中文分词算法的比较分析

合集下载

汉语自动分词算法综述

汉语自动分词算法综述

都归结为计算词频 的统计信息 . 就是基于概率论的算法 。 也 对于
基 于 语 料 库 的 分词 算 法 . 目前 还 没 有 看 到 一 个 很 好 的 模 型 。 32 分 词算 法 .
现有 的中文分词算法主要有 :正向最大匹配 ,逆 向最大匹
配 . 词 遍 历 。 立 切 分标 志 , 佳 匹 配 . 穷 多 层 次 列 举 , 频 逐 设 最 有 词
问题就是 . 建立一个标 准的分词系统词表 。 有一个权威的分词词 点是执行起来简单 . 不需要任何 的词法 、 句法 、 语义知识。 没有很 表 作 为 分词 依 据 。 可 惜 , 目前 为止 , 很 到 我们 还没 有 。 另外 一 个 主 复 杂 的 数据 结 构 .唯 一 的 要 求 就 是 必 须 有 一 个 很 强 大 的 匹 配 字 要 问 题 就 是切 分规 范 和 消 歧 。 方 面 。 然 还 没 有 出现 一 个 百 分 典 D 这 虽 。缺点是不能很好地解决歧义问题 . 不能认识新词。根据分 之 百 完 美 的切 分 消歧 算 法 . 是 已 经 出 现 了很 多 比较 好 的 , 有 析 . 但 具 匹配 的错 误 率 为 119 /6 。 实际使用价值 的算法 f1 逆 向最 大 匹 配 法r 2 - ' i
21系 统任 务 . MM 法 是 每 次 从 S 中取 出长 度 为 Ma x的 一 个 子 串 ( 设 Sr 假 t长
汉语的语 素和单字词 . 合成 词和短语之问没有清晰的界限。 度 大 于 Ma 。 小于 Ma 时 。 取 出整 个 字 串 ) 把 该 子 串与 与 D x 当 x 则 。 汉语分词是 由计算机 自动识别文本中的词边界的过程 从计算 中的词进 行匹配 。 若成功 , 则该 子 串为词 。 指针 后移 Ma x个汉字 则 再 机 处 理 过 程 上 看 , 词 系统 的 输 入 是 连 续 的 字 符 串 ( 。: … . 后 继续 匹配 。若 不 成 功 , 把 该 字 串最 后 一 个 字 去掉 。 与 D 中 分 CCC

中文分词——HMM算法

中文分词——HMM算法

中⽂分词——HMM算法上⼀篇⽂章中,我们讲述了如何⽤查词典的⽅法对中⽂语句分词,但这种⽅式不能百分百地解决中⽂分词问题,⽐如对于未登录词(在已有的词典中,或者训练语料⾥⾯没有出现过的词),⽆法⽤查词典的⽅式来切分,这时候可以⽤隐马尔可夫模型(HMM)来实现。

在实际应⽤中,⼀般也是将词典匹配分词作为初分⼿段,再利⽤其他⽅法提⾼准确率。

HMM介绍隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,是关于时序的概率图模型,它⽤来描述⼀个含有隐含未知参数的马尔可夫过程,即由⼀个隐藏的马尔可夫链随机⽣成不可观测的状态随机序列,再由各个状态⽣成⼀个观测⽽产⽣观测随机序列的过程。

序列的每⼀个位置⼜可以看作是⼀个时刻,其结构见下图。

其难点是从可观察的参数中确定该过程的隐含参数,然后利⽤这些参数来作进⼀步的分析,例如中⽂分词。

如上图所⽰,状态序列H可表⽰为:H=H1,H2,...,H T假设总共有n个状态,即每个状态序列必为状态集合之⼀,状态值集合Q为:Q={q1,q2,...,q n}观测序列O表⽰为:O=O1,O2,...,O T假设观测值总共有m个,则观测值集合为:V={v1,v2,...,v m}⼀个模型,两个假设,三个问题1、⼀个模型HMM的基本元素可以表⽰为λ={Q,V,π,A,B}Q:状态值集合V:观测值集合π:初始概率分布A:[a ij] 状态转移矩阵B:[b j(k)] 给定状态下,观测值概率矩阵,即发射矩阵2、两个假设齐次Markov即假设观测序列中t时刻的状态,只跟上⼀时刻t-1有关,P(h t+1|h t,...,h1;o t,...,o1)=P(h t+1|h t)观测独⽴即每个时刻的观测值只由该时刻的状态值决定P(o t|o t−1,...,o1;h t,...,h1)=P(o t|h t)3、三个问题HMM在实际应⽤中主要⽤来解决3类问题:评估问题(概率计算问题)即给定观测序列O=O1,O2,O3…O t和模型参数λ=(A,B,π),怎样有效计算这⼀观测序列出现的概率.(Forward-backward算法)解码问题(预测问题)即给定观测序列O=O1,O2,O3…O t和模型参数λ=(A,B,π),怎样寻找满⾜这种观察序列意义上最优的隐含状态序列S。

中文分词技术的研究

中文分词技术的研究
应运 而生 。 信息 过 滤[ 就是 根据 用户 的信 息需 求 , 1 ] 利用

至关重 要 的因素 。 所周 知 , 众 中文 文本与英 文文本 的表 示 方法 有 所不 同 , 英文 文本 中词 与词 中间都 由空 格或
标 点符 号隔开 , 因而 词与词 之间 的界限很 明显 , 以很 可 容 易地 获 取关键 词 , 中文 文 本 中词 与词则 元 明显 的 而
第2卷 3
第 3 期
电 脑 开 发 与 应 用
文章 编 号 :0 35 5 ( 0 0 0 -0 10 1 0—8 0 2 1 )30 0 — 3
中文 分 词技 术 的研 究
Re e r h o i s o d S g e a i n Te hn q e s a c n Ch ne e W r e m nt to c i u s
依 赖 于 分词 词典 的好 坏 , 于无 词典 的分 词算 法 不需 基 要利 用词 典 信息 , 通过 对 大规 模 的生语 料库 进 行 统 它 计分析 , 自动 地 发现 和学 习词汇 , 分词精 度 来 看 , 从 基
于词典 的分 词算法 要大 大优于无 词典 的分词算 法 。
3 1 基 于足 够 的词 来供 分 析程 序处 理 , 计
算 机如何 完成这 一过 程 ? 其处 理过程 就称为分 词算 法 。
现 有的分 词 算法 按 照 是否 使用 分词 词典 来 分 , 可 分 为基 于 词 典 的 分 词 算 法 和 基 于 无 词 典 的 分 词 算
定 的工 具从 大规 模 的动 态信 息流 中 自动筛 选 出满足
用户 需求 的信 息 , 同时 屏蔽 掉无 用信 息 的过程 。 目前很

云计算平台上两种中文分词算法的实现对比研究

云计算平台上两种中文分词算法的实现对比研究

人工智能及识别技术本栏目责任编辑:唐一东云计算平台上两种中文分词算法的实现对比研究周寅,龙广富(武汉船舶职业技术学院,湖北武汉430050)摘要:现如今,常用的中文分词算法为IKAnalyzer (简称为:IK )和ICTCLAS (简称为:IC )两种,这两种算法也可以说是如今的主流中文分词算法,为了能够更好的研究两种算法的性能,本文首先利用理论对两种算法在单机环境下的性能进行分析,而后通过Hadoop 分布式文件管理系统(简称为:HDFS )、Hadoop 集群和并行处理大数据集的MapReduce 所共同组成的系统框架,并将算法优化后,通过开展大量的实践性实验对两种不同算法在分布式环境下对大数据集进行处理后的表现进行比较,而后得出具体的分析结果,希望能够为相关人士带来帮助。

关键词:云计算;IKAnalyzer ;ICTCLAS ;Hadoop ;比较中图分类号:TP3文献标识码:A文章编号:1009-3044(2021)09-0191-02开放科学(资源服务)标识码(OSID ):对于中文分词法来说,该方法最初被北京航空航天大学的梁南元教授所提出,属于一种在查字典分析方法基础上的分词方法,近些年来,由于我国经济水平和社会发展的速度越来越快,中文在整个世界舞台中所占据的地位也越来越重要,并且吸引了更多学者加入中文分词法的研究中,现如今已经实现了基于多种词典和概率统计的中文分词算法,而在面对这些大量的中文信息时,必须要确保文本分词结果,在满足本身词义的基础上,尽可能延长词组长度,而现如今的中文分词算法种类非常多,但是可以将其大致分为三种,分别为基于字符串匹配的分词、基于理解的分词以及基于统计的分词,在这种情况下也出现了多种分词算法产品,比如SCWS 、HTTPCWS.IKAnalyz⁃er 2012、FudanNLP 、ICTCLAS 等,而这些分词算法均不能算作为开源,而考虑到虽然IKAnalyzer 2012、ICTCLAS 等算法属于开源,但是这些算法却大多应用在单机环境下,考虑这一前提条件,可以将这两种算法引入到云计算平台上,进而使其能够与更多应用进行结合。

中文分词相关技术简介

中文分词相关技术简介

中文分词相关技术简介目前对汉语分词方法的研究主要有三个方面:基于规则的分词方法、基于统计的分词方法和基于理解的分词方法。

基于规则的分词方法基于规则的分词方法,这种方法又叫做机械分词方法,它是按照一定的策略将待分析的汉字串与一个"充分大的"机器词典中的词条进行匹配,若在词典中找到某个字符串,则匹配成功(识别出一个词)。

常用的方法:最小匹配算法(Minimum Matching),正向(逆向)最大匹配法(Maximum Matching),逐字匹配算法,神经网络法、联想一回溯法,基于N-最短路径分词算法,以及可以相互组合,例如,可以将正向最大匹配方法和逆向最大匹配方法结合起来构成双向匹配法等。

目前机械式分词占主流地位的是正向最大匹配法和逆向最大匹配法。

◆最小匹配算法在所有的分词算法中,最早研究的是最小匹配算法(Minimum Matching),该算法从待比较字符串左边开始比较,先取前两个字符组成的字段与词典中的词进行比较,如果词典中有该词,则分出此词,继续从第三个字符开始取两个字符组成的字段进行比较,如果没有匹配到,则取前3个字符串组成的字段进行比较,依次类推,直到取的字符串的长度等于预先设定的阈值,如果还没有匹配成功,则从待处理字串的第二个字符开始比较,如此循环。

例如,"如果还没有匹配成功",取出左边两个字组成的字段与词典进行比较,分出"如果";再从"还"开始,取"还没",字典中没有此词,继续取"还没有",依次取到字段"还没有匹配"(假设阈值为5),然后从"没"开始,取"没有",如此循环直到字符串末尾为止。

这种方法的优点是速度快,但是准确率却不是很高,比如待处理字符串为"中华人民共和国",此匹配算法分出的结果为:中华、人民、共和国,因此该方法基本上已经不被采用。

中文分词错误纠正算法与优化

中文分词错误纠正算法与优化

中文分词错误纠正算法与优化中文分词是自然语言处理中的重要任务之一,它将连续的中文文本切分成有意义的词语,为后续的文本处理和语义分析提供基础。

然而,由于中文的特殊性,分词中经常出现错误,如歧义词的切分、未登录词的处理等。

因此,研究中文分词错误纠正算法与优化成为了一个热门的研究方向。

一、中文分词错误的原因分析中文分词错误主要源于以下几个方面:1. 歧义词切分:中文中存在大量的歧义词,即同一组汉字可以有多种不同的切分方式,例如“北京大学生喝进口红酒”。

正确的切分应该是“北京/大学生/喝/进口/红酒”,而错误的切分可能是“北京/大学/生/喝/进口/红酒”。

2. 未登录词处理:未登录词是指分词词典中没有收录的新词或专有名词。

由于中文的词汇量庞大且不断更新,分词词典无法及时收录所有的新词,因此会出现未登录词的情况。

例如,“微信红包”在分词词典中可能无法找到对应的切分规则。

3. 语料库不完备:中文分词算法通常依赖于大规模的语料库进行训练和模型构建。

然而,由于语料库的不完备性,某些特殊领域或方言的词语可能无法被准确地切分。

二、中文分词错误纠正算法为了解决中文分词中的错误问题,研究者们提出了一系列的算法和方法:1. 基于规则的方法:基于规则的方法通过事先定义一系列的切分规则来进行分词,例如最大匹配法和最短路径法。

这些方法简单易懂,但对于歧义词和未登录词的处理效果较差。

2. 基于统计的方法:基于统计的方法通过统计语料库中的词频和词组频率来进行分词。

这些方法可以较好地处理歧义词和未登录词,但对于语料库不完备的情况下会有一定的限制。

3. 基于机器学习的方法:基于机器学习的方法通过建立分类器或序列标注模型来进行分词。

这些方法可以通过训练大规模的语料库来提高分词的准确性和泛化能力,但需要较多的训练数据和计算资源。

三、中文分词错误纠正的优化除了算法层面的优化,还可以从以下几个方面对中文分词错误进行优化:1. 词典的更新:及时更新分词词典,收录新词和专有名词,以提高分词的准确性。

中文分词

中文分词

P(W1) > P(W2)
提高计算效率 如何尽快找到概率最大的词串(路径)?
到达候选词wi 时的累计概率
P' ( wi ) P' ( wi 1 ) P( wi )
P' (意见) P' (有) P(意见)
公式1
P' (有) P(有)
提高计算效率(续)

左邻词
假定对字串从左到右进行扫描,可以得到 w1, w2 , … , wi 1 , wi , … 等若干候选词,如果 wi 1 的尾字 跟 wi 的首字邻接,就称 wi 1为 wi 的左邻词。比如上面例 中,候选词“有”就是候选词“意见”的左邻词,“意见” 和“见”都是“分歧”的左邻词。字串最左边的词没有左邻 词。
歧义词表 … 才能 个人 家人 马上 研究所 …
最大匹配法解决分词歧义的能力(续)
对于某些交集型歧义,可以通过增加回溯机制来改 进最大匹配法的分词结果。 例如:“学历史知识” 顺向扫描的结果是:“学历/ 史/ 知识/”, 通过查词典知道“史”不在词典中,于是进行回溯, 将“学历”的尾字“历”取出与后面的“史”组成 “历史”,再查词典,看“学”,“历史”是否在 词典中,如果在,就将分词结果调整为:“学/ 历 史/ 知识/”
最大概率法分词
词语 … 有 有意 意见 见 分歧 … 概率 … 0.0180 0.0005 0.0010 0.0002 0.0001 … P(W1) = P(有) * P(意见) * P(分歧) = 1.8 × 10-9 P(W2) = P(有意) * P(见) * P(分歧) = 1×10-11
有意/
有/
见/
意见/
分歧/
分歧/ B.“结合成分子时” (正向最大匹配和逆向最大匹配结果相同) 结合/ 成分/ 子时/

中文分词实验

中文分词实验

中文分词实验一、实验目的:目的:了解并掌握基于匹配的分词方法,以及分词效果的评价方法。

实验要求:1、从互联网上查找并构建不低于10万词的词典,构建词典的存储结构;2、选择实现一种机械分词方法(双向最大匹配、双向最小匹配、正向减字最大匹配法等)。

3、在不低于1000个文本文件,每个文件大于1000字的文档中进行中文分词测试,记录并分析所选分词算法的准确率、分词速度。

预期效果:1、平均准确率达到85%以上二、实验方案:1.实验平台系统:win10软件平台:spyder语言:python2.算法选择选择正向减字最大匹配法,参照《搜索引擎-原理、技术与系统》教材第62页的描述,使用python语言在spyder软件环境下完成代码的编辑。

算法流程图:Figure 错误!未指定顺序。

. 正向减字最大匹配算法流程Figure 错误!未指定顺序。

. 切词算法流程算法伪代码描述:3.实验步骤1)在网上查找语料和词典文本文件;2)思考并编写代码构建词典存储结构;3)编写代码将语料分割为1500个文本文件,每个文件的字数大于1000字;4)编写分词代码;5)思考并编写代码将语料标注为可计算准确率的文本;6)对测试集和分词结果集进行合并;7)对分词结果进行统计,计算准确率,召回率及F值(正确率和召回率的调和平均值);8)思考总结,分析结论。

4.实验实施我进行了两轮实验,第一轮实验效果比较差,于是仔细思考了原因,进行了第二轮实验,修改参数,代码,重新分词以及计算准确率,效果一下子提升了很多。

实验过程:(1)语料来源:语料来自SIGHAN的官方主页(/),SIGHAN是国际计算语言学会(ACL)中文语言处理小组的简称,其英文全称为“Special Interest Group forChinese Language Processing of the Association for ComputationalLinguistics”,又可以理解为“SIG汉“或“SIG漢“。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中文分词算法的比较分析
随着互联网的快速发展和信息时代的到来,中文处理在自然语言处理中越来越
重要,而中文分词作为中文处理的核心问题之一,也得到了越来越多的关注。

中文分词是指将一段中文文本按照词的语义界限进行切分的过程,也是自然语言处理领域中的一个重要研究方向。

本文将对中文分词算法进行比较分析,对各算法的优缺点进行探讨。

一、规则分词算法
规则分词算法是一种基于人工构造规则的分词算法,由于其依赖于人工的定义,因此不能适应各种语言和文本样式的变化,难以处理新词、歧义等情况。

同时,由于规则的复杂度较高,对于大量的文本数据,规则分词算法会导致速度较慢,不适用于大规模的数据分词。

二、基于统计的分词算法
基于统计的分词算法使用马尔科夫模型、隐马尔科夫模型等概率模型,通过统
计文本数据的频率分布,对分词结果进行分析判断。

这种方法仅仅需要利用大量的文本数据建立模型,从而实现自适应的分词,对于新词、歧义等情况也能有效处理。

但是,由于其对大量的文本数据依赖较高,因此需要积累大量的文本数据来建立模型,同时不同文本样式和语种间的模型也需要不同的处理方法。

三、基于深度学习的分词算法
基于深度学习的分词算法是近年来比较火的一种分词方法,它的主要思路是通
过深度神经网络来学习分词中的语义界限、词义辨析等知识。

这种方法不再需要对人工定义规则,而是通过自适应的机器学习算法来更新分词模型,能够适应不同的语境和样式,因此在新词和歧义的处理上也更加具有准确性。

但是,其也存在缺陷,如需要大量的计算资源、训练时间较长等。

综上所述,当前的中文分词算法各有优缺点。

规则分词算法虽然准确度较高,但受限于规则和词典的局限性,因此不适用于大规模的数据处理。

基于统计的分词算法能够适应不同语境和样式,但需要大量的文本数据建立模型。

基于深度学习的分词算法能够自适应更新分词模型,但需要大量的计算资源和训练时间。

因此,对于不同的需求和场景,需要选择合适的分词算法来进行中文处理。

相关文档
最新文档