},共5种情况,则所求概率是,故C正确;对于D,记三件正品为A1,A2,A3,一件次品为B,设x1,x2分别表示取出的两件产品,则(x1,x2)表示样本点.该试验的样本空间Ω={(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B)},共6个样本点,设A=“两件都是正品”,则A={(A1,A2),(A1,A3),(A2,A3)},共3个样本点,则所求概率为P=,故D正确.三、填空题(本题共4小题,每小题5分,共20分)13.(2020全国高一课时练习)下列试验是古典概型的为.①从6名同学中选出4人参加竞赛,每人被选中的概率;②同时掷两颗骰子,点数和为6的概率;③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率.①中,从6名同学中选出4人参加竞赛,每人被选中的概率,这个试验具有古典概型的两个特征:有限性和等可能性,故①是古典概型;在②中,同时掷两颗骰子,点数和为6的概率,这个试验具有古典概型的两个特征:有限性和等可能性,故②是古典概型;在③中,近三天中有一天降雨的概率,没有等可能性,故③不是古典概型;④10人站成一排,其中甲、乙相邻的概率,这个试验具有古典概型的两个特征:有限性和等可能性,故④是古典概型.14.管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上数据可以估计该池塘约有条鱼.n条鱼,则含有标记的鱼的概率为,由题意得×50=2,∴n=750.15.甲、乙二人进行射击游戏,目标靶上有三个区域,分别涂有红、黄、蓝三色,已知甲击中红、黄、蓝三区域的概率依次是,乙击中红、黄、蓝三区域的概率依次是,二人射击情况互不影响,若甲乙各射击一次,则二人命中同色区域的概率为,二人命中不同色区域的概率为.A1,A2,A3,乙射中红、黄、蓝三色的事件分别为B1,B2,B3;∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=.∵二人射击情况互不影响相互独立,∴二人命中同色区域的概率P(A1B1∪A2B2∪A3B3)=P(A1)P(B1)+P(A2)P(B2)+P(A3)P(B3)=.二人命中不同色区域的概率P(A1B2∪A1B3∪A2B1∪A2B3∪A3B1∪A3B2)=P(A1)P(B2)+P(A1)P(B3)+P(A2)P(B1)+P(A2)P(B3)+P(A3)·P(B1)+P(A3)P(B2)=.16.(2020全国高三月考)为了践行习总书记提出的“绿水青山就是金山银山,坚持人与自然和谐共生”的理念,我市在经济快速发展的同时,更注重城市环境卫生的治理,经过几年的治理,市容市貌焕然一新,为了调查市民对城区环境卫生的满意程度,研究人员随机抽取了1 000名市民进行调查,并将满意程度统计成如图所示的频率分布直方图,其中a=2b.若按照分层随机抽样的方式从分数在[50,60),[60,70)内的市民中随机抽取5人,再从这5人中随机抽取2人,则至少有1人的分数在[50,60)内的概率为.,(0.01+a+b+0.035+0.01)×10=1,∴a+b=0.045,又a=2b,解得a=0.030,b=0.015.∵[50,60),[60,70)两段频率比为0.1∶0.15=2∶3,∴按照分层随机抽样的方式从分数在[50,60)内的市民中抽取2人,记为a1,a2,从分数在[60,70)内的市民中抽取3人,记为b1,b2,b3,设x1,x2分别表示从这5人中抽取的2人,则数组(x1,x2)表示该试验的样本点.∴该试验的样本空间Ω={(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)},共10个样本点,其中,至少有1人的分数在[50,60)内包含的样本点有7个,∴至少有1人的分数在[50,60)内的概率P=.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(2020全国高三二模)新型冠状病毒肺炎爆发以来,相关疫苗企业发挥专业优势与技术优势争分夺秒开展疫苗研发.为测试疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),选定2 000个样本分成三组,测试结果如下表:已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.(1)求x,y+z的值;(2)现用分层随机抽样的方法在全体样本中抽取360个测试结果,求C组应抽取多少个?(3)已知y≥465,z≥30,求疫苗能通过测试的概率.∵在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.∴=0.33,∴x=660,y+z=2000-(673+77+660+90)=500.(2)应在C组抽取的个数为360×=90.(3)由题意疫苗有效需满足77+90+z≤2000×10%,即z≤33,C组疫苗有效与无效的可能情况有6种,即样本空间Ω={(465,35),(466,34),(467,33),(468,32),(469,31),(470,30),},有效的可能情况有4种,即样本空间Ω1={(467,33),(468,32),(469,31),(470,30)},∴疫苗能通过测试的概率P=.18.(12分)将一枚质地均匀且四个面上分别标有1,2,3,4的正四面体先后抛掷两次,其底面落于桌面上,记第一次朝下面的数字为x,第二次朝下面的数字为y.(1)求满足条件“为整数”的事件的概率;(2)求满足条件“x-y<2”的事件的概率.,可以用(x,y)来表示得到的点数情况,则试验的样本空间Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4, 2),(4,3),(4,4)},共16种情况.(1)记“为整数”为事件A,则A={(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,4)},共8种情况,则P(A)=.(2)记“x-y<2”为事件B,则B={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,3),(4,4)},共13种情况,则P(B)=.19.(12分)(2020某某师大附中高三一模)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25 ℃,需求量为500瓶;如果最高气温位于区间[20,25)内,需求量为300瓶;如果最高气温低于20 ℃,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)内和最高气温低于20℃的天数为2+16+36=54.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25℃,需求量为500瓶,如果最高气温位于区间[20,25)内,需求量为300瓶,如果最高气温低于20℃,需求量为200瓶, ∴六月份这种酸奶一天的需求量不超过300瓶的概率P=.(2)当最高气温大于等于25℃时,需求量为500,Y=450×2=900(元);当最高气温位于区间[20,25)内时,需求量为300,Y=300×2-(450-300)×2=300(元);当最高气温低于20℃时,需求量为200,Y=400-(450-200)×2=-100(元).当最高气温大于等于20℃时,Y>0,由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数为90-(2+16)=72,∴估计Y大于零的概率P=.20.(12分)随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某景点设有共享电动车租车点,共享电动车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、乙两人各租一辆电动车,若甲、乙不超过一小时还车的概率分别为;一小时以上且不超过两小时还车的概率分别为;两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)求甲、乙两人所付的租车费用之和大于或等于8的概率.甲、乙两人所付费用相同即同为2,4,6元,都付2元的概率P1=,都付4元的概率P2=,都付6元的概率P3=,∴所付费用相同的概率为P=P1+P2+P3=.(2)设两人费用之和为8,10,12的事件分别为A,B,C,P(A)=P(B)=,P(C)=,设两人费用之和大于或等于8的事件为W,则W=A∪B∪C,∴两人费用之和大于或等于8的概率P(W)=P(A)+P(B)+P(C)=.21.(12分)(2020全国高一课时练习)(1)掷两枚质地均匀的骰子,计算点数和为7的概率;(2)利用随机模拟的方法,试验120次,计算出现点数和为7的频率;(3)所得频率与概率相差大吗?为什么会有这种差异?设第一枚骰子向上的点数记为x1,第二枚骰子向上的点数记为x2,则可用数组(x1,x2)表示样本点.该试验的样本空间Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6);(3,1),(3, 2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6);(5,1),(5,2),(5,3),(5,4 ),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)},共36种情况,其中点数和为7的有6种情况,∴概率P=.(2)试验120次后得到结果如下表格:续表规定每个表格中的第一个数字代表第一枚骰子出现的数字,第二个数字代表第二枚骰子出现的数字,从表格中可以查出点数和为7的有23个数据,∴点数和为7的频率为≈0.19.(3)由(1)中点数和为7的概率为≈0.17,由(2)点数和为7的频率为≈0.19,一般来说频率与概率有一定的差距,因为模拟的次数不多,不一定能反映真实情况.22.(12分)某小组共有A,B,C,D,E 五名同学,他们的身高(单位:m)以及体重指标(单位:kg/m 2)如下表所示:(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.设x 1,x 2分别表示从身高低于1.80的同学中任选的2人,则数组(x 1,x 2)表示样本点,该试验的样本空间Ω={(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)},共6个样本点.由于每个人被选到的机会均等,因此这些样本点的出现是等可能的.设A=“选到的2人身高都在1.78以下”,则A={(A,B),(A,C),(B,C)},共3个样本点.因此选到的2人身高都在1.78以下的概率为P=.(2)从该小组同学中任选2人,则该试验的样本空间Ω={(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)},共10个样本点.由于每个人被选到的机会均等,因此这些样本点的出现是等可能的.设B=“选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)内”,则B={(C,D),(C,E),(D,E)},共3个样本点.因此选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为P1=.。

2022版人教A版高中数学必修第二册练习题--第十章 概率达标检测

2022版人教A版高中数学必修第二册练习题--第十章  概率达标检测

2022版人教A版高中数学必修第二册--本章达标检测(满分:150分;时间:120分钟)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是(),则比赛5场,甲胜3场A.甲、乙两人比赛,甲胜的概率为35B.某医院对一种疾病的治愈率为10%,前9个病人没有被治愈,则第10个病人一定被治愈C.随机试验的频率与概率相等D.天气预报中预报某天降水的概率为90%,是指降水的可能性是90%2.一个盒子内装有大小、形状相同的红球、白球和黑球若干个,从中摸出1个球,摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3B.0.55C.0.7D.0.753.若A+B发生的概率为0.6,则A,B同时发生的概率为()A.0.6B.0.36C.0.24D.0.44.2020年,新型冠状病毒引发的疫情牵动着亿万人的心,八方驰援战疫情,众志成城克时难,社会各界支援湖北共抗新型冠状病毒肺炎,重庆某医院派出3名医生,2名护士支援湖北,现从这5名医护人员中任选2名定点支援湖北某医院,则恰有1名医生和1名护士被选中的概率为()A.0.7B.0.4C.0.6D.0.35.采用随机模拟的方法估计某人射击时命中目标的概率,先由计算器给出0~9之间取整数的随机数,指定0,1,2,3,4表示命中目标,5,6,7,8,9表示未命中目标,以5个随机数为1组,代表射击5次的结果,经随机模拟产生10组随机数如下: 74253029514072298574694714698203714261629567442813根据以上数据估计此人射击5次至少命中目标3次的概率为()A.35B.12C.25D.7106.排球比赛的规则是5局3胜制(无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都相等,均为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是()A.49B.1927C.1127D.40817.如图是由一个圆、一个三角形和一个长方形构成的组合图形,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个图形颜色不全相同的概率为()A.34B.38C.14D.188.为了调查某厂2 000名工人生产某种产品的能力,随机抽查了20名工人某天生产该产品的数量(单位:个),产品数量(单位:个)的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35],频率分布直方图如图所示.工厂规定从生产低于20个产品的工人中随机选取2名进行培训,则这2名工人不在同一组的概率是()A.110B.715C.815D.1315二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分) 9.从一批准备出厂的电视机中随机抽取10台进行质量检查,其中有1台是次品,若用C 表示抽到次品这一事件,则下列说法中不正确的是 ( ) A.事件C 发生的概率为110B.事件C 发生的频率为110C.事件C 发生的概率接近110D.每抽10台电视机,必有1台次品10.袋中有大小、形状相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则下列事件的概率不为89的是 ( )A.颜色相同B.颜色不全相同C.颜色全不相同D.无红球 11.从装有2个红球和2个黑球的袋中任取2个小球,则下列结论正确的是( )A.“至少有一个红球”和“至少有一个黑球”是互斥事件B.“恰有一个黑球”和“都是黑球”是互斥事件C.“恰有一个红球”和“都是红球”是对立事件D.“至少有一个黑球”和“都是红球”是对立事件 12.已知事件A ,B ,且P (A )=0.6,P (B )=0.3,则下列结论正确的是 ( )A.如果B ⊆A ,那么P (A ∪B )=0.6,P (AB )=0.3B.如果A 与B 互斥,那么P (A ∪B )=0.9,P (AB )=0C.如果A 与B 相互独立,那么P (A ∪B )=0.9,P (AB )=0D.如果A 与B 相互独立,那么P (A B )=0.28,P (A B )=0.12三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.连续抛掷一枚质地均匀的硬币三次,事件A 为“三次反面向上”,事件B 为“恰有一次正面向上”,事件C 为“至少两次正面向上”,则P (A )+P (B )+P (C )= . 14.某池塘管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中.10天后,再捕上50条,发现其中带标记的鱼有2条.根据以上数据可以估计该池塘有 条鱼.15.已知三个事件A ,B ,C 两两互斥,且P (A )=0.3,P (B )=0.6,P (C )=0.2,则P (A ∪B ∪C )= .16.甲、乙二人进行射击游戏,目标靶上有三个区域,分别涂有红、黄、蓝三色,已知甲击中红、黄、蓝三区域的概率依次是15,25,15,乙击中红、黄、蓝三区域的概率依次是16,12,14,二人射击情况互不影响,若甲、乙各射击一次,则二人命中同色区域的概率为 ,二人命中不同色区域的概率为 .四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某校参加夏令营的有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其所属年级情况如下表:高一年级高二年级高三年级男同学 A B C女同学XYZ现从这6名同学中随机选出2名参加知识竞赛(每人被选到的可能性相同).(1)用表中字母写出这个试验的样本空间;(2)设M为事件“选出的2名来自不同年级且恰有1名男同学和1名女同学”,写出事件M的样本点,并求事件M发生的概率.18.(本小题满分12分)某企业在生产过程中,测量纤维产品的纤度(表示纤维粗细的一种量),得到100个数据,将数据分组如下表:分组[1.30,1.34)[1.34,1.38)[1.38,1.42)[1.42,1.46)[1.46,1.50)[1.50,1.54]频数425302910 2(1)作出频率分布表,并画出频率分布直方图;(2)估计纤度落在区间[1.38,1.50)内的概率及纤度小于1.40的概率.19.(本小题满分12分)2020年3月20日,中共中央、国务院印发了《关于全面加强新时代大中小学劳动教育的意见》(以下简称《意见》),《意见》中确定了劳动教育内容要求,要求普通高中要注重围绕丰富职业体验,开展服务性劳动、参加生产劳动,使学生熟练掌握一定劳动技能,理解劳动创造价值,具有劳动自立意识和主动服务他人、服务社会的情怀.某中学鼓励学生暑假期间多参加社会公益劳动,在实践中让学生利用所学知识技能服务他人和社会,强化社会责任感,为了调查学生参加公益劳动的情况,学校从全体学生中随机抽取100名学生,经统计得到他们参加公益劳动的总时间均在15~65小时内,其数据分组依次为[15,25),[25,35),[35,45),[45,55),[55,65],得到频率分布直方图如图所示,其中a-b=0.028.(1)求a,b的值,并估计这100名学生参加公益劳动的总时间(小时)的平均数(同一组中的数据可用该组区间的中点值作代表);(2)学校要在参加公益劳动总时间(小时)在[35,45)、[45,55)内的学生中用比例分配的分层随机抽样的方法选取5名学生进行感受交流,再从这5名学生中随机抽取2名进行感受分享,求这2名来自不同组的概率.20.(本小题满分12分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还要从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则称该学生的选考方案待确定.某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:性别选考方案确定情况物理化学生物历史地理政治选考方案确884211男生定的有8人选考方案待确定的有6人430100女生选考方案确定的有10人896331选考方案待确定的有6人541001(1)估计该学校高一年级选考方案确定的学生中选考生物的人数;(2)假设男、女生选择选考科目是相互独立的.从选考方案确定的8名男生和10名女生中各随机选出1名,试求该男生和女生的选考方案中都含有历史科目的概率.21.(本小题满分12分)已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:yxA B CA144010B a36bC28834若抽取了n名学生,成绩分为A(优秀),B(良好),C(及格)三个等级,设x,y分别表示数学成绩与物理成绩,例如:表中物理成绩为A等级的共有14+40+10=64(人),数学成绩为B等级且物理成绩为C等级的共有8人.已知x与y均为A等级的概率是0.07.(1)设在该样本中,数学成绩的优秀率是30%,求a,b的值;(2)已知a≥7,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.22.(本小题满分12分)某大学生命科学学院为激发学生积极参与科学探索的热情和兴趣,提高学生生物学实验动手能力,举行生物学实验技能大赛.大赛根据理论笔试和实际操作两部分进行初试,初试部分考试成绩只记“合格”与“不合格”,只有理论笔试和实际操作两部分考试都“合格”者才能进入下一轮的比赛.在初试部分,甲、乙、丙三人在理论考试中“合格”的概率依次为56,23,45,在实际操作考试中“合格”的概率依次为23,34,12,所有考试是否合格相互之间没有影响.(1)假设甲、乙、丙三人同时进行理论笔试与实际操作两项考试,谁进入下一轮比赛的可能性最大?(2)这三人进行理论笔试与实际操作两项考试后,求恰有两人进入下一轮比赛的概率.答案全解全析一、单项选择题1.D概率只是说明事件发生的可能性大小,其发生具有随机性.故选D.2.D由题意得摸出黑球的概率是1-(0.45+0.25)=0.3,因为从盒子中摸出1个球为黑球与摸出1个球为红球为互斥事件,所以摸出黑球或红球的概率为0.3+0.45=0.75,故选D.3.D A+B发生指A,B中至少有一个发生,它的对立事件为A,B都不发生,即A,B同时发生.故选D.4.C记2名护士分别为A、B,3名医生分别为a、b、c,所有的基本事件有(A,B)、(A,a)、(A,b)、(A,c)、(B,a)、(B,b)、(B,c)、(a,b)、(a,c)、(b,c),共10个,其中事件“恰有1名医生和1名护士被选中”所包含的基本事件有(A,a)、(A,b)、(A,c)、(B,a)、(B,b)、(B,c),共6个,=0.6.故选C.因此所求事件的概率P=6105.A观察可知,随机数74253,02951,40722,03714,26162,42813满足条件,故所求概率约为610=35.6.B最后乙队获胜包含3种情况:(1)第三局乙胜;(2)第三局甲胜,第四局乙胜;(3)第三局和第四局都是甲胜,第五局乙胜.故最后乙队获胜的概率P=13+23×13+(23)2×13=1927,故选B.7.A每一个图形有2种涂法,总的涂色种数为23=8,三个图形颜色完全相同的有2种(全是红色或全是蓝色),则三个图形颜色不全相同的涂法种数为8-2=6.所以三个图形颜色不全相同的概率为68=34.故选A.8.C根据题中频率分布直方图可知,生产产品数量(单位:个)在[10,15),[15,20)内的人数分别为5×0.02×20=2,5×0.04×20=4.设生产产品的数量在[10,15)内的2人分别是A,B,[15,20)内的4人分别为C,D,E,F,则从生产低于20个产品的工人中随机选取2名工人的样本点有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),( E,F),共15个,且这15个样本点发生的可能性相等,其中2名工人不在同一组的样本点有(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),共8个,则选取的2名工人不在同一组的概率为815.二、多项选择题9.ACD事件C发生的频率为110,由于只进行了一次试验,故不能得出概率接近110或概率为110的结论,当然每抽10台电视机,必有1台次品也不一定发生.10.ACD有放回地取球3次,试验的样本空间中共27个样本点,其中颜色相同的样本点有3个,其概率为327=19;颜色不全相同的样本点有24个,其概率为2427=89;颜色全不相同的样本点有6个,其概率为627=29;无红球的样本点有8个,其概率为827.故选ACD.11.BD记两个黑球分别为A1,A2,两个红球分别为B1,B2,从中取出2个小球,则所有基本事件如下:A1A2,A1B1,A1B2,A2B1,A2B2,B1B2.至少有一个红球包括基本事件:A1B1,A1B2,A2B1,A2B2,B1B2,至少有一个黑球包括基本事件:A1A2,A1B1,A1B2,A2B1,A2B2,这两个事件有共同的基本事件,故不是互斥事件,故A错误;恰有一个黑球包括基本事件:A1B1,A1B2,A2B1,A2B2,都是黑球包括基本事件A1A2,这两个事件没有共同的基本事件,故是互斥事件,故B正确;恰有一个红球包括基本事件:A1B1,A1B2,A2B1,A2B2,都是红球包括基本事件:B1B2,除了这两个事件包括的基本事件之外,还有事件A1A2,故不是对立事件,故C错误;至少有一个黑球包括基本事件:A1A2,A1B1,A1B2,A2B1,A2B2,都是红球包括基本事件B1B2,这两个事件没有共同的基本事件,且两者包括的基本事件的并集为全部基本事件,故是对立事件,故D正确.故选BD.12.ABD对于A,如果B⊆A,那么P(A∪B)=P(A)=0.6,P(AB)=P(B)=0.3,故A正确;对于B,如果A与B互斥,那么P(A∪B)=P(A)+P(B)=0.9,P(AB)=0,故B正确;对于C,如果A与B相互独立,那么P(AB)=P(A)P(B)=0.18,P(A∪B)=P(A)+P(B)-P(AB)=0.6+0.3-0.18=0.72,故C错误;对于D ,如果A 与B 相互独立,那么P (AB )=P (A )P (B )=0.4×0.7=0.28,P (A B )=P (A )·P (B )=0.4×0.3=0.12,故D 正确.故选ABD . 三、填空题 13.答案 1解析 事件A ,B ,C 之间两两互斥,且A ∪B ∪C 是一枚硬币连掷三次的所有结果, 所以P (A )+P (B )+P (C )=1. 14.答案 750解析 设池塘有n 条鱼,则带标记的鱼的概率为30n,由题意得30n×50=2,∴n =750.15.答案 0.9解析 ∵P (B )=0.6,∴P (B )=1-0.6=0.4,∵A ,B ,C 两两互斥,∴P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.3+0.4+0.2=0.9. 16.答案1760;920解析 设甲射中红、黄、蓝区域的事件分别为A 1,A 2,A 3,乙射中红、黄、蓝区域的事件分别为B 1,B 2,B 3,则P (A 1)=15,P (A 2)=25,P (A 3)=15,P (B 1)=16,P (B 2)=12,P (B 3)=14.∵二人射击情况互不影响, ∴二人命中同色区域的概率为P (A 1B 1+A 2B 2+A 3B 3)=P (A 1)P (B 1)+P (A 2)P (B 2)+P (A 3)P (B 3)=15×16+25×12+15×14=1760;二人命中不同色区域的概率为P (A 1B 2+A 1B 3+A 2B 1+A 2B 3+A 3B 1+A 3B 2)=P (A 1)P (B 2)+P (A 1)P (B 3)+P (A 2)P (B 1)+P (A 2)P (B3)+P (A 3)P (B 1)+P (A 3)P (B 2)=15×12+15×14+25×16+25×14+15×16+15×12=920.四、解答题17.解析(1)这个试验的样本空间为{(A,B),(A,C),(A,X),(A,Y),(A,Z),(B,C),(B,X),(B,Y),(B,Z),(C,X),(C,Y),(C,Z),(X,Y),(X,Z),(Y, Z)}.(4分)(2)由(1)知样本空间中样本点共15个,事件M包含的样本点有(A,Y),(A,Z),(B,X),(B,Z),(C,X),(C,Y),共6个,(7分)因此事件M发生的概率P(M)=615=25.(10分)18.解析(1)根据题意,作频率分布表如下:分组频数频率[1.30,1.34)40.04[1.34,1.38)250.25[1.38,1.42)300.30[1.42,1.46)290.29[1.46,1.50)100.10[1.50,1.54]20.02合计1001.00(2分)频率分布直方图如图:(6分) (2)由(1)中频率分布表,可得纤度落在区间[1.38,1.42)内的频率为0.30,纤度落在区间[1.42,1.46)内的频率为0.29,纤度落在区间[1.46,1.50)内的频率为0.10,故估计纤度落在区间[1.38,1.50)内的概率为0.30+0.29+0.10=0.69. (9分) 由(1)中频率分布表,可得纤度小于1.40的频率为0.04+0.25+0.30×12=0.44,故估计纤度小于1.40的概率为0.44. (12分)19.解析 (1)依题意(0.005+0.011+b +0.028+a )×10=1,故a +b =0.056, (1分) 因为a -b =0.028,所以a =0.042,b =0.014, (3分)故所求平均数为20×0.11+30×0.14+40×0.42+50×0.28+60×0.05=40.2,(5分)所以估计这100名学生参加公益劳动的总时间的平均数为40.2小时. (6分) (2)由题中频率分布直方图可知,参加公益劳动总时间(小时)在[35,45)和[45,55)内的学生比例为0.42∶0.28=3∶2. (7分)则在[35,45)中抽取5×35=3(名),分别记为a ,b ,c ,在[45,55)中抽取5×25=2(名),分别记为M ,N , (8分)则从这5名学生中随机抽取2名的基本事件有(a ,b ),(a ,c ),(a ,M ),(a ,N ),(b ,c ),(b ,M ),(b ,N ),(c ,M ),(c ,N ),(M ,N ),共10个,(10分)这2名来自不同组的基本事件有(a ,M ),(a ,N ),(b ,M ),(b ,N ),(c ,M ),(c ,N ),共6个, (11分)所以所求概率P =610=35. (12分)20.解析 (1)由题表可知,选考方案确定的男生中选考生物的有4名,选考方案确定的女生中选考生物的有6名. (3分)故估计该学校高一年级选考方案确定的学生中选考生物的人数为1018×1830×420=140.(6分)(2)由题表可知,从选考方案确定的8名男生中选出1名,其选考方案中含有历史科目的概率为28=14,(8分)从选考方案确定的10名女生中选出1名,其选考方案中含有历史科目的概率为310.(10分)所以该男生和女生的选考方案中都含有历史科目的概率为14×310=340.(12分)21.解析(1)由题意知14n=0.07,解得n=200,(2分)所以14+a+28200×100%=30%,解得a=18,(4分)易知a+b=30,所以b=12.(6分)(2)由14+a+28>10+b+34得a>b+2.由a+b=30且a≥7,b≥6,得试验的样本空间Ω={(7,23),(8,22),(9,21),…,(24,6)},共18个样本点,(8分)其中a>b+2包含的样本点有(17,13),(18,12),…,(24,6),共8个,(10分)故所求概率P=818=49.(12分)22.解析(1)设“甲进入下一轮比赛”为事件A,“乙进入下一轮比赛”为事件B,“丙进入下一轮比赛”为事件C,则A、B、C两两相互独立,(2分)则P(A)=56×23=59,P(B)=23×34=12,P(C)=45×12=25,(5分)所以P(A)>P(B)>P(C),所以甲进入下一轮比赛的可能性最大.(6分)(2)设“三人进行理论笔试与实际操作两项考试后恰有两人进入下一轮比赛”为事件D ,则D =AB C +ABC +A BC , (8分) 因为P (AB C )=59×12×(1-25)=16,P (A B C )=59×(1-12)×25=19, P (A BC )=(1-59)×12×25=445, (11分) 所以P (D )=P (AB C )+P (A B C )+P (A BC )=16+19+445=1130. (12分)。

人教版A版(2019)高中数学必修第二册:第十章 概率 综合测试(附答案与解析)

人教版A版(2019)高中数学必修第二册:第十章 概率  综合测试(附答案与解析)
5 B.某医院针对一种疾病的治愈率为 10%,前 9 个病人没有治愈,则第 10 个病人一定治愈 C.随机试验的频率与概率相等 D.天气预报中,预报某天降水概率为 90%,是指降水的可能性是 90% 3.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个电话打给甲的概率是( ) A. 1
6 B. 1
13.一个袋子中有 5 个红球,4 个绿球,8 个黑球,如果随机地摸出一个球,记事件 A = 摸出黑球 ,事件
B = 摸出绿球 ,事件 C = 摸出红球 ,则 P( A) = ________; P(B UC) = ________.(本题第一空 2 分,
第二空 3 分)
14.袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平” 两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生 0 到 3 之间取整 数值的随机数,分别用 0,1,2,3 代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
第十章综合测试
一、单项选择题(本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一项是符合 题目要求的) 1.从含有 10 件正品、2 件次品的 12 件产品中任意抽取 3 件,则必然事件是( ) A.3 件都是正品 B.3 件都是次品 C.至少有 1 件次品 D.至少有 1 件正品 2.下列说法正确的是( ) A.甲、乙两人比赛,甲胜的概率为 3 ,则比赛 5 场,甲胜 3 场
3 / 13
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
“第二次摸到白球”
C.袋中有 3 白、2 黑共 5 个大小相同的小球,依次不放回地摸两球,事件 M “第一次摸到白球”,事件 N “第二次摸到黑球”

2023-2024学年湖北省高中数学人教A版 必修二第十章 概率同步测试-3-含解析

2023-2024学年湖北省高中数学人教A版 必修二第十章 概率同步测试-3-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年湖北省高中数学人教A 版 必修二第十章 概率同步测试(3)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 甲、乙两人各射击一次,是否命中目标互不影响,已知甲、乙两人命中目标的概率分别为 , , 则至少有一人命中目标的概率( )A.B.C.D.2. 从1,2,3,4这四个数字中依次取(不放回)两个数a ,b ,使得的概率是( )A.B.C.D.第一次出现的点数 第二次出现的点数两次出现点数之和两次出现相同点的种数3. 将一颗均匀骰子掷两次,随机变量为( )A. B. C. D. 甲48枚,乙48枚甲64枚,乙32枚甲72枚,乙24枚甲80枚,乙16枚4. 概率论起源于博弈游戏.17世纪,曾有一个“赌金分配“的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定,各出赌金48枚金币,先赢3局者可获得全部赌金;但比赛中途因故终止了,此时甲赢了2局,乙赢了1局.问这96枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率“的知识,合理地给出了赌金分配方案.该分配方案是A. B. C. D. 5. 小王同学进行投篮练习,若他第1球投进,则第2球投进的概率为 ;若他第1球投不进,则第2球投进的概率为 .若他第1球投进概率为 ,他第2球投进的概率为( )A. B. C. D.6. 若 ,其中 ,则 等于( )A. B. C. D.互斥互为对立相互独立相等7. 抛掷两枚质地均匀的骰子,设事件 “第一枚出现奇数点”,事件“第二枚出现偶数点”,则 与 的关系是( )A. B. C. D. 8. 甲射击命中目标的概率是 ,乙命中目标的概率是 ,丙命中目标的概率是 ,现在三人同时射击目标,则目标被击中的概率为( )A.B.C.D.01239. 设 , , 是一个随机试验中的三个事件,且,, , 给出下列结论:①若与互斥,则;②若与独立,则;③若 , , 两两独立,则;④若, 则 , , 两两独立.则其中正确结论的个数为( )A. B. C. D. , 10. 在中产生区间上均匀随机数的函数为“( )”,在用计算机模拟估计函数的图像、直线和轴在区间上部分围成的图形面积时,随机点与该区域内的点的坐标变换公式为( )A. B.C. D.0.6040.6980.1510.30211. 在利用随机模拟方法估计函数y=x 2的图象、直线x=﹣1,x=1以及x 轴所围成的图形面积时,做了1000次试验,数出落在该区域中的样本点数为302个,则该区域面积的近似值为( )A. B. C. D. 12. 甲乙丙三位同学独立的解决同一个问题,已知三位同学能够正确解决这个问题的概率分别为、、 , 则有人能够解决这个问题的概率为A.B.C.D.13. 安排 , , , , 五名志愿者到甲,乙两个福利院做服务工作,每个福利院至少安排一名志愿者,则 , 被安排在不同的福利院的概率为 .14. 已知事件 互相对立,且 ,则 = .15. 如图,用、、三类不同的元件连接成一个系统.当正常工作且、至少有一个正常工作时,系统正常工作,已知、、正常工作的概率依次为、、,则系统正常工作的概率为.16. 某校组织“中国诗词”竞赛,在“风险答题”的环节中,共为选手准备了A、B、C三类不同的题目,选手每答对一个A类、B类或C类的题目,将分别得到300分、200分、100分,但如果答错,则相应要扣去300分、200分、100分,根据平时训练经验,选手甲答对A类、B类或C类题目的概率分别为0.6、0.75、0.85,若腰每一次答题的均分更大一些,则选手甲应选择的题目类型应为(填A、B或C)17. 甲、乙、丙三名篮球运动员进行投篮比赛,甲投篮命中的概率为,乙投篮命中的概率为,丙投篮命中的概率为,每人只投篮一次.(1) 求三人都投篮命中的概率;(2) 求三人中有人投篮命中的概率;(3) 求三人中恰有两人投篮命中的概率.18. 经国务院批准,自1998年起,每年9月第三周为全国推广普通话宣传周(以下简称推普周).今年9月12日至18日为第25届推普周,并以“推广普通话,喜迎二十大”为主题. 为了更好做好此次活动,某高校组织了推普周知识竞赛,其中有一环节要回答难度相当的三道题,李明答对每道题的概率都是0.6,若每位答题者共有三次机会,一旦某次答对抽到的题目,则该环节通过,否则就一直抽题到第3次为止.用Y表示答对题目,用N表示没有答对题目,假设对抽到的不同题目能否答对是独立的.(1) 写出样本空间;(2) 求李明第二次答题通过该环节的概率;(3) 求李明最终通过该环节的概率.19. 袋中装有4个白棋子、3个黑棋子,从袋中随机地取棋子,设取到一个白棋子得2分,取到一个黑棋子得1分,从袋中任取4个棋子.(1) 求得分X的分布列;(2) 求得分大于6的概率.20. 已知某射手射中固定靶的概率为,射中移动靶的概率为,每次射中固定靶、移动靶分别得1分、2分,脱靶均得0分,每次射击的结果相互独立,该射手进行3次打靶射击:向固定靶射击1次,向移动靶射击2次.(1) 求“该射手射中固定靶且恰好射中移动靶1次”的概率;(2) 求该射手的总得分X的分布列和数学期望.21. 计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书甲、乙、丙三人在理论考试中“合格”的概率依次为,,,在实际操作考试中“合格”的概率依次为,,,所有考试是否合格相互之间没有影响.(1) 假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?(2) 这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)(3)18.(1)(2)(3)19.(1)(2)20.(1)(2)(1)(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教A 版第十章概率综合检测题一、单选题1.从正方体的6个面中任取2个面,则取到的2个面平行的概率为( ) A .15B .14C .13D .122.2020年,各国医疗科研机构都在积极研制“新冠”疫苗,现有A 、B 两个独立的医疗科研机构,它们能研制出疫苗的概率均为13,则至少有一家机构能够研究出“新冠”疫苗的概率为( ) A .19B .13C .59D .893.以下三个命题: ①对立事件也是互斥事件;②一个班级有50人,男生与女生的比例为3:2,利用分层抽样的方法,每个男生被抽到的概率为35,每个女生被抽到的概率为25; ③若事件A ,B ,C 两两互斥,则()()()1P A P B P C ++=. 其中正确命题的个数为( ) A .0B .1C .2D .34.从一批产品中取出三件产品,设事件A 为“三件产品全不是次品”,事件B 为“三件产品全是次品”,事件C 为“三件产品至少有一件是次品”,则下列结论正确的是( ) A .B 与C 互斥 B .任何两个均互斥 C .A 与C 互斥D .任何两个均不互斥5.已知某种产品的合格率是95%,合格品中的一级品率是20%.则这种产品的一级品率为( ) A .18%B .19%C .20%D .21%6.抛掷一枚骰子,“向上的点数是1或2”为事件A ,“向上的点数是2或3”为事件B ,则( ) A .A B ⊆ B .A B =C .A B +表示向上的点数是1或2或37.在一次语文考试的阅卷过程中,两位老师对一篇作文打出的分数都是两位的正整数,且十位数字都是5,则两位老师打出的分数之差的绝对值小于或等于1的概率为( ) A .0.18B .0.2C .0.28D .0.328.《易经》是中国传统文化中的精髓.如图是易经先天八卦图,每一卦由三根线组成(“____”表示一根阳线,“_ _”表示一根阴线),现从八卦中任取两卦,这两卦的阳线数目相同的概率为( )A .114B .17C .314D .3289.从只读过《论语》的3名同学和只读过《红楼梦》的3名同学中任选2人在班内进行读后分享,则选中的2人都读过《红楼梦》的概率为( ) A .15B .310C .25D .1210.袋中有完全相同的4只小球,编号为1,2,3,4,现从中取出2只小球,则取出两只球编号之和是偶数的概率为( ) A .13B .23C .15D .2511.党的十八提出:倡导“富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善”社会主义核心价值观.现将这十二个词依次..写在六张规格相同的卡片的正反面(无区分),(如“富强、民主”写在同一张卡片的两面),从中任意抽取1张卡片,则写有“爱国”“诚信”两词中的一个的概率是( ) A .13B .16C .56D .2312.斐波那契数列(Fibonacci sequence )又称黄金分割数列,因为数学家昂纳多斐波那契以兔子繁殖为例子引入,故又称为“兔子数列”,在数学上斐波那契数列被以下递推方法定义:数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,现从该数列的前10项中随机的抽取一项,则该数除以3余数为1的概率为( ) A .18B .14C .38D .1213.在装有4个红球和2个白球的盒子中,任意取一球,则事件“取出的球是白球”为____________事件(填“必然”、“随机”或“不可能”).14.袋中有6张卡片,标号分别为0,1,1,2,2,3;.从这六张卡片中有放回的抽两张,则这两张卡片标号之和小于4的概率为____________.15.甲从集合{1,2,3,4,5,6,7,8,9}中任取三个不同的元素,并按降序排列得到十进制三位数a,乙从集合{1,2,3,4,5,6,7,8}中任取三个不同的元素,并按降序排列得到十进制 的概率为________.三位数b,则a b16.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E.H.辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据:对于此次招生,给出下列四个结论:①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率;③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率;④法学院的录取率不一定小于这两个学院所有学生的录取率.其中,所有正确结论的序号是___________.三、解答题17.甲、乙两人参加普法知识竞赛,共有5题,选择题3个,判断题2个,甲、乙两人各抽一题.(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?18.某制造商2019年8月份生产了一批乒乓球,随机抽取100个进行检查,测得每个乒乓球的直径(单位:mm),将数据分组如下表:分组频数频率[)39.95,39.9710[)39.97,39.9920[)39.99,40.0150[]40.01,40.0320合计100(1)请将上表补充完整;(2)已知标准乒乓球的直径为40.00mm,试估计这批乒乓球的直径误差不超过0.03mm的概率.19.由于受疫情的影响,某国某市的一个小区505人参加某次核酸检测,根据年龄段使用分层抽样的方法从中随机抽取101人,记录其核酸检测结果(阴性或阳性).现将核酸检测呈阴性的人员,按年龄段分为5组:(0,20],(20,40],(40,60],(60,80],(80,100],得到如图所示频率分布直方图,其中年龄在(20,40]的有20人.(1)估计核酸检测呈阴性人员的年龄的中位数;(2)用样本估计该小区此次核酸检测呈阳性的人数;(3)若此次核酸检测呈阳性的人中,男女比例为3:2,从中任选两人,求至少选到一名男性的概率20.为了更好了解某年入伍新兵的身高情况,解放军某部随机抽取100名新兵,分别对他们的身高进行了测量,并将测量数据分为以下五组:[160,165),[165,170),[170,175),[175,180),[180,185]进行整理,如下表所示:组号分组频数第1组[160,165)5第2组[165,170)35第3组[170,175)30第4组[175,180)20第5组[180,185]10合计100(1)在下面的图纸中,画出频率分布直方图;(2)若在第4,5两组中,用分层抽样的方法抽取6名新兵,再从这6名新兵中随机抽取2名新兵进行体能测试,求这2名新兵来自不同组的概率.21.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)根据图表,计算第七组的频率,并估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(2)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.22.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,现从参与调查的人群中随机选出20人的样本,并将这20人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[]55,65,得到的频率分布直方图如图所示(1)求a 的值.(2)根据频率分布直方图,估计参与调查人群的样本数据的中位数(保留两位小数). (3)若从年龄在[)15,35的人中随机抽取两位,求两人恰有一人的年龄在[)25,35内的概率.参考答案1.A 【分析】先算出总事件个数,再算出满足条件的事件个数,即可求出答案. 【详解】从正方体的6个面中任取2个面,共有26651521C ⨯==⨯种,2个面平行的事件个数为3,故所求概率为31155=. 故选:A 2.C 【分析】利用对立事件进行事件的概率计算; 【详解】两家机构都不能够研究出“新冠”疫苗的概率为224339⨯=, ∴至少有一家机构能够研究出“新冠”疫苗的概率为45199-=,故选:C. 【点睛】本题考查对立事件求概率,属于基础题. 3.B 【分析】由对立事件的定义可判断①;由分层抽样的定义可判断②;由互斥事件的概率理解可判断③. 【详解】对于①,由对立事件的定义可知对立事件一定是互斥事件,故①正确;对应②,可知该班有男生30人,女生20人,由于不知道需要抽取多少人,所以无法得出概率,故②错误;对应③,事件A ,B ,C 不一定包含所有事件,故()()()1P A P B P C ++≤,故③错误. 故选:B. 【点睛】本题考查考查对事件互斥、对立的理解,考查对分层抽样的理解,属于基础题.【分析】根据互斥事件的定义可判断出结果. 【详解】事件C 包含事件B ,故A 、B 错误;事件A 与事件C 没有相同的事件,故C 正确,D 错误. 故选:C . 【点睛】本题考查互斥事件的判断,属于基础题. 5.B 【分析】由题意可知,根据一级品率在合格品率所占的比例,计算即可. 【详解】某种产品的合格率是95%,合格品中的一级品率是20%, 一级品率为:000000952019⨯=. 故选:B. 【点睛】本题考查了概率的计算,属于基础题. 6.C 【分析】根据题意,可得{}}1223{AB =,,=,,求得{}1}13{2A B A B =,=,,,即可求解.【详解】由题意,可知{}}1223{AB =,,=,, 则{}1}13{2AB A B =,=,,,∴A B 表示向上的点数为1或2或3.故选:C. 【点睛】本题主要考查了随机事件的概念及其应用,其中解答中正确理解抛掷一枚骰子得到基本事件的个数是解答的关键,着重考查了运算与求解能力,属于基础题.【分析】根据分步乘法计数原理确定两位老师打分组合出的所有基本事件总数,利用列举法可求得符合题意的基本事件个数,由古典概型概率公式可求得结果. 【详解】用(),x y 表示两位老师的打分,则(),x y 的所有可能情况有1010100⨯=种. 当50x =时,y 可取50,51,共2种;当51x =,52,53,54,55,56,57,58时,y 的取值均有3种; 当59x =时,y 可取58,59,共2种;综上可得两位老师打出的分数之差的绝对值小于或等于1的情况有28种, 由古典概型的概率公式可得所求概率280.28100P ==. 故选:C. 8.C 【分析】求出从八卦中任取两卦的基本事件总数,利用列举法求出这两卦的阳线数目相同的基本事件,由此能求出这两卦的阳线数目相同的概率. 【详解】从八卦中任取两卦,基本事件总数2828n C ==,这两卦的阳线数目相同的基本事件有6种,分别为: (兑,巽),(兑,离),(巽,离), (坎,艮),(艮、震),(坎、震),∴这两卦的阳线数目相同的概率为632814p ==. 故选:C 【点睛】本题考查概率的求法,考查列举法等基础知识,考查运算求解能力,是基础题. 9.A 【分析】利用列举法,求得基本事件的总数,再求得选中的2人都读过《红楼梦》所含的基本事件个数,利用古典概型及其概率的计算公式,即可求解. 【详解】将只读过《论语》的3名同学分别记为x ,y ,z ,只读过《红楼梦》的3名同学分别记为a ,b ,c .设“选中的2人都读过《红楼梦》”为事件A ,则从6名同学中任选2人的所有可能情况有(),x y ,(),x z ,(),x a ,(),x b ,(),x c ,(),y z ,(),y a ,(),y b ,(),y c ,(),z a ,(),z b ,(),z c ,(),a b ,(),a c ,(),b c 共15种,其中事件A 包含的可能情况有(),a b ,(),a c ,(),b c 共3种,故()31155P A ==. 故选:A. 【点睛】本题主要考查了古典概型及其概率的计算,着重考查了推理与运算能力,属于基础题. 10.A 【分析】先求出在编号为1,2,3,4的小球中任取2只小球的不同取法,再求出取出的2只球编号之和是偶数的不同取法,然后求概率即可得解. 【详解】解:在编号为1,2,3,4的小球中任取2只小球,则有{}1,2,{}1,3,{}1,4,{}2,3,{}2,4,{}3,4,共6种取法,则取出的2只球编号之和是偶数的有{}1,3,{}2,4,共2种取法,即取出的2只球编号之和是偶数的概率为2163=, 故选:A 【点睛】本题考查了古典型概率公式,属基础题. 11.A 【分析】由题意知,基本事件有6个,其中抽取到含有“爱国”“诚信”两词中的一个的事件有2个基本事件,根据古典概型概率公式计算即可. 【详解】由题意,基本事件为抽到写有富强、民主;文明、和谐;自由、平等;公正、法治;爱国、敬业;诚信、友善的卡片,共有6个,其中抽到写有“爱国”“诚信”两词中的一个的事件为:抽到写有爱国、敬业的卡片,抽到写有诚信、友善的卡片,共有2个, 所以由古典概型概率公式知:2163P ==, 故选:A 【点睛】本题主要考查了古典概型概率的求法,属于中档题. 12.D 【分析】写出斐波那契数列的前10项,列举出被3除所得的余数,由概率公式可得答案. 【详解】数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,数列的前10项为:1,1,2,3,5,8,13,21,34,55 该数列被3除所得的余数为1,1,2,0,2,2,1,0,1,1 所以10项中共有5项满足除以3余数为1, 故概率为51102P . 故选:D 【点睛】本题考查概率的求法,考查列举法的应用,属于基础题. 13.随机. 【分析】任意取一球是随机事件. 【详解】解:由于是任意取一球,所以是随机事件, 故答案为:随机. 【点睛】考查随机事件的判断,基础题.14.2336【分析】根据古典概型的概率计算公式,将卡片标号为0,1(A),1(B),2(A),2(B),3,即可看作从六张不同卡片,有放回的抽取2张,根据概率公式计算可得结果. 【详解】根据古典概型的概率计算公式,将卡片标号为0,1(A),1(B),2(A),2(B),3, 即可看作从六张不同卡片,有放回的抽取2张,这两张卡片标号之和小于4,可以为:第1张抽0,则标号之和小于4概率为:11666P ⨯=⨯, 第1张抽1(A),则标号之和小于4概率为:21566P ⨯=⨯,第1张抽1(B),则标号之和小于4概率为:31566P ⨯=⨯, 第1张抽2(A),则标号之和小于4概率为:41366P ⨯=⨯,第1张抽2(B),则标号之和小于4概率为:51366P ⨯=⨯, 第1张抽3,则标号之和小于4概率为:61166P ⨯=⨯, 所以这两张卡片标号之和小于4的概率1234562336P P P P P P P =+++++=. 故答案为:2336【点睛】本题考查有放回的概率问题,考查计算能力,属于基础题. 15.3756【分析】分甲取9或不取9分类,利用古典概型结合组合数的计算即可得解. 【详解】从{1,2,3,4,5,6,7,8}任取三个不同的元素有3856C =种选择,按甲取9或不取9分类,可得a b >的概率:2328856339828565528565537845635656C C C P C C +⨯+⨯+====⨯⨯.故答案为:3756. 【点睛】本题主要考查了古典概型的计算,涉及组合的应用,属于中档题. 16.②④ 【分析】根据题意,结合古典概型的概率计算公式,逐项进行判定,即可求解. 【详解】设申请法学院的男生人数为x ,女生人数为y ,则200x y +=,法学院的录取率为0.50.70.50.7(200)0.70.001200200x y x x x ++⨯-==-,设申请商学院的男生人数为m ,女生人数为n ,则300m n +=,商学院的录取率为0.60.90.60.9(300)0.90.001200200m n m m m ++⨯-==-,由()()0.90.0010.70.0010.20.001()0.001(200)m x m x m x ---=--=-+, 该值的正负不确定,所以①错误,④正确; 这两个学院所有男生的录取率为0.50.6x mx m++,这两个学院所有女生的录取率为0.70.9y ny n++,因为0.50.60.70.90.20.40.10.30()()x m y n xy xn my nmx m y n x m y n +++++-=<++++, 所以②正确;③错误. 故答案为:②④. 【点睛】本题主要考查了古典概型的概率公式的应用,其中解答中正确理解题意,结合古典概型的概率计算公式求得相应的概率是解答的关键,着重考查数学阅读能力,属于基础题. 17.(1)35(2)910【分析】首先用列举法,求得甲、乙两人各抽一题的所有可能情况.(1)根据上述分析,分别求得“甲抽到判断题,乙抽到选择题”和“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率,然后根据互斥事件概率加法公式,求得“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率.(2)根据上述分析,求得“甲、乙两人都抽到判断题”的概率,根据对立事件概率计算公司求得“甲、乙两人中至少有一人抽到选择题” 的概率. 【详解】把3个选择题记为123,,x x x ,2个判断题记为12,p p “甲抽到选择题,乙抽到判断题”的情况有()11,x p ,()12,x p ,()21,x p ,()22,x p ,()31,x p ,()32,x p ,共6种;“甲抽到判断题,乙抽到选择题”的情况有()11,p x ,()12,p x ,()13,p x ,()21,p x ,()22,p x ,()23,p x ,共6种;“甲、乙都抽到选择题”的情况有()12,x x ,()13,x x ,()21,x x ,()23,x x ,()31,x x ,()32,x x ,共6种;“甲、乙都抽到判断题”的情况有()12,p p ,()21,p p ,共2种.因此基本事件的总数为666220+++=.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,则63()2010P A ==.记“甲抽到判断题,乙抽到选择题”为事件B ,则63()2010P B ==,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为333()10105P A B +=+=. (2)记“甲、乙两人至少有一人抽到选择题”为事件C ,则C 为“甲、乙两人都抽到判断题”,由题意21()2010P C ==,故“甲、乙两人至少有一人抽到选择题”的概率为19()1()11010P C P C =-=-=. 【点睛】本小题主要考查互斥事件概率计算,考查对立事件,属于基础题. 18.(1)表见解析(2)0.9 【分析】(1)由频数除以100,即可得答案‘(2)标准尺寸是40.00mm ,若要使误差不超过0.03mm ,则直径落在[]39.97,40.03内,由(1)数据,即可得答案. 【详解】 (1)(2)标准尺寸是40.00mm ,若要使误差不超过0.03mm ,则直径落在[]39.97,40.03内.由(1)中表知,直径落在[]39.97,40.03内的频率为0.20.50.20.9++=, 所以这批乒乓球的直径误差不超过0.03mm 的概率约为0.9. 【点睛】本题考查频率计算、频率估计概率的思想,属于基础题.19.(1)50;(2)5;(3)910. 【分析】(1)先判断中位数在(40,60],设为x ,列出式子()0.35400.0150.5x +-⨯=即可求出; (2)可得样本中核酸检测呈阴性的人员中年龄在(20,40]有20人,则可求出样本中核酸检测呈阴性的人数,即可求出该小区此次核酸检测呈阳性的人数; (3)可得男性为3人,女性为2人,列出所有基本事件,即可求出概率. 【详解】(1)由频率直方图可知()0.00750.01200.35+⨯=,()0.00750.010.015200.65++⨯=因0.350.50.65<<,所以所求中位数在(40,60],不妨设中位数为x ,则()0.35400.0150.5x +-⨯=,得50x =. 所以核酸检测呈阴性人员年龄的中位数为50;(2)因样本中核酸检测呈阴性的人员中年龄在(20,40]有20人, 设样本中核酸检测呈阴性的人数为n ,则200.0120n =⨯,即100n =,用样本估计总体,所以该小区此次核酸检测呈阳性的人数为505(505100)=5101-⨯, 即该小区此次核酸检测呈阳性的人数为5;(3)由(2)可知,此次核酸检测呈阳性的人数为5,又因其男女比例为3:2, 所以其中男性为3人,女性为2人,将其3名男性分别记为1,2,3,2名女性记为a,b ,从中任选两人的基本事件有(1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),(a ,b ),共10种,其中至少有一名男性的基本事件有(1,2),(1,3),(1,a ),(1,b ),(2,3),(2,a ),(2,b ),(3,a ),(3,b ),共9种. 所以至少选到一名男性的概率910P =. 20.(1)直方图见解析;(2)815. 【分析】(1)求出频率,计算频率除以组距,然后可画出频率分布直方图;(2)计算出第4组抽4人,第5组组抽2人,用列举法写出制取2人的所有情况,得出2人来自不同组的情况,计数后可得概率. 【详解】(1)频率分布直方图如下图所示:(2)因为第4,5组共有30名新兵,所以利用分层抽样从中抽取6名,每组应抽取的人数分别为:第4组:206430⨯=名,第5组:106230⨯=名, 设第4组抽取的4名新兵分别为1A ,2A ,3A ,4A ,第5组抽取的2名新兵分别为1B ,2B .从这6名新兵中随机抽取2名新兵,有以下15种情况:12{,}A A ,13{,}A A ,14{,}A A ,11{,}A B ,12{,}A B ,23{,}A A ,24{,}A A ,21{,}A B ,22{,}A B ,34{,}A A ,31{,}A B ,32{,}A B ,41{,}A B ,42{,}A B ,12{,}B B ,这2名新兵来自不同组的情况有以下8种:11{,}A B ,12{,}A B ,21{,}A B ,22{,}A B ,31{,}A B ,32{,}A B ,41{,}A B ,42{,}A B ,故所求的概率P =815. 21.(1)频率为:0.08;平均分为102;(2)25. 【分析】(1)利用所有组频率和为1即可求得第七组的频率,然后利用81i ii x x p ==∑(其中ix 表示第i组的中间值,i p 表示该组的频率)求出平均值; (2)利用古典概率模型概率的计算方法求解即可. 【详解】解:(1)由频率分布直方图得第七组的频率为:()10.0040.0120.0160.0300.0200.0060.004100.08-++++++⨯=.用样本数据估计该校的2000名学生这次考试成绩的平均分为:700.04800.12900.161000.31100.21200.06x =⨯+⨯+⨯+⨯+⨯+⨯1300.081400.04102+⨯+⨯=.(2)样本成绩属于第六组的有0.00610503⨯⨯=人,设为,,A B C ,样本成绩属于第八组的有0.00410502⨯⨯=人,设为,a b ,从样本成绩属于第六组和第八组的所有学生中随机抽取2名, 基本事件有: AB ,AC ,Aa ,Ab ,BC ,Ba ,Bb ,Ca ,Cb ,ab 共10个 他们的分差的绝对值小于10分包含的基本事件个数AB ,AC ,BC ,ab 共 4个 ∴他们的分差的绝对值小于10分的概率42105p ==. 【点睛】本题考查利用频率分布直方图求解样本数据的平均值,考查古典模型概率的计算,难度一般. (1)计算样本数据的平均值时,只需利用每组中间值乘以本组频率求和即可得到答案; (2)古典概型的解答注意分析清楚基本事件总数及某事件成立时所包含的基本事件数. 22.(1)0.035;(2)42.14;(3)35. 【分析】(1)由频率分布直方图的小矩形的面积和为1求解.(2)由频率分布直方图得[)15,35的频率,[)35,45的频率,然后再利用中位数的定义求解。

相关文档
最新文档