浙江省绍兴市柯桥区2020届九年级上学期数学期末考试试卷
2019-2020学年浙江省绍兴市柯桥区九年级(上)期末数学试卷

2019-2020学年浙江省绍兴市柯桥区九年级(上)期末数学试卷题号一二三总分得分第I卷(选择题)一、选择题(本大题共10小题,共40.0分)1.已知3x=5y(y≠0),那么下列正确的是()A. x5=y3B. x3=y5C. xy=35D. x5=3y2.下列事件中,为必然事件的是()A. 明天要下雨B. |a|≥0C. −2>−1D. 打开电视机,它正在播广告3.若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是()A. 点A在圆外B. 点A在圆上C. 点A在圆内D. 不能确定4.如图,A、B、C是⊙O上的点,∠ACB=116°,则∠AOB的大小为()A. 128°B. 116°C. 124°D. 114°5.如图,在平面直角坐标系中,已知点A(2,4),B(4,1),以原点O为位似中心,将△OAB缩小为原来的12,则点A的对应点A′的坐标是() B. (1,2)A. (2,12C. (4,8)或(−4,−8)D. (1,2)或(−1,−2)6.过△ABC的重心G作GE//BC交AC于点E,线段BC=12,线段GE长为()A. 4B. 4.5C. 6D. 87.已知点P是线段MN的黄金分割点,MP>NP,且MP=(√5−1)cm,则NP等于()A. 2cmB. (3−√5)cmC. (√5−1)cmD. (√5+1)cm8.如图,分别以边长为1的正六边形的各个顶点为圆心,以1为半径画弧,则图中阴影部分的面积为()A. 4π−3√3B. 2π−3√3C. 4π−6√3D. π−3√329.要使抛物线y=x2−2x+3与x轴有交点,则下列说法正确的是()A. 至少向下平移3个单位B. 至少向下平移2个单位C. 至少向上平移3个单位D. 至少向上平移2个单位10.如图,直线y=−√3x+2与x轴,y轴分别交于A,3B两点,把△AOB沿着直线AB翻折后得到△AO′B,则点O′的坐标是()A. (√3,3)B. (√3,√3)C. (2,2√3)D. (2√3,4)第II卷(非选择题)二、填空题(本大题共6小题,共30.0分)11.已知抛物线y=ax2+x+c与x轴交点的横坐标为–1,则a+c=________.12.计算:sin30°tan60°=______.13.如图,直线AB//CD//EF,已知AC=3,CE=4,BD=3.6,则DF的长为___________.14.图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.AB的长为半径作弧,两弧相交于P,Q两点;(1)分别以点A和点B为圆心,大于12(2)作直线PQ,交AB于点O;(3)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是______.15.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,则PQ=__________.(x−3)2+k经16.如图,在平面直角坐标系中,抛物线y=−23过坐标原点O,与x轴的另一个交点为A.过抛物线的顶点B分别作BC⊥x轴于C,BD⊥y轴于D,则图中阴影部分的面积之和为________.三、解答题(本大题共8小题,共80.0分)17.在一个不透明的袋子中装有4个形状、大小、质地均完全相同的小球,现将−1,−2,1,2四个数字分别写在4个小球上.搅拌均匀后,先从袋中随机取出一个小球,记下小球上的数字后不放回,搅拌均匀后再随机取出一个小球,记下小球上的数字.(1)用列表法(或树状图法)写出所有可能出现的结果; (2)求两次取出的小球数字之和为零的概率.18. 如图是某斜拉桥引申出的部分平面图,AE ,CD 是两条拉索,其中拉索CD 与水平桥面BE 的夹角为72°,其底端与立柱AB 底端的距离BD 为4米,两条拉索顶端距离AC 为2米,若要使拉索AE 与水平桥面的夹角为35°,请计算拉索AE 的长.(结果精确到0.1米)(参考数据:sin35°≈1425,cos35°≈45,tan35°≈710,sin72°≈1920,cos72°≈310,tan72°≈196)19. 已知:在△ABC 中,点D 、E 分别在AC 、AB 上,且满足∠ABD =∠ACE ,求证:AD ⋅CE =AE ⋅BD .20.如图,△ABC内接于⊙O,∠BAC=45°,AD⊥BC,垂足为D,BD=6,DC=4.(1)求⊙O的半径;(2)求AD的长.21.某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x(元)满足w=−2x+80(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?22. 如图,在矩形ABCD 中,AD =4cm ,AB =m(m >4),点P 是AB 边上的任意一点(不与点A 、B 重合),连接PD ,过点P 作PQ ⊥PD ,交直线BC 于点Q . (1)当m =10时,是否存在点P 使得点Q 与点C 重合?若存在,求出此时AP 的长;若不存在,说明理由;(2)连接AC ,若PQ//AC ,求线段BQ 的长(用含m 的代数式表示);(3)若△PQD 为等腰三角形,求以P 、Q 、C 、D 为顶点的四边形的面积S 与m 之间的函数关系式,并写出m 的取值范围.23. 如图,抛物线y =ax 2+bx −52经过A(−1,0),B(5,0),C(0,−52)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA +PC 的值最小,求点P 的坐标. (3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.24.已知AB为⊙O的直径,点C为ÂB的中点,BD为弦,CE⊥BD于点E,(1)如图1,求证:CE=DE;(2)如图2,连接OE,求∠OEB的度数;(3)如图3,在(2)条件下,延长CE,交直径AB于点F,延长EO,交⊙O于点G,连接BG,CE=2,EF=3,求△EBG的面积.答案和解析1.【答案】A【解析】【分析】此题主要考查了比例的性质,关键是掌握两内项之积等于两外项之积.比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项,根据两内项之积等于两外项之积可得答案.【解答】解:A.x5=y3,则5y=3x,故此选项正确;B.x3=y5,则5x=3y,故此选项错误;C.xy =35,则3y=5x,故此选项错误;D.x5=3y,则xy=15,故此选项错误;故选A.2.【答案】B【解析】解:根据题意,结合必然事件的定义可得:A、明天要下雨不一定发生,不是必然事件,故选项不合题意;B、一个数的绝对值为非负数,故是必然事件,故选项符合题意;C、−2>−1,是不可能事件,故选项不合题意;D、打开电视机,它不一定正在播广告,有可能是其他节目,故不是必然事件,故选项不合题意;故选:B.必然事件就是一定发生的事件,即发生的概率是1的事件.本题考查了必然事件,关键是理解必然事件是一定会发生的事件.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.3.【答案】C【分析】此题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.【解答】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,故选:C.4.【答案】A【解析】【分析】本题考查的是圆周角定理和圆内接四边形的性质,掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.在优弧AB⏜上取点D,连接AD、BD,根据圆内接四边形的性质,求出∠ADB的度数,根据圆周角定理求出∠AOB.【解答】解:如图,在优弧AB⏜上取点D,连接AD、BD,根据圆内接四边形的性质可知,∠ACB+∠ADB=180°,又∠ACB=116°,∴∠ADB=64°,∠AOB=2∠ADB=128°,故选A.5.【答案】D【解析】根据平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的横纵坐标的比等于k 或−k 解答.本题考查的是位似变换的性质,位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的横纵坐标的比等于k 或−k ,这是本题解题的关键. 【解答】解:以O 为位似中心,把△OAB 缩小为原来的12, 2×12=1,4×12=2;2×(−12)=−1,4×(−12)=−2,则点A 的对应点A′的坐标为(1,2)或(−1,−2), 故选D .6.【答案】A【解析】解:如图,∵点G 是△ABC 的重心, ∴AD 是△ABC 的中线,AGAD =23, ∴CD =12BC =6, ∵GE//BC , ∴△AGE∽△ADC , ∴GE CD=AG AD =23,即GE 6=23, 解得,GE =4, 故选:A .根据三角形的重心的性质得到AD 是△ABC 的中线,AGAD =23,根据相似三角形的性质列出比例式,计算即可.本题考查的是三角形的重心的概念和性质、相似三角形的判定和性质,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.【解析】【分析】根据黄金比值求出MN的长,结合图形计算即可.本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值√5−12叫做黄金比.【解答】解:∵点P是线段MN的黄金分割点,MP>NP,∴MP=√5−12MN,∴MN=2cm,∴NP=MN−MP=(3−√5)cm,故选B.8.【答案】B【解析】解:如图,连接OB,OA,则∠AOB=360°6=60°,∵OA=OB,∴△AOB是等边三角形,∴S△AOB=√34×12=√34,∵S扇形AOB =60π×12360=π6,∴阴影部分面积是:(π6−√34)×12=2π−3√3,故选B.连接OB,OA,得出△AOB是等边三角形,求出S△AOB=√34×12=√34,S扇形AOB=60π×12360=π6,那么阴影面积=(S扇形AOB−S△AOB)×12,代入计算即可.此题主要考查了正六边形和圆以及扇形面积求法,注意圆与多边形的结合得出阴影面积=(S扇形AOB−S△AOB)×12是解题关键.【解析】【分析】本题考查的是二次函数图像的几何变换.根据二次函数的解析式得到顶点坐标为(1,2),然后由函数的几何变换得到与x轴有交点图像的平移方法.【解答】解:∵y=x2−2x+3=(x−1)2+2,∴该函数的顶点坐标为(1,2),∴要使抛物线y=x2−2x+3与x轴有交点,至少向下平移2个单位.故选B.10.【答案】A【解析】【分析】该题以直角坐标系为载体,以翻折变换为方法,以相似三角形的判定及其性质的应用为考查的核心构造而成;对综合的分析问题、解决问题的能力提出了较高的要求.连接OO′,x+2与x轴、y轴分别交于交AB于点D,作O′E⊥y轴,交y于点E,由直线y=−√33A、B两点,求出B(0,2),A(−2√3,0),首先求出OA、OB、OO′长,进而证明△OAB∽△EO′O,求出OE、O′E的长即可解决问题.【解答】解:如图,作O′M⊥y轴,交y于点M,O′N⊥x轴,交x于点N,x+2与x轴、y轴分别交于A、B两点,由直线y=−√33B(0,2),A(2√3,0),∴OA=2√3,OB=2;∴∠BAO=30°,由折叠的特性得,O′B=OB=2,∠ABO=∠ABO′=60°,∴MB=1,MO′=√3,∴OM=3,ON=O′M=√3,∴点O′坐标为(√3 ,3).故选:A.11.【答案】1【解析】【分析】本题考查了二次函数图象上的点的坐标,是基础知识要熟练掌握.根据题意,将(−1,0)代入解析式即可求得a+c的值.【解答】解:∵抛物线y=ax2+x+c与x轴交点的横坐标为−1,∴抛物线y=ax2+x+c经过(−1,0),∴a−1+c=0,∴a+c=1,故答案为1.12.【答案】√32【解析】【分析】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.直接利用特殊角的三角函数值计算得出答案.【解答】解:sin30°tan60°=12×√3=√32.故答案为:√32.13.【答案】4.8【解析】【分析】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.根据平行线分线段成比例定理列出比例式,求出DF即可.【解答】解:∵AB//CD//EF,∴ACCE =BDDF,即34=3.6DF,解得DF=4.8,故答案为4.8.14.【答案】到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径(答案不唯一,符合题意即可)【解析】【分析】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.【解答】解:由于90°的圆周角所的弦是直径,所以Rt△ABC的外接圆的圆心为AB的中点,然后作AB的中垂线得到圆心后即可得到Rt△ABC的外接圆.故答案为:到线段两端点的距离相等的点在这条线段的垂直平分线上,90°的圆周角所对的弦是直径.15.【答案】2【解析】【分析】本题考查了等边三角形的判定与性质以及轴对称的性质:关于某直线对称的两图形全等,即对应角相等,对应线段相等;对应点的连线段被对称轴垂直平分.连OQ,由点P关于直线OB的对称点是Q,根据轴对称的性质得到OB垂直平分PQ,则∠POB=∠QOB= 30°,OP=OQ,得到△POQ为等边三角形,根据等边三角形的性质得PQ=PO=2.【解答】解:如图,连OQ,∵点P关于直线OB的对称点是Q,∴OB垂直平分PQ,∴∠POB=∠QOB=30°,OP=OQ,∴∠POQ=60°,∴△POQ为等边三角形,∴PQ=PO=2.故答案为2.16.【答案】18【解析】【分析】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.先把原点坐标代入解析式求出k得到B点坐标,然后利用抛物线的对称性得到图中阴影部分图形的面积和=S矩形OCBD,从而根据矩形面积公式计算即可.【解答】解:把(0,0)代入y=−23(x−3)2+k得−23(0−3)2+k=0,解得k=6,∴抛物线解析式为y=−23(x−3)2+6,∴B点坐标为(3,6),∵BC⊥x轴于C,∴BC=6,OC=3,∴图中阴影部分图形的面积和=S矩形OCBD=BC×OC=6×3=18.故答案为18.17.【答案】解:(1)列表如下:(2)本次试验共有12种等可能的结果,其中数字之和为0共有4种结果,∴P(数字之和为0)=412=13.【解析】本题主要考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.(1)通过列表列举出符合题意的各种情况的个数,(2)根据表格可找出两次取出的小球数字之和为零的情况个数,根据概率公式解答即可.18.【答案】解:由题意可得:BD=4米,tan72°=BCBD =BC4=196,解得:BC=383米,则AB=BC+AC=383+2=443米,故sin35°=ABAE =443AE=1425,解得:AE≈26.2米,答:拉索AE的长为26.2m.【解析】此题主要考查了解直角三角形的应用,正确得出AB的长是解题关键.根据题意,得出AB的长,进而得出AE的长即可得出答案.19.【答案】解:证明:∵∠ABD=∠ACE,∠A=∠A,∴△ABD∽△ACE,∴ADBD=AECE即AD⋅CE=AE⋅BD.【解析】本题考查相似三角形的判定与性质,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.根据相似三角形的判定可证明△ABD∽△ACE,然后利用相似三角形的性质即可求证答案.20.【答案】解:(1)如图1,连接OB、OC,∵BD=6,DC=4,∴BC=10,由圆周角定理得,∠BOC=2∠BAC=90°,∴OB2+OC2=BC2,OB=OC,∴OB=√22BC=5√2;(2)如图2,连接OA,过点O作OE⊥AD于E,OF⊥BC于F,∴BF=FC=5,∴DF=1,∵∠BOC=90°,BF=FC,∴OF=1BC=5,2∵AD⊥BC,OE⊥AD,OF⊥BC,∴四边形OFDE为矩形,∴OE=DF=1,DE=OF=5,在Rt△AOE中,AE=√OA2−OE2=√(5√2)2−12=7,∴AD=AE+DE=12.【解析】本题考查的是三角形的外接圆与外心,掌握圆周角定理、垂径定理、等腰直角三角形的性质是解题的关键.(1)根据圆周角定理得到∠BOC=90°,根据等腰直角三角形的性质计算,求出OB;(2)连接OA,过点O作OE⊥AD于E,OF⊥BC于F,根据垂径定理求出DF,根据等腰直角三角形的性质求出OF,根据勾股定理求出AE,结合图形计算得到答案.21.【答案】解:(1)y=w(x−20)=(−2x+80)(x−20)=−2x2+120x−1600;(2)y=−2(x−30)2+200.∵20≤x≤40,a=−2<0,∴当x=30时,y最大值=200.答:当销售单价定为每双30元时,每天的利润最大,最大利润为200元.【解析】(1)用每双手套的利润乘以销售量得到每天的利润;(2)由(1)得到的是一个二次函数,利用二次函数的性质,可以求出最大利润以及销售单价.本题考查的是二次函数的应用,(1)根据题意得到二次函数.(2)利用二次函数的性质求出最大值.(3)由二次函数的值求出x的值.22.【答案】解:(1)存在点P.假设存在一点P,使点Q与点C重合,如图1所示,设AP的长为x,则BP=10−x,在Rt△APD中,DP2=AD2+AP2,即DP2=42+x2,在Rt△PBC中,PC2=BC2+PB2,即PC2=42+(10−x)2,在Rt△PCD中,CD2=DP2+PC2,即102=42+x2+42+(10−x)2,解得x=2或8,故当m=10时,存在点P使得点Q与点C重合,此时AP=2或8;(2)连接AC,设BP=y,则AP=m−y,∵PQ//AC,∴△PBQ∽△ABC,∴BQBC =BPAB,即BQ4=ym①,∵DP⊥PQ,∴∠APD+∠BPQ=90°,∵∠APD+∠ADP=90°,∠BPQ+∠PQB=90°,∴∠APD=∠BQP,∴△APD∽△BQP,∴ADPB =APBQ,即4y=m−yBQ②,①②联立得,BQ=4m2−64m2;(3)连接DQ,由已知PQ⊥PD,所以只有当DP=PQ时,△PQD为等腰三角形,∴在△PBQ和△DAP中,{∠B=∠A=90∘∠BPQ=∠ADP DP=PQ,∴△PBQ≌△DAP(AAS),∴PB=DA=4,AP=BQ=m−4,①当Q在线段BC上时,如图③所示,S=S矩形ABCD −S△DAP−S△QBP=4m−12×4×(m−4)−12×4×(m−4)=16,∵m>4且BQ≤BC,即m−4≤4,∴解得4<m≤8;②当Q在BC延长线上时,如图④所示,S 梯形ABQD =12(AD +BQ)×AB =12(4+m −4)×m =12m 2,S △APD =12AD ·AP =2(m −4),S △PBC =12PB ·BC =12×4×4=8,∴S =S 梯形ABQD −S △APD −S △PBC =12m 2−2m,∵QB >BC ,即m −4>4,∴m >8;综上,S ={16(4<m ≤8)12m 2−2m(m >8).【解析】(1)假设存在一点P ,使点Q 与点C 重合,再设AP =x ,利用勾股定理即可用x 表示出DP 、PC 的长,在Rt △PCD 中可求出x 的值;(2)连接AC ,设BP =y ,则AP =m −y ,由相似三角形的判定定理得出△PBQ∽△ABC ,△APD∽△BQP ,再根据相似三角形的对应边成比例即可求出BQ 的表达式; (3)根据已知条件,可证△PBQ≌△DAP ,可得PB =DA =4,AP =BQ =m −4,然后分Q 在线段BC 上及Q 在BC 的延长线上两种情况进行讨论求以P 、Q 、C 、D 为顶点的四边形的面积,同时得出m 的取值范围.本题考查的是相似三角形的判定与性质,涉及到矩形的性质、等腰直角三角形的性质及三角形的面积公式,根据题意作出辅助线是解答此题的关键.23.【答案】解:(1)∵A(−1,0),B(5,0),C(0,−52)三点在抛物线y =ax 2+bx +c 上, ∴{a −b +c =025a +5b +c =0c =−52, 解得{a =12b =−2c =−52.∴抛物线的解析式为:y =12x 2−2x −52; (2)∵抛物线的解析式为:y =12x 2−2x −52,∴其对称轴为直线x =−b 2a =−−22×12=2,连接BC ,如图1所示,∵B(5,0),C(0,−52),∴设直线BC 的解析式为y =kx +b(k ≠0),∴{5k +b =0b =−52, 解得{k =12b =−52, ∴直线BC 的解析式为y =12x −52,当x =2时,y =1−52=−32,∴P(2,−32);(3)存在.如图2所示,①当点N 在x 轴下方时,∵抛物线的对称轴为直线x =2,C(0,−52),∴N 1(4,−52);②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△AN 2D 与△M 2CO 中,{∠N 2AD =∠CM 2OAN 2=CM 2∠AN 2D =∠M 2CO,∴△AN 2D≌△M 2CO(ASA),∴N 2D =OC =52,即N 2点的纵坐标为52. ∴12x 2−2x −52=52,解得x =2+√14或x =2−√14,∴N 2(2+√14,52),N 3(2−√14,52). 综上所述,符合条件的点N 的坐标为:(4,−52)或(2+√14,52)或(2−√14,52).【解析】本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.(1)设抛物线的解析式为y =ax 2+bx +c(a ≠0),再把A(−1,0),B(5,0),C(0,−52)三点代入求出a 、b 、c 的值即可;(2)因为点A 关于对称轴对称的点B 的坐标为(5,0),连接BC 交对称轴直线于点P ,求出P 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论. 24.【答案】(1)证明:如图1中,连接CD 、OC .∵点C 是AB⏜中点, ∴AC⏜=BC ⏜, ∴∠AOC =∠BOC ,∵∠AOC +∠BOC =180°,∴∠AOC=∠BOC=90°,∴∠D=45°,∵CE⊥BD,∴∠CED=90°,∴∠D=∠DCE=45°,∴CE=DE.(2)证明:如图2中,连接OD,OC在△OED和△OEC中,{OC=OD CE=DE OE=OE,∴△OED≌△OEC,∵∠CED=90°,∴∠OED=∠CEO=135°,∴∠OEB=45°.(3)解:如图3中,过O作OM⊥BD于M,BN⊥EG于N,则∠EMO=90°,连接OC.∵CE=2,∴DE=2,设EM=x,则BM=DM=2+x,∴BE=2x+2,∵∠OEB=45°,则BM=DM=2+x,∴OM=x,∵∠OEB=45°,∴∠CEB=∠EMO,∴EF//OM.∴OMEF =BMEB,即x3=x+22x+2,解得x=2或(−32舍弃),∴OE=2√2,BM=4,OM=2,BN=3√2,∴OB=2√5∴EG=OE+OG=2√2+2√5,∴S△EBG=12⋅EG⋅BN=12(2√2+2√5)×3√2=6+3√10.【解析】本题考查圆的综合题、全等三角形的判定和性质、平行线的性质、圆的有关知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,学会用方程的思想思考问题,属于中考压轴题.(1)如图1中,连接CD、OC.只要证明∠CDE=12∠COB=45°即可.(2)如图2中,连接OD,OC,只要证明△OED≌△OEC,推出∠OED=∠CEO=135°,即可解决问题.(3)如图3中,过O作OM⊥BD于M,BN⊥EG于N,则∠EMO=90°,连接OC,设EM=x,则BM=DM=2+x,由EF//OM,得OMEF =BMEB列出方程即可解决.。
浙江省绍兴市2020年九年级上学期数学期末考试试卷C卷

浙江省绍兴市2020年九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10个小题,每小题4分,共40分) (共10题;共40分)1. (4分) (2019九下·盐都月考) 若x1和x2为一元二次方程x2+2x﹣1=0的两个根.则x12x2+x1x22值为()A . 4B . 2C . 4D . 32. (4分) (2018九上·宁波期中) 下列选项中属于必然事件的是()A . 从只装有黑球的袋子摸出一个白球B . 不在同一直线上的三个点确定一个圆C . 抛掷一枚硬币,第一次正面朝上,第二次反面朝上D . 每年10月1日是星期五3. (4分)如图,选项中的四个三角形不能由△ABC经过旋转或平移得到的是()A . AB . BC . CD . D4. (4分) (2016九上·黄山期中) 目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A . 438(1+x)2=389B . 389(1+x)2=438C . 389(1+2x)=438D . 438(1+2x)=3895. (4分)如果两个圆心角相等,那么()A . 这两个圆心角所对的弦相等B . 这两个圆心角所对的弧相等C . 这两个圆心角所对的弦的弦心距相等D . 以上说法都不对6. (4分)便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是()A . 20B . 1508C . 1558D . 15857. (4分)已知直线l上有两点A(﹣3,2)、B(3,2),则l与x轴的位置关系是()A . 垂直B . 斜交C . 平行D . 以上每种情况均有可能8. (4分)把一枚均匀的骰子连续抛掷两次,则两次朝上面的点数之积为3的倍数的概率是()A .B .C .D .9. (4分) (2017九下·沂源开学考) 下列各图是在同一直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象,有且只有一个是正确的,正确的是()A .B .C .D .10. (4分) (2019八下·大名期中) 已知坐标平面内一点A(2,1),O为原点,B是x轴上一个动点,如果以点B,O,A为顶点的三角形是等腰三角形,那么符合条件的动点B的个数为()A . 2个B . 3个C . 4个D . 5个二、填空题(本大题共6个小题,每小题4分,共24分) (共6题;共24分)11. (4分) (2016九上·无锡期末) 已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b 的值是________.12. (4分) (2016九上·大石桥期中) 将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是________13. (4分)(2019·白银) 一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德·摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝上”的次数3109204849791803139699频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为________(精确到0.1).14. (4分) (2017九上·文水期中) 如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“________”的交通标志(不画图案,只填含义).15. (4分)如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为________.16. (4分)(2017·润州模拟) 抛物线y=ax2+bx+3(a≠0)过A(4,4),B (2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是________.三、解答题(本大题共9个小题,共86分) (共9题;共86分)17. (8分)利用判别式判断方程2x2﹣3x﹣=0的根的情况18. (8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.19. (8分)如图,抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点,(1)求出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x的增大而减小?20. (10分) (2018八上·射阳月考) 已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DG=2PC;②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.21. (10分)小明和小亮用如图所示的两个转盘做“配紫色”游戏,游戏规则是:分别转动两个转盘,若其中一个转盘转出红色,另一个转出蓝色,则可以配成紫色,此时小明得1分,否则小亮得1分.(1)用画树状图或列表的方法求出小明获胜的概率;(2)这个游戏对双方公平吗?请说明理由.若不公平,如何修改规则才能使游戏对双方公平?22. (10分)(2017·郑州模拟) 已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形的两边长,且k=4,求该矩形的周长.23. (10分)某商场有A,B两种商品,若买2件A商品和1件B商品,共需80元;若买3件A商品和2件B商品,共需135元.(1)设A,B两种商品每件售价分别为a元、b元,求a、b的值(2)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件.求每天B商品的销售利润y(元)与销售单价(x)元之间的函数关系?(3)B商品每件的成本是20元,根据市场调查:若按(1)中求出的单价销售,该商场每天销售B商品100件;若销售单价每上涨1元,B商品每天的销售量就减少5件求销售单价为多少元时,B商品每天的销售利润最大,最大利润是多少?24. (10分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,作∠CAD=∠B,且点E在BC的延长线上,CE⊥AD 于点E,(1)求证:AD是⊙O的切线;(2)若⊙O的半径是5,CE=2,求sinB的值.25. (12分) (2015九下·义乌期中) 如图,二次函数y=﹣x2+ x+4与x轴交于A、B两点,与y轴交于点C,点P从点O出发沿OA以每秒1个单位长度的速度向点A运动,到达点A后立刻在以原来的速度沿AO返回;点Q从点A出发沿AC以每秒1个单位长度的速度向点C匀速运动,过点Q作QD⊥x轴,垂足为D.点P、Q同时出发,当点Q到达点C时停止运动,点P也随之停止.设点P,Q的运动时间为t(t≥0).(1)当点P从点O向点A运动的过程中,求△QPA面积S与t的函数关系式;(2)当线段PQ与抛物线的对称轴没有公共点时,请直接写出t的取值范围;(3)当t为何值时,以P、D、Q为顶点的三角形与△OBC相似;(4)如图2:FE保持垂直平分PQ,且交PQ于点F,交折线QC﹣CO﹣OP于点E,在整个运动过程中,请你直接写出点E所经过的路径长.参考答案一、选择题(本大题共10个小题,每小题4分,共40分) (共10题;共40分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8、答案:略9-1、10-1、二、填空题(本大题共6个小题,每小题4分,共24分) (共6题;共24分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(本大题共9个小题,共86分) (共9题;共86分)17-1、18、答案:略19-1、20-2、21-1、21-2、22-1、22-2、23、答案:略24-1、24-2、25-1、25-2、。
〖汇总3套试卷〗绍兴市2020年九年级上学期数学期末经典试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列命题是真命题的是()A.如果a+b=0,那么a=b=0 B.16的平方根是±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等【答案】D【详解】解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B、16=4的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D.2.如图,将两张长为10,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么,菱形周长的最大值为()A.265B.845C.1045D.21【答案】C【分析】画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在Rt△ABC中,由勾股定理:x2=(10﹣x)2+22,解得:x=265,∴4x=1045,即菱形的最大周长为1045cm.故选:C.【点睛】此题考查矩形的性质,本题的解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程. 3.下列函数中,y 关于x 的二次函数是( )A .y =ax 2+bx+cB .y =x(x ﹣1)C .y=21xD .y =(x ﹣1)2﹣x 2 【答案】B【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时, y=ax 2+bx+c= bx+c ,不是二次函数,故不符合题意;B. y=x (x ﹣1)=x 2-x ,是二次函数,故符合题意;C. 21y x = 的自变量在分母中,不是二次函数,故不符合题意; D. y=(x ﹣1)2﹣x 2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax 2+bx+c (a ,b ,c 为常数,a≠0)的函数叫做二次函数,据此求解即可.4.抛物线y=-2(x+3)2-4的顶点坐标是:A .(3,-4)B .(-3,4)C .(-3,-4)D .(-4,3) 【答案】C【解析】试题分析:抛物线22(3)4y x =-+-的顶点坐标是(-3,-4).故选C .考点:二次函数的性质.5.如果53a b b -=,那么a b b +的值等于( ) A .85 B .115 C .83 D .113【答案】D 【分析】依据53a b b -=,即可得到a=83b ,进而得出a b b+的值. 【详解】∵53a b b -=,∴3a ﹣3b=5b ,∴3a=8b ,即a=83b ,∴a b b +=83b b b+=113. 故选D .【点睛】本题考查了比例的性质,解决问题的关键是运用内项之积等于外项之积.6.某学校要种植一块面积为200m2的长方形草坪,要求两边长均不小于10m,则草坪的一边长y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A.B.C.D.【答案】C【解析】易知y是x的反比例函数,再根据边长的取值范围即可解题.【详解】∵草坪面积为200m2,∴x、y存在关系y=,∵两边长均不小于10m,∴x≥10、y≥10,则x≤20,故选:C.【点睛】本题考查反比例函数的应用,根据反比例函数解析式确定y的取值范围,即可求得x的取值范围,熟练掌握实际问题的反比例函数图象是解题的关键.7.如图,AB是⊙O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交⊙O于点C,连结AC、BC、OB、OC.若∠ABC=65°,则∠BOC的度数是()A.50°B.65°C.100°D.130°【答案】C【分析】直接根据题意得出AB=AC,进而得出∠A=50°,再利用圆周角定理得出∠BOC=100°.【详解】解:由题意可得:AB=AC,∵∠ABC=65°,∴∠ACB=65°,∴∠A=50°,∴∠BOC=100°,故选:C.【点睛】本题考查圆心角、弧、弦的关系.8.若()22222()230a b a b+-+-=,则代数式22a b +的值( ) A .-1B .3C .-1或3D .1或-3 【答案】B【分析】利用换元法解方程即可.【详解】设22a b +=x ,原方程变为: 2230x x --=,解得x=3或-1,∵22a b +≥0,∴22 3.a b +=故选B.【点睛】本题考查了用换元法解一元二次方程,设22a b +=x ,把原方程转化为2230x x --=是解题的关键. 9.如图,点()()2.18,0.51, 2.68,0.54A B -在二次函数()20y ax bx c c =++≠的图象上,则方程20ax bx c ++=解的一个近似值可能是( )A .2.18B .2.68C .-0.51D .2.45【答案】D 【分析】根据自变量两个取值所对应的函数值是-0.51和0.54,可得当函数值为0时,x 的取值应在所给的自变量两个值之间.【详解】解:∵图象上有两点分别为A (2.18,-0.51)、B (2.68,0.54),∴当x=2.18时,y=-0.51;x=2.68时,y=0.54,∴当y=0时,2.18<x <2.68,只有选项D 符合,故选:D .【点睛】本题考查了图象法求一元二次方程的近似值,用到的知识点为:点在函数解析式上,点的横纵坐标适合这个函数解析式;二次函数值为0,就是函数图象与x 轴的交点,跟所给的接近的函数值对应的自变量相关. 10.如图所示,∆ABC 的顶点在正方形网格的格点上,则cosB=( )A .12B .23C .2D .5 【答案】C 【分析】先设小正方形的边长为1,再建构直角三角形,然后根据锐角三角函数的定义求解即可;【详解】解:如图,过A 作AD ⊥CB 于D ,设小正方形的边长为1,则BD=AD=3,223332+=∴cos ∠B=BD BC =22; 故选C.【点睛】本题主要考查了锐角三角函数的定义,勾股定理,掌握锐角三角函数的定义,勾股定理是解题的关键. 11.将抛物线23y x =如何平移得到抛物线23(2)3y x =+-( )A .向左平移2个单位,向上平移3个单位;B .向右平移2个单位,向上平移3个单位;C .向左平移2个单位,向下平移3个单位;D .向右平移2个单位,向下平移3个单位.【答案】C【分析】根据二次函数图象的平移规律“左加右减,上加下减”即可得出答案.【详解】根据二次函数的平移规律可知,将抛物线23y x =向左平移2个单位,再向下平移3个单位即可得到抛物线23(2)3y x =+-,故选:C .【点睛】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.12.两个相似三角形,其面积比为16:9,则其相似比为( )A .16:9B .4:3C .9:16D .3:4 【答案】B【分析】根据两个相似多边形的面积比为16:9,面积之比等于相似比的平方.43.即这两个相似多边形的相似比为4:1. 故选:B .【点睛】本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.二、填空题(本题包括8个小题)13.在△ABC 中,∠ABC=90°,已知AB=3,BC=4,点Q 是线段AC 上的一个动点,过点Q 作AC 的垂线交直线AB 于点P ,当△PQB 为等腰三角形时,线段AP 的长为_____. 【答案】53或1. 【解析】当△PQB 为等腰三角形时,有两种情况,需要分类讨论:①当点P 在线段AB 上时,如图1所示.由三角形相似(△AQP ∽△ABC )关系计算AP 的长;②当点P 在线段AB 的延长线上时,如图2所示.利用角之间的关系,证明点B 为线段AP 的中点,从而可以求出AP .【详解】解:在Rt △ABC 中,AB=3,BC=4,由勾股定理得:AC=5.∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,当点P 在线段AB 上时,如题图1所示:∵∠QPB 为钝角,∴当△PQB 为等腰三角形时,只可能是PB=PQ ,由(1)可知,△AQP ∽△ABC , ∴,PA PQ AC BC = 即3,54PB PB -= 解得:43PB =, ∴45333AP AB PB =-=-=; 当点P 在线段AB 的延长线上时,如题图2所示:∵∠QBP 为钝角,∴当△PQB 为等腰三角形时,只可能是PB=BQ.∵BP=BQ ,∴∠BQP=∠P ,∵90,90BQP AQB A P ,∠+∠=∠+∠= ∴∠AQB=∠A ,∴BQ=AB ,∴AB=BP ,点B 为线段AP 中点,∴AP=2AB=2×3=1.综上所述,当△PQB 为等腰三角形时,AP 的长为53或1. 故答案为53或1.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .【答案】【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式. 15.如图,AB 是⊙O 的直径,4AB =,点M 是OA 的中点,过点M 的直线与⊙O 交于C 、D 两点.若45CMA ∠=︒,则弦CD 的长为__________.14【分析】连接OD ,作OE ⊥CD 于E ,由垂径定理得出CE=DE ,证明△OEM 是等腰直角三角形,由勾股定理得出OE=22OM=22,在Rt △ODE 中,由勾股定理求出DE=142,得出CD=2DE=14即可. 【详解】连接OD ,作OE ⊥CD 于E ,如图所示:则CE=DE ,∵AB 是⊙O 的直径,AB=4,点M 是OA 的中点,∴OD=OA=2,OM=1, ∵∠OME=∠CMA=45°,∴△OEM 是等腰直角三角形,∴OE=22OM=22, 在Rt △ODE 中,由勾股定理得:2222()2-14, ∴1414.【点睛】 本题考查了垂径定理、勾股定理、等腰直角三角形的判定与性质;熟练掌握垂径定理,由勾股定理求出DE 是解决问题的关键.16.若抛物线y =2x 2+6x+m 与x 轴有两个交点,则m 的取值范围是_____.【答案】92m < 【分析】由抛物线与x 轴有两个交点,可得出关于m 的一元一次不等式,解之即可得出m 的取值范围.【详解】∵抛物线y=2x 2+6x+m 与x 轴有两个交点,∴△=62﹣4×2m=36﹣8m >0,∴m 92<.故答案为:m 92<.【点睛】本题考查了抛物线与x 轴的交点,牢记“当△=b 2﹣4ac >0时,抛物线与x 轴有2个交点”是解答本题的关键.17.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于12019,则密码的位数至少要设置___位.【答案】1.【分析】分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据12019所在的范围解答即可.【详解】因为取一位数时一次就拨对密码的概率为110; 取两位数时一次就拨对密码的概率为1100; 取三位数时一次就拨对密码的概率为11000; 取四位数时一次就拨对密码的概率为110000. 故一次就拨对的概率小于12019,密码的位数至少需要1位. 故答案为1.【点睛】 本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.180119(31)4-⎛⎫--= ⎪⎝⎭__________. 【答案】2- 【分析】本题涉及零指数幂、负整数指数幂、二次根式化简三个考点,在计算时需要针对每个考点分别进行计算,然后再进行加减运算即可. 0119(31)4-⎛⎫--= ⎪⎝⎭3-4-1=-2. 故答案为:-2.【点睛】本题考查的是实数的运算能力,注意要正确掌握运算顺序及运算法则.三、解答题(本题包括8个小题)19.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm ),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为 ,a = ;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm 的概率.【答案】(1)故答案为100,30;(2)见解析;(3)0.1.【解析】(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;(2)利用B组的频数为30补全频数分布直方图;(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解.【详解】解:(1)5415100360÷=,所以样本容量为100;B组的人数为100153515530----=,所以3010030100a=⨯=,则30a=;故答案为100,30;(2)补全频数分布直方图为:(3)样本中身高低于160cm的人数为153045+=,样本中身高低于160cm的频率为450.45 100=,所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45.【点睛】本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.20.正面标有数字1-,2-,3,4背面完全相同的4张卡片,洗匀后背面向上放置在桌面上.甲同学抽取一张卡片,正面的数字记为a ,然后将卡片背面向上放回..桌面,洗匀后,乙同学再抽取一张卡片,正面的数字记为b.(1)请用列表或画树状图的方法把(,)a b 所有结果表示出来;(2)求出点(,)a b 在函数2y x =-+图象上的概率.【答案】(1)共有16种机会均等的结果;(2)P (点(,)a b 在函数2y x =-+的图象上)=14 【分析】(1)列出图表,图见详解,(2)找出在2y x =-+上的点的个数,即可求出概率.【详解】(1)解:列表如下:∴共有16种机会均等的结果(2)点()1,3-,()2,4-,()3,1-,()4,2-在函数2y x =-+的图象上∴P (点(),a b 在函数2y x =-+的图象上)=416=14【点睛】本题考查了用列表法求概率,属于简单题,熟悉概率的实际应用是解题关键.21.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x a =的形式:求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为二元一次方程组来解;求解一元二次方程,把它转化为两个一元一次方程来解:求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想一一转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程3220x x x +-=,可以通过因式分解把它转化为()220x x x +-=,解方程0x =和220x x +-=,可得方程3220x x x +-=的解.利用上述材料给你的启示,解下列方程;(1)32430y y y -+=;(2x =.【答案】(1)123=0,=1,=3y y y ;(2)x=1【分析】(1)因式分解多项式,然后得结论;(2)根据题目中的方程,两边同时平方转化为有理方程,然后解方程即可,注意,最后要检验,所得的根是否使得原无理方程有意义.【详解】解:(1)∵32430y y y -+=,∴()243=0y y y -+,∴()()13=0y y y --,∴=0y ,1=0y -,3=0y -,解得:123=0,=1,=3y y y ;(2x =,∴223=x x +,∴223=0x x --,∴()()13=0x x +-,解得:x 1=-1,x 2=1,经检验,x=1是原无理方程的根,x=-1不是原无理方程的根,x =,的解是x=1.【点睛】本题考查解无理方程、因式分解法,解答本题的关键是明确解方程的方法,注意无理方程最后要检验. 22.计算:4+(-2)2×2-(-36)÷4【答案】21【解析】试题分析:先乘方,再乘除,最后再计算加减.试题解析: 4+(-2)2×2-(-36)÷4,=4+4×2-(-36)÷4,=4+8-(-9),=12+9,=21.23.如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为(3,2)、(1,3).△AOB绕点O逆时针旋转90º后得到△A1OB1.(1)在网格中画出△A1OB1,并标上字母;(2)点A关于O点中心对称的点的坐标为;(3)点A1的坐标为;(4)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为.【答案】(1)见解析;(2)(-3,-2);(3)(-2,3);(4)5π【分析】(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据关于O点中心对称的点的坐标的特点直接写出答案即可;(3)根据平面直角坐标系写出点A1的坐标即可;(4)利用勾股定理列式求出OB,再根据弧长公式列式计算即可得解.【详解】(1)△A1OB1如图所示;(2)点A关于O点中心对称的点的坐标为(-3,-2);(3)点A1的坐标为(﹣2,3);(4)由勾股定理得,223110+=BB1的长为:9010101802π=.考点:1.作图-旋转变换;2.弧长的计算.24.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.①请判断“匀称中线”是哪条边上的中线,②求BC:AC:AB的值.(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=26,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.【答案】(1)①“匀称中线”是BE,它是AC边上的中线,②BC:AC:AB=3:2:7;(2)CD=7a,CM不是△ACD的“匀称中线”.理由见解析.【分析】(1)①先作出Rt△ABC的三条中线AD、BE、CF,然后利用匀称中线的定义分别验证即可得出答案;②设AC=2a,利用勾股定理分别把BC,AB的长度求出来即可得出答案.(2)由②知:AC:AD:CD=3:2:7,设AC=3a,则AD=2a,CD=7a,过点C作CH⊥AB,垂足为H,利用ABC的面积建立一个关于a的方程,解方程即可求出CD的长度;假设CM是△ACD的“匀称中线”,看能否与已知的定理和推论相矛盾,如果能,则说明假设不成立,如果不能推出矛盾,说明假设成立.【详解】(1)①如图①,作Rt△ABC的三条中线AD、BE、CF,∵∠ACB=90°,∴CF=12AB AB,即CF不是“匀称中线”.又在Rt△ACD中,AD>AC>BC,即AD不是“匀称中线”.∴“匀称中线”是BE ,它是AC 边上的中线,②设AC =2a ,则CE =a ,BE =2a ,在Rt △BCE 中∠BCE =90°,∴BC =223BE CE a -=, 在Rt △ABC 中,AB =227BC AC a +=,∴BC :AC :AB =3:2:73:2:7a a a = (2)由旋转可知,∠DAE =∠BAC =45°.AD =AB >AC ,∴∠DAC =∠DAE+∠BAC =90°,AD >AC ,∵Rt △ACD 是“匀称三角形”.由②知:AC :AD :CD =3:2:7 设AC =3a ,则AD =2a ,CD =7a ,如图②,过点C 作CH ⊥AB ,垂足为H ,则∠AHC =90°,∵∠BAC =45°,∴622CH AH a === ∵116226222ABC S AB CH a a ==⨯⨯=解得a =2,a =﹣2(舍去),∴727CD a ==判断:CM 不是△ACD 的“匀称中线”.理由:假设CM 是△ACD 的“匀称中线”.则CM =AD =2AM =4,AM =2,∴23tan 3AC AMC AM ∠===又在Rt△CBH中,∠CHB=90°,CH=6,BH=4-6,∴6263tan tan546CHB AMCBH+===≠∠-即B AMC∠≠∠这与∠AMC=∠B相矛盾,∴假设不成立,∴CM不是△ACD的“匀称中线”.【点睛】本题主要为材料理解题,掌握匀称三角形和匀称中线的意义是解题的关键.25.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE =105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.【答案】(1)∠CAD=35°;(2)169π.【分析】(1)由AB=AC,得到AB=AC,求得∠ABC=∠ACB,推出∠CAD=∠ACD,得到∠ACB=2∠ACD,于是得到结论;(2)根据平角的定义得到∠BAC=40°,连接OB,OC,根据圆周角定理得到∠BOC=80°,根据弧长公式即可得到结论.【详解】(1)∵AB=AC,∴AB=AC,∴∠ABC=∠ACB,∵D为AC的中点,∴AD=CD,∴∠CAD=∠ACD,∴AB=2AD,∴∠ACB=2∠ACD,又∵∠DAE =105°,∴∠BCD =105°,∴∠ACD =13×105°=35°, ∴∠CAD =35°;(2)∵∠DAE =105°,∠CAD =35°,∴∠BAC =180°-∠DAE -∠CAD =40°,连接OB ,OC ,∴∠BOC =80°,∴弧BC 的长=180n r π=804161809ππ⨯=. 【点睛】本题考查了三角形的外接圆和外心,圆心角、弧、弦的关系和圆周角定理,垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.26.请阅读下面材料:问题:已知方程x 1+x-3=0,求一个一元二次方程,使它的根分别是已知方程根的一半.解:设所求方程的根为y ,y=x 2,所以x =1y 把x =1y 代入已知方程,得(1y)1+1y-3=0化简,得4y 1+1y-3=0故所求方程为4y 1+1y-3=0这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”解决下列问题: (1)已知方程1x 1-x-15=0,求一个关于y 的一元二次方程,使它的根是已知方程根的相反数,则所求方程为:_________.(1)已知方程ax 1+bx+c =0(a≠0)有两个不相等的实数根,求一个关于y 的一元二次方程,使它的根比已知方程根的相反数的一半多1.【答案】(1)1y 1+y-15=0;(1)24(162)16+40ay a b y a b c -+++=.【分析】(1)利用题中解法,设所求方程的根为y ,则y=-x ,所以x=-y ,然后把x=-y 代入已知方程整理后即可得到结果;(1)设所求方程的根为y ,则y=122x -+(x ≠0),于是x=4-1y (y ≠0),代入方程ax 1+bx+c=0整理即可得.【详解】解:(1)设所求方程的根为y ,则y=-x ,所以x=-y ,把x=-y 代入1x 1-x-15=0,整理得,1y 1+y-15=0,故答案为:1y 1+y-15=0;(1)设所求方程的根为y ,则y=122x -+(x ≠0), 所以,x=4-1y (y ≠0),把x=4-1y 代入方程ax 1+bx+c=0,整理得:24(162)16+40ay a b y a b c -+++=.【点睛】本题主要考查一元二次方程的解,解题的关键是理解方程的解的定义和解题的方法.27.甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.【答案】13【解析】用树状图列举出所有情况,看两个小球上的数字之和为5的情况数占总情况数的多少即可.【详解】解:树状图如下:共有6种等可能的结果,2163P ==.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若半径为5cm 的一段弧长等于半径为2cm 的圆的周长,则这段弧所对的圆心角为( ) A .144°B .132°C .126°D .108° 【答案】A【分析】利用圆的周长公式求得该弧的长度,然后由弧长公式进行计算.【详解】解:依题意得 2π×2=5180n π⨯, 解得 n =1.故选:A .【点睛】 本题考查了弧长的计算. 此题的已知条件是半径为2的圆的周长=半径为5的弧的弧长. 2.如图,正方形ABCD 的边长是4,E 是BC 的中点,连接BD 、AE 相交于点O ,则OD 的长是( )A .423B .22C .823D .5【答案】C【分析】先根据勾股定理解得BD 的长,再由正方形性质得AD ∥BC ,所以△AOD ∽△EOB ,最后根据相似三角形性质即可解答,【详解】解:∵四边形ABCD 是正方形,边长是4,∴224442, ,∵E 是BC 的中点,AD ∥BC ,所以BC=AD=2BE ,∴△AOD ∽△EOB ,∴2AD OD EB OB==, ∴OD=23BD=232=823. 故选:C.【点睛】本题考查正方形性质、相似三角形的判定和性质,解题关键是熟练掌握相似三角形的判定和性质.3.一副三角板(△ABC与△DEF)如图放置,点D在AB边上滑动,DE交AC于点G,DF交BC于点H,且在滑动过程中始终保持DG=DH,若AC=2,则△BDH面积的最大值是()A.3 B.33C.32D.33【答案】C【分析】解直角三角形求得AB=23,作HM⊥AB于M,证得△ADG≌△MHD,得出AD=HM,设AD=x,则BD=23-x,根据三角形面积公式即可得到S△BDH1122BD MH=⋅=BD•AD12=x(23-x)12=-(x3-)232+,根据二次函数的性质即可求得.【详解】如图,作HM⊥AB于M.∵AC=2,∠B=30°,∴AB=23,∵∠EDF=90°,∴∠ADG+∠MDH=90°.∵∠ADG+∠AGD=90°,∴∠AGD=∠MDH.∵DG=DH,∠A=∠DMH=90°,∴△ADG≌△MHD(AAS),∴AD=HM,设AD=x,则HM=x,BD=23-x,∴S△BDH1122BD MH=⋅=BD•AD12=x(23-x)12=-(x3-)232+,∴△BDH面积的最大值是32.故选:C.【点睛】本题考查了二次函数的性质,解直角三角形,三角形全等的判定和性质以及三角形面积,得到关于x的二次函数是解答本题的关键.4.如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y=kx(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=()A.1 B.2 C.3 D.4【答案】D【分析】作CD⊥x轴于D,设OB=a(a>0).由S△AOB=S△BOC,根据三角形的面积公式得出AB=BC.根据相似三角形性质即可表示出点C的坐标,把点C坐标代入反比例函数即可求得k.【详解】如图,作CD⊥x轴于D,设OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面积为1,∴12OA•OB=1,∴OA=2a,∵CD∥OB,AB=BC,∴OD=OA=2a,CD=2OB=2a,∴C(2a,2a),∵反比例函数y=kx(x>0)的图象经过点C,∴k=2a×2a=1.故选D.【点睛】此题考查反比例函数与一次函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键.5.下列四个三角形,与左图中的三角形相似的是().A.B.C.D.【答案】B【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【详解】解:设单位正方形的边长为1,给出的三角形三边长分别为2,22,10.A、三角形三边分别是2,10,32,与给出的三角形的各边不成比例,故A选项错误;B、三角形三边2,4,25,与给出的三角形的各边成比例,故B选项正确;C、三角形三边2,3,13,与给出的三角形的各边不成比例,故C选项错误;D、三角形三边5,13,4,与给出的三角形的各边不成正比例,故D选项错误.故选:B.【点睛】此题考查了相似三角形的判定,注意三边对应成比例的两三角形相似.6.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC 相似的是()A.B.C.D.【答案】D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.44182AB==,对应边631842ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.338AB=,对应边633848ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.22163AC==,对应边631843ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D .22142BC ==,对应边411822BC AB ===,则沿虚线剪下的涂色部分的三角形与△ABC 相似,故此选项正确;故选D .点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.7.下列一元二次方程中有两个不相等的实数根的方程是( )A .(x+2)2=0B .x 2+3=0C .x 2+2x-17=0D .x 2+x+5=0【答案】C【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】解:选项A :△=0,方程有两个相等的实数根;选项B 、△=0-12=-12<0,方程没有实数根;选项C 、△=4-4×1×(-17)=4+68=72>0,方程有两个不相等的实数根;选项D 、△=1-4×5=-19<0,方程没有实数根.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac ;当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,在菱形ABCD 中,4AB =,120ABC ∠=︒,E 是AD 的中点,将ABE ∆绕点A 逆时针旋转至点B 与点D 重合,此时点E 旋转至F 处,则点B 在旋转过程中形成的BD 、线段DF 、点E 在旋转过程中形成的EF 与线段EB 所围成的阴影部分的面积为( )A .23πB .32πC .2πD .3π【答案】C【分析】根据菱形的性质可得AD=AB=4,∠DAB=180°-60ABC ∠=︒,AE=122AD =,然后根据旋转的性质可得:S △ABE =S △ADF ,∠FAE=∠DAB=60°,最后根据S 阴影=S 扇形DAB +S △ADF ―S △ABE ―S 扇形FAE 即可求出阴影部分的面积.【详解】解:∵在菱形ABCD 中,4AB =,120ABC ∠=︒,E 是AD 的中点,∴AD=AB=4,∠DAB=180°-60ABC ∠=︒,AE=122AD =,∵ABE∆绕点A逆时针旋转至点B与点D重合,此时点E旋转至F处,∴S△ABE=S△ADF,∠FAE=∠DAB=60°∴S阴影=S扇形DAB+S△ADF―S△ABE―S扇形FAE= S扇形DAB―S扇形FAE=22 604602 360360ππ⨯⨯-=2π故选:C.【点睛】此题考查的是菱形的性质、旋转的性质和扇形的面积公式,掌握菱形的性质定理、旋转的性质和扇形的面积公式是解决此题的关键.9.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【详解】试题解析:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a ﹣b+c <0,∵对称轴为直线x=﹣1, ∴12b a-=-, ∴b=2a ,∴a ﹣2a+c <0,即a >c ,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y >0,∴4a ﹣2b+c >0,所以④正确.所以本题正确的有:②③④,三个,故选C .10.已知23x y =,则x y等于( ) A .2B .3C .23D .32 【答案】D【详解】∵2x=3y , ∴32x y =. 故选D .11.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有( )A .5个B .15个C .20个D .35个【答案】A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x 个,根据题意得: 1515+x=0.75, 解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选A .【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n是解题关键. 12.如图,将图形用放大镜放大,应该属于( ).A .平移变换B .相似变换C .旋转变换D .对称变换【答案】B 【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选B .【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.二、填空题(本题包括8个小题)13.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机柚取100件进行检测,检测出次品5件,由此估计这一批产品中的次品件数是_____.【答案】500【分析】次品率100%=⨯次品数产品总数,根据抽取的样本数求得该批产品的次品率之后再乘以产品总数即可求解.【详解】解:51005%÷=, 100005%500⨯=(件)【点睛】本题主要考查了数据样本与频率问题,亦可根据比例求解.14.关于x 的一元二次方程x 2+nx ﹣12=0的一个解为x =3,则n =_____.【答案】1【分析】根据一元二次方程的解的定义,把x =3代入x 2+nx ﹣12=0中可得到关于n 的方程,然后解此方程即可.。
绍兴市2020年数学九年级上册期末试题及答案

绍兴市2020年数学九年级上册期末试题及答案一、选择题1.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内 D .无法确定2.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .104.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( ) A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.5.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .46.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A 10B 310C .13D 107.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--8.某篮球队14名队员的年龄如表:年龄(岁)18192021人数5432则这14名队员年龄的众数和中位数分别是()A.18,19 B.19,19 C.18,4 D.5,4 9.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为()A.433B.23C.334D.32210.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30°B.35°C.40°D.50°11.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.19B.13C.12D.2312.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.13.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()A.35B.38C.58D.3414.一组数据10,9,10,12,9的平均数是()A.11 B.12 C.9 D.1015.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 二、填空题16.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)17.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.18.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.19.二次函数23(1)2y x =-+图象的顶点坐标为________.20.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.21.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.22.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________; 23.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.24..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.25.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.26.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接).27.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.28.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.29.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.30.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题31.定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等...),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt △ABC 在正方形网格中,请你只用无刻度的直尺......在网格中找到一点 D ,使四边形ABCD 是以AC 为“相似对角线”的四边形(画出1个即可);(2)如图2,在四边形ABCD 中,80,140ABC ADC ︒︒∠=∠=,对角线BD 平分∠ABC .求证: BD 是四边形ABCD 的“相似对角线”; 运用:(3)如图3,已知FH 是四边形EFGH 的“相似对角线”,∠EFH =∠HFG =30.连接EG ,若△EFG 的面积为43,求FH 的长.32.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB . (1)证明:△ADC ∽△ACB ;(2)若AD =2,BD =6,求边AC 的长.33.小亮晚上在广场散步,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)请你在图中画出小亮站在AB 处的影子BE ;(2)小亮的身高为1.6m ,当小亮离开灯杆的距离OB 为2.4m 时,影长为1.2m ,若小亮离开灯杆的距离OD =6m 时,则小亮(CD )的影长为多少米?34.已知二次函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(2,3),(3,0). (1)则b =,c =;(2)该二次函数图象与y 轴的交点坐标为,顶点坐标为; (3)在所给坐标系中画出该二次函数的图象; (4)根据图象,当-3<x <2时,y 的取值范围是.35.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值. 四、压轴题36.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.37.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.38.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.39.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径.40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】解:∵()8,6P -,∴10= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.2.D解析:D 【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2; ∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.A解析:A 【解析】 【分析】作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可. 【详解】解:如图,连接OA ,设圆的半径为r ,则OE=r-2, ∵弦AB CD ⊥, ∴AE=BE=4,由勾股定理得出:()22242r r =+-, 解得:r=5, 故答案为:A. 【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.4.A解析:A 【解析】 【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可. 【详解】由题意得:m ﹣1≠0, 解得:m≠1, 故选A . 【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.5.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=2,故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.6.A解析:A【解析】【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可.【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sinBC A AB ===. 故选:A.【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键. 7.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 8.A解析:A【解析】【分析】根据众数和中位数的定义求解可得.【详解】∵这组数据中最多的数是18,∴这14名队员年龄的众数是18岁,∵这组数据中间的两个数是19、19, ∴中位数是19192+=19(岁), 故选:A .【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.9.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.10.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴12ABC AOC4.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 11.B解析:B【解析】【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是31 93 .故选:B.【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.12.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.13.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.解析:D【解析】【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)10 5++++=故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.15.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题16.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.17.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD2234+5,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.19.【解析】【分析】二次函数(a≠0)的顶点坐标是(h,k).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2).故答案为:(1,2).【点睛】本题考查了二次函数的性解析:()1,2【分析】二次函数2()y a x h k =-+(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程23(1)2y x =-+知,该函数的顶点坐标是:(1,2).故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程2()y a x h k =-+中的h ,k 所表示的意义. 20.9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.【点睛】本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 21.x1=-12,x2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),∴方程变形为,即解析:x 1=-12,x 2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算. 22.-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x2+mx+n 与x 轴的交点坐标为(-1,0),(2,0), 解析:-1<x <2【解析】【分析】根据方程的解确定抛物线与x 轴的交点坐标,即可确定y <0时,x 的取值范围.【详解】由题意得:二次函数y=x 2+mx+n 与x 轴的交点坐标为(-1,0),(2,0),∵a=10>,开口向上,∴y <0时,x 的取值范围是-1<x <2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x 轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.23.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.24.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差解析:甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.25.【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,解析:5【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径, ∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC ,∴AB AE AD AC =, ∴310AB =, ∴610AB =, 故答案为:610. 【点睛】 本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.26.y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y =mx2 +4mx+m2 +1(m >0),对称轴为x = ,观察二次函数的图象可知:y1<y3<y2.故答案为:y解析:y 1<y 3<y 2【解析】【分析】利用图像法即可解决问题.【详解】y =-mx 2 +4mx+m 2 +1(m >0),对称轴为x = 422m m-=-, 观察二次函数的图象可知:y 1<y 3<y 2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.27.【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相解析:67 7【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【详解】如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF =30°,∴CF =12CD =2,DF =CF ÷tan30°= ∴BF =4,∴BD ,∵△CPQ 是等边三角形,∴S △CPQ 2, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD =, ∴6BP =,∴BP =7,∴AQ =BP , ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC , ∴AE AD BC BD=, ∴6AE =,∴AE =7,∴QE =AQ−AE .. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP 的长是本题的关键. 28.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 29.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时, ,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时,=0∆,即22-,b a20=0解得b=﹣25a或b=25a(舍去),原方程可化为ax2﹣25ax+5a=0,则这两个相等实数根的和为25.故答案为:25.【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。
(浙江绍兴)2020-2021学年第一学期九年级期末测试-数学试题卷(浙教版)

1. 本试卷考核范围:浙教版九上全册、九下第1 章。
2. 本试卷共6 页,满分150 分。
数学试题卷104401 .在同一时刻,身高1.6 m 的小强的影长是1.2 m,旗杆的影长是15 m,则旗杆的高为( )A .22 mB .20 mC .18 mD .16 m2 .如图,A,B,C都是⊙O上的点,若∠ACB=110°,则∠AOB的度数是( )A .70°B .110°C .140°D .160°第2 题图第3 题图第4 题图3 .有5 张写有数字的卡片 (如图1),它们的背面都相同,现将它们背面朝上 (如图2),从中翻开任意一张是数字 2 的概率是( )A .B .C .D .4 .已知y与x之间的函数关系如图所示,当-3≤x≤3 时,函数值y的取值范围是( )A .0≤y≤3B .0≤y≤2C .1≤y≤3D .-3≤y≤35 .在△ABC中,若|sin A一| +(一tan B)2 = 0 ,则∠C的度数为( )A .30°B .60°C .90°D .120°6 .如图,在平面直角坐标系中,以点P为圆心,以2 为半径的圆弧与x轴交于A,B两点,已知点A的坐标为(2 ,0),点B的坐标为(6 ,0),则圆心P的坐标为( )A .(4,4)B .(4,2)C .(4,)D .(2,2 )7 . 在倾斜角(∠α , ∠β)不同的两个斜面上,物体前进的距离都是 l ,而它在水平和铅垂两个方向上运动的距离却各不相同. 如图,已知 sin β= ,tan α= ,l =20 米,则物体在这两 个不同斜面上的高度差等于( )A .1 米B .4 米C .7 米D .10 米第 7 题图 第 8 题图8 . 若将一个正方形剪成如图 1 所示的四块, 且这四块恰好能拼成如图 2 所示的矩形, 则 的值为 ( )A .B .C .D.2一 19 . 如图, ⊙O 上有两点 A 与 P ,若点P 在圆上匀速运动一周,则弦 AP 的长度 d 与时间 t的关系可能是下列图形中的( )A .①B .③C .②或④D .①或③第 9 题图 第 10 题图10 .如图, 在四边形 ABCD 中,不等长的两对角线 AC ,BD 相交于点 O ,且将四边形 ABCD分成甲、乙、丙、丁四个三角形.若 OA ∶OC =OB ∶OD =1 ∶2,则此四个三角形的关系 是( )A .甲与丙相似, 乙与丁相似B .甲与丙相似, 乙与丁不相似C .甲与丙不相似,乙与丁相似D .甲与丙不相似,乙与丁不相似6 5 3011 .抛物线y =2x 2-2x 与 x 轴的交点坐标为 .a b12.已知扇形的半径为6 cm,面积为10π cm2 ,则该扇形的弧长等于cm.(结果保留π)13.学校组织校外实践活动,给九年级安排了两辆车,小明与小慧都可以从两辆车中任选一辆搭乘,则小明和小慧乘同一辆车的概率是.14.如图,已知AB是⊙O的直径,BC是弦,∠ABC=30°,过圆心O作OD⊥BC交于点D,连结DC,则∠DCB的度数为.第14 题图第15 题图15.如图,桌面上有一时钟,表盘中心点为O,分针OA外端点到桌面的最大距离和最小距离分别为50 和10 ,若现在的时间是9 点10 分,则点A到桌面的距离是.16.如图①是由8 个同样大小的正方形组成的纸片,我们只需要剪两刀,将它分成三块 (如图②),就可以拼成一个大正方形(如图③).那么由 5 个同样大小的正方形组成的纸片(如图④),最少需要剪刀,就可以拼成一个大正方形.817~2021102223248017 .在平面直角坐标系中,已知点P(x,6)在第一象限,且OP与x轴的正半轴的夹角α的正切值是.(1)求x的值.(2)求夹角α的正弦值和余弦值.18 .在一个不透明的袋子中装有1 个红球,1 个绿球和n个白球,这些球除颜色外无其他差别.(1) 从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该试验,发现摸到绿球的频率稳定于0.25,求n的值;(2) 若该袋中有 2 个白球,在一个摸球游戏中,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球) 的所有可能结果,下图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球的颜色不同的概率.19 .如图,已知斜坡的坡角∠MON=25°,矩形ABCD的边BC在OM上,对角线AC⊥ON.(1)求∠ACD的度数;(2)当AC=5 时,求AD的长.(参考数据:sin25°≈0.42,cos25°≈0.91 ,tan25°≈0.47,结果精确到0.1)20 .如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE∶CD=5 ∶24.(1)求CD的长;(2) 现汛期来临,水面要以每小时4 m 的速度上升,则经过多长时间桥洞会刚刚被灌满?21.如图,在△ABC中,D,E分别是AB,AC上的点,△ADE∽△ACB,相似比为AD∶AC=2 ∶3.△ABC的角平分线AF交DE于点G,交BC于点F.求AG与GF的比.22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2) 求证:∠1=∠2.23 .如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的平面直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为0.75m,到墙边OA的距离分别为0.5 m,1.5 m.(1)求最左边的拋物线的表达式,并求图案最高点到地面的距离;(2) 若该墙的长度为10 m,则最多可以连续绘制几个这样的拋物线型图案?24.已知点P为线段AB上的动点 (与A,B两点不重合).在同一平面内,把线段AP,BP 分别折成△CDP,△EFP,∠CDP=∠EFP=90°,且D,P,F三点共线,如图所示.(1)若△CDP,△EFP均为等腰三角形,且DF=4,求AB的长;(2)若AB=12 ,tan C=,且以C,D,P为顶点的三角形和以E,F,P为顶点的三角形相似,求四边形CDFE的面积的最大值.。
绍兴市2020版九年级上学期数学期末考试试卷(II)卷

绍兴市2020版九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③AC2=AD•AB;④ ,其中能够判定△ABC∽△ACD的个数为()A . 1B . 2C . 3D . 42. (2分)若△ABC~△DEF,相似比为3:2,则对应高的比为()A . 3:2B . 3:5C . 9:4D . 4:93. (2分) (2018九上·平顶山期末) 菱形的两条对角线长分别为6与8,则此菱形的面积为()A . 48B . 20C . 14D . 244. (2分) (2018九上·平顶山期末) 一元二次方程配方后化为()A .B .C .D .5. (2分)下列命题中,真命题是()A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是菱形C . 对角线互相平分的四边形是平行四边形D . 对角线互相垂直平分的四边形是正方形6. (2分)在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,请估计盒子中白球的个数是()A . 10个B . 15个C . 20个D . 25个7. (2分) (2018九上·平顶山期末) 如图,在△ABC中,D,E分别为AB,AC边上的点,DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A .B .C .D .8. (2分) (2018九上·平顶山期末) 若点,在反比例函数的图象上,,则、的大小关系为A .B .C .D .9. (2分) (2018九上·平顶山期末) 将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8000元,则售价应定为A . 60元B . 80元C . 60元或80元D . 70元10. (2分) (2018九上·平顶山期末) 反比例函数在第一象限的图象如图,则k的值有可能是A . 4B . 2C .D . 1二、填空题 (共5题;共6分)11. (1分) (2016九上·桑植期中) 若某商品经过两次连续降价后,由400元下调至256元,则这种商品平均每次降价的百分率是________.12. (1分)(2016·随州) 已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为________.13. (1分)(2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程x2﹣3x=5无实数根;③ 的平方根为±4;④了解北京市居民”一带一路”期间的出行方式,采用抽样调查方式;⑤圆心角为90°的扇形面积是π,则扇形半径为2.14. (1分) (2018九上·平顶山期末) 如图,点A是反比例函数图象上的一点,过点A作轴于点B,点P在x轴上,若的面积为2,则该反比例函数的解析式为________.15. (2分)(2019·江北模拟) 如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的点F处,若DE=5,AB=8,则S△ABF:S△FCE=________.三、解答题 (共8题;共76分)16. (10分) (2018九上·东台月考) 解方程:(1) x﹣1=(1﹣x)2;(2) x2﹣2(x+4)=0.17. (10分) (2018九上·平顶山期末) 已知关于x的一元二次方程(1)判断该一元二次方程根的情况.(2)已知该一元二次方程的一根为,求k的值.18. (10分) (2018九上·平顶山期末) 有三张正面分别标有数字,2,4的不透明卡片,它们除数字外都相同;现将它们背面朝上,洗匀后,从三张卡片中随机地抽出一张,记住数字;(1)若把抽出的卡片放回,洗匀后,再从三张卡片中随机抽出一张,记住数字试用列表或树状图的方法,求两次抽取的卡片上的数字为一正数、一负数的概率.(2)若不把抽出的卡片放回,再从剩余两张卡片中随机抽出一张,直接写出两次抽取卡片上的数字为一正数、一负数的概率.19. (5分) (2018九上·平顶山期末) 如图,学校平房的窗外有一路灯AB,路灯光能通过窗户CD照到平房内EF处;经过测量得:窗户距地面高,窗户高度,,;求路灯AB 的高.20. (10分) (2018九上·平顶山期末) 如图,在中,分别为的中点,,延长交的延长线于点,连接 .(1)证明:四边形AMDN是菱形;(2)若,判断四边形的形状,请直接写出答案.21. (10分) (2018九上·平顶山期末) 平顶山市某中学开展弘扬传统文化活动,鼓励学生到阅览室借书阅读,并进行统计校阅览室在2015年图书借阅总量为7500本,2017年图书借阅总量为10800本.(1)求该学校的图书借阅总量从2015年到2017年连续两年的平均增长率.(2)已知2017年该校学生借阅图书人数有1350人,预计2018年达到1440人若2017年至2018年图书借阅总量增长率与2015年到2017年两年的平均增长率相同,那么2018年的人均借阅量比2017年增长,求a 的值.22. (10分) (2018九上·平顶山期末) 如图、在矩形OABC中,,双曲线与矩形两边BC,AB分别交于E,F两点.(1)如图一,若E是BC中点,求点F的坐标;(2)如图二,若将沿直线EF对折,点B恰好落在x轴上的点D处,求k的值.23. (11分) (2018九上·平顶山期末) 如图,已知点G在正方形ABCD的对角线AC上,,垂足为点E,,垂足为点F.(1)发现问题:在图中,的值为________.(2)探究问题:将正方形CEGF绕点C顺时针方向旋转角,如图所示,探究线段AG与BE之间的数量关系,并证明你的结论.(3)解决问题:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图所示,延长CG交AD于点H;若,,直接写出BC的长度.参考答案一、单选题 (共10题;共20分)1-1、2、答案:略3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共76分)16-1、16-2、17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
[试卷合集3套]绍兴市2020年九年级上学期数学期末检测试题
![[试卷合集3套]绍兴市2020年九年级上学期数学期末检测试题](https://img.taocdn.com/s3/m/ce5a440176a20029bc642dab.png)
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列图形中,既是轴对称图形又是中心对称图形的共有()A.1个B.2个C.3个D.4个【答案】B【分析】根据中心对称图形和轴对称图形的概念即可得出答案.【详解】根据中心对称图形和轴对称图形的概念,可以判定既是中心对称图形又是轴对称图形的有第3第4个共2个.故选B.考点:1.中心对称图形;2.轴对称图形.2.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠的度数是()AOBA.83︒B.84︒C.85︒D.94︒【答案】B【分析】利用正多边形的性质求出∠AOE,∠BOF,∠EOF即可解决问题;【详解】由题意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠EOF=180°−72°−60°=48°,∴∠AOB=360°−108°−48°−120°=84°,故选:B.【点睛】本题考查正多边形的性质、三角形内角和定理,解题关键在于掌握各性质定义.3.抛物线2y ax bx c =++如图所示,给出以下结论:①0ab <,②0c <,③0a b c -+=,④0a b c ++<,⑤240b ac ->,其中正确的个数是( )A .2个B .3个C .4个D .5个【答案】D 【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y 轴的交点位置可判断a 、b 、c 的符号,再根据与x 轴的交点坐标代入分析即可得到结果;【详解】∵抛物线开口向上,∴a >0,∵抛物线的对称轴在y 轴的右侧,∴b <0,∵抛物线与y 轴的交点在x 轴的下方,∴c <0,∴ab <0,故①②正确;当x=-1时,0a b c -+=,故③正确;当x=1时,根据图象可得0a b c ++<,故④正确;根据函数图像与x 轴有两个交点可得240b ac ->,故⑤正确;故答案选D .【点睛】本题主要考查了二次函数图象与系数的关系,准确分析每一个数据是解题的关键.4.已知⊙O 的半径为13,弦AB//CD ,AB =24,CD =10,则AB 、CD 之间的距离为A .17B .7C .12D .7或17【答案】D【解析】①当弦AB 和CD 在圆心同侧时,如图1,∵AB=24cm,CD=10cm ,∴AE=12cm,CF=5cm ,∵OA=OC=13cm,∴EO=5cm,OF=12cm ,∴EF=12﹣5=7cm ;②当弦AB 和CD 在圆心异侧时,如图2,∵AB=24cm,CD=10cm ,∴AE=12cm,CF=5cm ,∵OA=OC=13cm,∴EO=5cm,OF=12cm ,∴EF=OF+OE=17cm,∴AB 与CD 之间的距离为7cm 或17cm .故选D .点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.5.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C 的位置,A1B1恰好经过点B,则旋转角α的度数等()A.70°B.65°C.55°D.35°【答案】A【解析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵在Rt△ACB 中,∠ACB=90°,∠A=35°,∴∠ABC=55°,∵将△ABC 绕点C 逆时针旋转α角到△A′B′C 的位置,∴∠B′=∠ABC=55°,∠B′CA′=∠ACB=90°,CB=CB′,∴∠CBB′=∠B′=55°,∴∠α=70°,故选:A.【点睛】本题考查旋转的性质以及等腰三角形的性质.注意掌握旋转前后图形的对应关系是解此题的关键.6.若△ABC∽△DEF,相似比为2:3,则对应面积的比为()A.3:2 B.3:5 C.9:4 D.4:9【答案】D【解析】根据相似三角形的面积比等于相似比的平方解答.【详解】解:∵△ABC∽△DEF,相似比为2:3,∴对应面积的比为(23)2=49,故选:D.【点睛】本题考查相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.7.如图,四边形ABCD 是⊙O的内接四边形,若∠BOD=88°,则∠BCD 的度数是A.88°B.92°C.106°D.136°【答案】D【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数【详解】由圆周角定理可得∠BAD=12∠BOD=44°,根据圆内接四边形对角互补可得∠BCD=180°-∠BAD=180°-44°=136°,故答案选D.考点:圆周角定理;圆内接四边形对角互补.8.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是13,则盒子中白球的个数是().A.3 B.4 C.6 D.8 【答案】B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×13=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.9.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)【答案】B【解析】解:抛物线y=2(x+3)2+5的顶点坐标是(﹣3,5),故选B.10.下列对于二次根式的计算正确的是( )A336=B.33 2C.233⨯=18÷=2 D.233【答案】C【解析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【详解】A、原式=23,所以A选项错误;B、原式=3,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选C.【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=2,CD=1,则△ABC 的边长为()A.3 B.4 C.5 D.6【答案】B【分析】根据等边三角形性质求出AB=BC=AC,∠B=∠C=60°,推出∠BAP=∠DPC,即可证得△ABP∽△PCD,据此解答即可,.【详解】∵△ABC是等边三角形,∴AB=BC=AC,∠B=∠C=60°,∴∠BAP+∠APB=180°﹣60°=120°,∵∠APD=60°,∴∠APB+∠DPC=180°﹣60°=120°,∴∠BAP=∠DPC,即∠B=∠C,∠BAP=∠DPC,∴△ABP∽△PCD;∴=,B A PC P CDB ∵BP =2,CD =1, ∴221=-,AB AB ∴AB =1,∴△ABC 的边长为1.故选:B .【点睛】本题考查了相似三角形的性质和判定,等边三角形的性质,三角形的内角和定理的应用,关键是推出△ABP ∽△PCD ,主要考查了学生的推理能力和计算能力.12.如图,已知⊙O 的半径为4,四边形ABCD 为⊙O 的内接四边形,且AB =43,AD =42,则∠BCD 的度数为( )A .105°B .115°C .120°D .135°【答案】A 【分析】作OE ⊥AB 于E ,OF ⊥AD 于F ,连接OA ,如图,利用垂径定理和解直角三角形的知识分别在Rt △AOE和Rt △AOF 中分别求出∠OAE 和∠OAF 的度数,进而可得∠EAF 的度数,然后利用圆内接四边形的性质即可求得结果.【详解】解:作OE ⊥AB 于E ,OF ⊥AD 于F ,连接OA ,如图,则AE =12AB =3,AF =12AD =2, 在Rt △AOE 中,∵cos ∠OAE =233AE OA ==OAE =30°, 在Rt △AOF 中,∵cos ∠OAF =22242AF OA ==,∴∠OAF =45°, ∴∠EAF =30°+45°=75°,∵四边形ABCD 为⊙O 的内接四边形,∴∠C =180°﹣∠BAC =180°﹣75°=105°.故选:A .【点睛】本题考查了垂径定理、解直角三角形和圆内接四边形的性质等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.二、填空题(本题包括8个小题)13.若23a b =,则a b b +=_____. 【答案】53【解析】2,3a b = a b b +∴=2511b 33a +=+=. 14.点A ()12,y -,B ()21,y -都在反比例函数3y x =-图象上,则1y _____2y .(填写<,>,=号) 【答案】<.【分析】根据反比例函数的增减性即可得出结论.【详解】解:3y x=-中,-3<0 ∴在每一象限内,y 随x 的增大而增大∵-2<-1<0∴1y <2y故答案为:<.【点睛】本题考查了比较反比例函数值的大小,掌握反比例函数的增减性与比例系数的关系是解题的关键. 15.墙壁CD 上D 处有一盏灯(如图),小明站在A 处测得他的影长与身长相等,都为1.6m ,他向墙壁走1m 到B 处时发现影子刚好落在A 点,则灯泡与地面的距离CD =____.【答案】6415m【分析】利用相似三角形的相似比,列出方程组,通过解方程组求出灯泡与地面的距离即可.【详解】如图:根据题意得:BG=AF=AE=1.6m ,AB=1m ,∵BG ∥AF ∥CD ,∴△EAF ∽△ECD ,△ABG ∽△ACD ,∴AE :EC=AF :CD ,AB :AC=BG :CD ,设BC=xm ,CD=ym ,则CE=(x+2.6)m ,AC=(x+1)m , ∴ 1.6 1.62.6x y =+,1 1.61x y=+ 解得:x=53, y=6415, ∴CD=6415m. ∴灯泡与地面的距离为6415米, 故答案为6415m. 16.如图,'''A B C ∆是ABC ∆以点O 为位似中心经过位似变换得到的,若':'2:1OB B B =,则'''A B C ∆的周长与ABC ∆的周长比是__________.【答案】2:1【分析】根据位似三角形的性质,可得出两个三角形的周长比等于位似比等于边长比求解即可.【详解】解:由题意可得出,'''''::()2:3A B AB OB B B OB =+=∵'''A B C ∆的周长与ABC ∆的周长比='':2:3A B AB =故答案为:2:1.【点睛】本题考查的知识点是位似变化,根据题目找出两个图形的位似比是解此题的关键.17.如图,已知一次函数y =kx -4的图象与x 轴、y 轴分别交于A 、B 两点,与反比例函数8y x=在第一象限内的图象交于点C,且A为BC的中点,则k=________.【答案】4【详解】把x=0代入y=kx-4,得y=-4,则B的坐标为(0,-4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入8yx,得x=2,∴C点的坐标为(2,4),把C(2,4)的坐标代入y=kx-4,得2k-4=4,解得k=4,故答案为4.18.在平面直角坐标系中,点P的坐标为(﹣4,0),半径为1的动圆⊙P沿x轴正方向运动,若运动后⊙P与y轴相切,则点P的运动距离为______.【答案】3或1【解析】利用切线的性质得到点P到y轴的距离为1,此时P点坐标为(-1,0)或(1,0),然后分别计算点(-1,0)和(1,0)到(-4,0)的距离即可.【详解】若运动后⊙P与y轴相切,则点P到y轴的距离为1,此时P点坐标为(-1,0)或(1,0),而-1-(-4)=3,1-(-4)=1,所以点P的运动距离为3或1.故答案为3或1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.三、解答题(本题包括8个小题)19.如图,等边△ABC内接于⊙O,P是AB上任一点(点P不与点A、B重合),连AP、BP,过点C作CM∥BP 交PA的延长线于点M.(1)填空:∠APC=度,∠BPC=度;(2)求证:△ACM≌△BCP;(3)若PA=1,PB=2,求梯形PBCM的面积.【答案】(1)60;60;(2)证明见解析;(3153.【分析】(1)利用同弧所对的圆周角相等即可求得题目中的未知角;(2)利用(1)中得到的相等的角和等边三角形中相等的线段证得两三角形全等即可;(3)利用(2)证得的两三角形全等判定△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算梯形的面积即可.【详解】(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°,故答案为60,60;(2)∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM=∠BPC=60°,∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,∴∠M=∠BPC=60°,又∵A、P、B、C四点共圆,∴∠PAC+∠PBC=180°,∵∠MAC+∠PAC=180°∴∠MAC=∠PBC,∵AC=BC,∴△ACM≌△BCP;(3)作PH⊥CM于H,∵△ACM≌△BCP,∴CM=CP AM=BP,又∠M=60°,∴△PCM为等边三角形,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt△PMH中,∠MPH=30°,∴PH=33,∴S梯形PBCM=12(PB+CM)×PH=12×(2+3)×332=1534.【点睛】本题考查了圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题,解题的关键是熟练掌握和灵活运用相关的性质与判定定理.20.某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p) 3.9万台4.0万台4.1万台 4.2万台 4.3万台 4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.【答案】(1)p=0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1.【分析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.【详解】(1)设p=kx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得:3.9 24.0, k bk b+=⎧⎨+=⎩解得:0.13.8 kb=⎧⎨=⎩,∴p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,当x=7时,w最大=10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x=12时,y=100,p=5,1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=53(舍去),m2%=15,∴m=1,答:m的值为1.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.21.小寇随机调查了若干租用共享单车市民的骑车时间t(单位:分),将获得的据分成四组(A:0<t≤10,B:10<t≤20,C:20<t≤30,D:t>30),绘制了如下统计图,根据图中信息,解答下列问题:(1)小寇调查的总人数是人;(2)表示C组的扇形统计图的圆心角的度数是°;(3)如果小寇想从D 组的甲、乙、丙、丁四人中随机选择两人进一步了解平时租用共享单车情况,请用列表或画树状图的方法求出丁被选中的概率.【答案】(1)50;(2)86.4;(3)12【分析】(1)根据B 组的人数和所占的百分比,即可求出这次被调查的总人数;(2)用总人数减去A 、B 、D 组的人数,求出C 组的人数;再用C 组人数除以总人数乘360°即可得到C 组扇形统计图对应的圆心角度数;(3)画出树状图,由概率公式即可得出答案.【详解】解:(1)调查的总人数是:19÷38%=50(人);故答案为:50(人)(2)C 组所占的人数为:50-15-19-4=12人故C 组的扇形统计图的圆心角的度数是:12360=86.450⨯ 故答案为:86.4(3) 画树状图,如下图所示,共有12个可能的结果,恰好选中丁的结果有6个,故P(丁被选中的概率)=61=122. 故答案为:12【点睛】本题考查了列表法与树状图法、条形统计图的综合运用.熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.解方程:(1)22450x x +-=(配方法)(2)()()2322x x x -=- 【答案】(1)12141411x x =-+=-(2)1223x x ==,. 【分析】(1)方程整理配方后,开方即可求出解;(2)把方程整理后左边进行因式分解,求方程的解【详解】(1)22450x x +-=,方程整理得:2522x x +=, 配方得:252112x x ++=+, 即27(1)2x +=,开方得:1x +=,解得:1211x x =-+=--; (2)()23(2)2x x x -=- ,移项得:()23(2)?20x x x ---=, 提公因式得:()()2320x x x ⎡⎤---=⎣⎦,即()()2260x x --=,∴20x -=或260x -=,解得:1223x x ==,.【点睛】本题主要考查了解一元二次方程-配方法、因式分解法,熟练掌握一元二次方程的各种解法是解题的关键. 23.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件. (1)每件衬衫降价多少元时,商场平均每天的盈利是1050元?(2)每件衬衫降价多少元时,商场平均每天盈利最大?最大盈利是多少?【答案】(1)每件衬衫降价5元或25元时,商场平均每天的盈利是1050元.(2)每件衬衫降价15元时,商场平均每天的盈利最大,最大盈利是1250元.【分析】(1)设每件衬衫应降价x 元,则每天多销售2x 件,根据盈利=每件的利润×数量建立方程求出其解即可;(2)根据盈利=每件的利润×数量表示出y 与x 的关系式,由二次函数的性质及顶点坐标求出结论.【详解】解:(1)设每件衬衫降价x 元根据题意,得(40)(202)1050x x -+=整理,得2301250x x -+=解得125,25x x ==答:每件衬衫降价5元或25元时,商场平均每天的盈利是1050元.(2)设商场每天的盈利为W 元.根据题意,得22(40)(202)2608002(15)1250W x x x x x =-+=-++=--+∵20-<∴当15x =时,W 有最大值,最大值为1250.答:每件衬衫降价15元时,商场平均每天的盈利最大,最大盈利是1250元.【点睛】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,销售问题的数量关系的运用,二次函数的运用,解答时求出函数的解析式是关键.24.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-. 【答案】1【分析】注意到23a +()可以利用完全平方公式进行展开,11a a +()(﹣)利润平方差公式可化为21a (﹣),,则将各项合并即可化简,最后代入12a =-进行计算. 【详解】解:原式2269148a a a a ++-=(﹣)-﹣22a +=将12a =-代入原式12212⎛⎫=⨯-+= ⎪⎝⎭【点睛】考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.25.如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB CD ⊥于点E ,连接AC 、OC 、BC . (1)求证:ACO BCD ∠=∠;(2)若9AE BE =,6CD =,求⊙O 的直径.【答案】(1)证明见解析;(2)10【分析】(1)先利用OA OC =得到ACO A ∠=∠,再利用直角三角形的两锐角互余即可求解;(2)利用垂径定理得到CE =DE=132CD =,再得到5OA OC OB BE ===,4OE OB BE BE =-=,在Rt OCE ∆中,利用222OE CE OC +=得到()()222435BE BE +=求出BE ,即可得到求解..【详解】(1)证明:∵OA OC =∴ACO A ∠=∠又∵AB 为直径,∴90A B ∠+∠=,又∵AB CD ⊥∴90BCD B ∠+∠=,∴A BCD ∠=∠∴ACO BCD ∠=∠(2)∵AB CD ⊥,AB 为直径∴CE DE =, ∴132CE CD == 又∵9AE BE =,∴10AB BE =,∴5OA OC OB BE ===,∴4OE OB BE BE =-=,∴在Rt OCE ∆中,222OE CE OC +=即()()222435BE BE +=,解得1BE =,∴1010AB BE ==.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.26.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,1.乙袋中的三张卡片所标的数值为﹣2,1,2.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值,把x 、y 分别作为点A 的横坐标和纵坐标.(1)用适当的方法写出点A (x ,y )的所有情况.(2)求点A 落在第三象限的概率.【答案】(1)(﹣7,﹣2),(﹣1,﹣2),(1,﹣2),(﹣7,1),(﹣1,1),(1,1),(﹣7,2),(﹣1,2),(1,2);(2)29. 【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【详解】解:(1)列表如下:﹣7 ﹣1 1﹣2 (﹣7,﹣2)(﹣1,﹣2)(1,﹣2)1 (﹣7,1)(﹣1,1)(1,1)2 (﹣7,2)(﹣1,2)(1,2)点A(x,y)共9种情况.(2)∵点A落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况,∴点A落在第三象限的概率是2.927.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°,使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?【答案】(203+17)cm.【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【详解】过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=30cm,∠CBM=30°,∴CM=BC•sin∠CBM=15cm.在Rt△ABF中,AB=40cm,∠BAD=60°,∴BF=AB•sin∠cm.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴(cm).答:此时灯罩顶端C到桌面的高度CE是(+17)cm.【点睛】本题考查了解直角三角形的应用以及矩形的判定与性质,通过解直角三角形求出CM、BF的长是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于函数4yx=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【答案】C【解析】试题分析:根据反比例函数的图像与性质,可由题意知k=4>0,其图像在一三象限,且在每个象限y随x增大而减小,它的图像即是轴对称图形又是中心对称图形.故选C点睛:反比例函数kyx=的图像与性质:1、当k>0时,图像在一、三象限,在每个象限内,y随x增大而减小;2、当k<0时,图像在二、四象限,在每个象限内,y随x增大而增大.3、反比例函数的图像即是轴对称图形又是中心对称图形.2.如图,BC是⊙O的直径,点A、D在⊙O上,若∠ADC=48°,则∠ACB等于()度.A.42 B.48 C.46 D.50【答案】A【分析】连接AB,由圆周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性质即可得出答案.【详解】解:连接AB,如图所示:∵BC是⊙O的直径,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故选:A .【点睛】本题考查了圆周角定理以及直角三角形的性质;熟练掌握圆周角定理是解题的关键.3.如图,在四边形ABCD 中,AD BC ∕∕,点,E F 分别是边,AD BC 上的点,AF 与BE 交于点O ,2,1AE BF ==,则AOE ∆与BOF ∆的面积之比为( )A .12B .14C .2D .4【答案】D【分析】由AD ∥BC ,可得出△AOE ∽△FOB ,再利用相似三角形的性质即可得出△AOE 与△BOF 的面积之比.【详解】:∵AD ∥BC ,∴∠OAE=∠OFB ,∠OEA=∠OBF ,∴~AOE FOB ∆∆,∴所以相似比为2AE BF=, ∴224BOFAOE S S ∆∆==. 故选:D .【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键. 4.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( )①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个【答案】C【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.5.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为31︒,缆车速度为每分钟40米,从山脚下A 到达山顶B 缆车需要15分钟,则山的高度BC 为( )米.A .60031tan ⋅︒B .60031tan ︒ C .60031sin ⋅︒D .600sin 31︒ 【答案】C 【分析】在Rt ABC ∆中,利用∠BAC 的正弦解答即可.【详解】解:在Rt ABC ∆中,90ACB ∠=︒,31BAC ∠=︒,4015600AB =⨯=(米), ∵sin BC BAC AB ∠=,sin 600sin31BC BAC AB ∴=∠⋅=⋅︒(米). 故选C .【点睛】本题考查了三角函数的应用,属于基础题型,熟练掌握三角函数的定义是解题的关键.6.如图,ABC ∆是等边三角形,点D ,E ,F 分别在AB ,BC ,AC 边上,且AD BE CF ==若DE BC ⊥,则DEF ∆与ABC ∆的面积比为( )A .12B .22C .13D 3【答案】C【分析】根据等边三角形的性质先判定DEF ∆是等边三角形,再利用直角三角形中30︒角的性质求得2BD BE =,3DE BE =,进而求得答案.【详解】ABC ∆是等边三角形AB BC AC ∴==,60∠=∠=∠=︒A B C ,AD BE CF ==,BD CE AF ∴==,∴BDE CEF AFD ∆≅∆≅∆,DE EF DF ∴==,DEF ∴∆是等边三角形,DEF ABC ∴∆∆,DE BC ⊥,60B ∠=︒,2BD BE ∴=,3DE BE =,AD BE =,3AB BE ∴=,:3DE AB ∴=,:333BE BE =,21:(31:33DEF ABC S S ∆∆∴===. 故选:C .【点睛】本题主要考查相似三角形的判定与性质,全等三角形的判定与性质,解题的关键是掌握等边三角形的判定与性质、直角三角形的性质及相似三角形的判定与性质.7.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积V (3m )的反比例函数,其图象如图所示,当气球内的气压大于120kPa 时,气球将会爆炸,为了安全起见,气球的体积应( )A .不小于35m 4B .大于35m 4C .不小于35m 4D .小于35m 4【答案】C 【解析】由题意设设(0)k p V V =>,把(1.6,60)代入得到k=96,推出96(0)p V V=>,当P=120时,45V ,由此即可判断. 【详解】因为气球内气体的气压p (kPa )是气体体积V (3m )的反比例函数,所以可设(0)k p V V =>,由题图可知,当 1.6V =时,60p =,所以 1.66096k =⨯=,所以96(0)p V V =>.为了安全起见,气球内的气压应不大于120kPa ,即96120V ,所以45V . 故选C.【点睛】此题考查反比例函数的应用,解题关键在于把已知点代入解析式.8.如图,AB 是O 的直径,四边形ABCD 内接于O ,若4BC CD DA ===,则O 的周长为( )A .4πB .6πC .8πD .9π【答案】C 【分析】如图,连接OD 、OC .根据圆心角、弧、弦的关系证得△AOD 是等边三角形,则⊙O 的半径长为BC=4cm ;然后由圆的周长公式进行计算.【详解】解:如图,连接OC 、OD .∵AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,BC=CD=DA=4,∴弧AD=弧CD=弧BC ,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD ,∴△AOD 是等边三角形,∴OA=AD=4,∴⊙O 的周长=2×4π=8π.故选:C .【点睛】本题考查了圆心角、弧、弦的关系,等边三角形的判定与性质.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等,即四者有一个相等,则其它三个都相等..9.反比例函数a y x=与正比例函数y ax a =+在同一坐标系中的大致图象可能是( ) A . B . C . D .【答案】A【分析】分a>0和a<0两种情况,根据反比例函数与正比例函数的图象的性质判断即可.【详解】解:当a>0时,反比例函数a y x =图象在一、三象限,正比例函数y ax a =+图象经过一、二、三象限;当a<0,反比例函数a y x =图象在二、四象限,正比例函数y ax a =+图象经过二、三、四象限. 故选:A .【点睛】本题考查的知识点是反比例函数与正比例函数图象的性质,熟记性质内容是解此题的关键.10.下列y 和x 之间的函数表达式中,是二次函数的是( )A .()()13y x x =+-B .31y x =+C .21y x x =+D .y =x-3【答案】A【分析】根据二次函数的定义(一般地,形如y=ax 2+bx+c (a 、b 、c 是常数,a≠0)的函数,叫做二次函数)进行判断.【详解】A. ()()13y x x =+-可化为223y x x =--,符合二次函数的定义,故本选项正确;B. 31y x =+,该函数等式右边最高次数为3,故不符合二次函数的定义,故本选项错误;C. 21y x x=+,该函数等式的右边是分式,不是整式,不符合二次函数的定义,故本选项错误; D. y =x-3,属于一次函数,故本选项错误.故选:A.【点睛】本题考查了二次函数的定义.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,化简后最高次必须为二次,且二次项系数不为0.11.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( )A .42B .45C .46D .48 【答案】C【解析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为4646462+=. 故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.12.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( )A .B .C .D .【答案】A【解析】解:将矩形木框立起与地面垂直放置时,形成B 选项的影子;将矩形木框与地面平行放置时,形成C 选项影子;将木框倾斜放置形成D 选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A 选项中的梯形,因为梯形两底不相等.故选A .二、填空题(本题包括8个小题)。
(汇总3份试卷)2020年绍兴市九年级上学期数学期末联考试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月【答案】D【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产. 故选D2.如图,以(1,-4)为顶点的二次函数y=ax 2+bx+c 的图象与x 轴负半轴交于A 点,则一元二次方程ax 2+bx+c=0的正数解的范围是( )A .2<x <3B .3<x <4C .4<x <5D .5<x <6【答案】C【解析】试题解析:∵二次函数y=ax 2+bx+c 的顶点为(1,-4), ∴对称轴为x=1,而对称轴左侧图象与x 轴交点横坐标的取值范围是-3<x <-2, ∴右侧交点横坐标的取值范围是4<x <1. 故选C .考点:图象法求一元二次方程的近似根.3.在平面直角坐标系内,将抛物线221y x =-先向右平移2个单位,再向下平移3个单位,得到一条新的抛物线,这条新抛物线的顶点坐标是( ) A .()2,4- B .()2,4-C .()2,3-D .()2,3-【答案】B【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标即可.【详解】抛物线221y x =-的顶点坐标为(0,−1),∵向右平移2个单位,再向下平移3个单位,∴平移后的抛物线的顶点坐标为(2,−4).故选B.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.4.已知反比例函数y=﹣2x的图象上有三个点(x1,y1)、(x2,y2)、(x3,y3),若x1>x2>0>x3,则下列关系是正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y2<y3<y1【答案】B【分析】根据函数的解析式得出图象所在的象限和增减性,再进行比较即可.【详解】解:∵反比例函数y=﹣2x,∴函数图象在第二、四象限,且在每个象限内,y随x的增大而增大,∵函数的图象上有三个点(x1,y1),(x2,y2)、(x3,y3),且x1>x2>0>x3,∴y2<y1<0,y3>0∴. y2<y1<y3故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.5.如图,△AOB缩小后得到△COD,△AOB与△COD的相似比是3,若C(1,2),则点A的坐标为()A.(2,4)B.(2,6)C.(3,6)D.(3,4)【答案】C【解析】根据位似变换的性质计算即可.【详解】由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点A的坐标为(1×3,2×3),即(3,6),故选:C.【点睛】本题考查的是位似变换的性质,掌握在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k 是解题的关键. 6.如图,P 为O 外一点,,PA PB 分别切O 于点,,A B CD 切O 于点E 且分别交PA PB 、于点,C D ,若4PA =,则PCD ∆的周长为( )A .5B .7C .8D .10【答案】C【分析】根据切线长定理得到PB=PA 、CA=CE ,DE=DB ,根据三角形的周长公式计算即可. 【详解】解:∵PA 、PB 分别切⊙O 于点A 、B , ∴PB=PA=4,∵CD 切⊙O 于点E 且分别交PA 、PB 于点C ,D , ∴CA=CE ,DE=DB ,∴△PCD 的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8, 故选:C . 【点睛】本题考查的是切线长定理的应用,切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.7.二次函数y =ax 2+bx+c 的部分对应值如表,利用二次的数的图象可知,当函数值y >0时,x 的取值范围是( ) x ﹣3 ﹣2 ﹣1 0 1 2 y﹣12﹣5343A .0<x <2B .x <0或x >2C .﹣1<x <3D .x <﹣1或x >3【答案】C【分析】利用表中数据和抛物线的对称性得到抛物线的对称轴为直线x =1,则抛物线的顶点坐标为(1,4),所以抛物线开口向下,则抛物线与x 轴的一个交点坐标为(3,1),然后写出抛物线在x 轴上方所对应的自变量的范围即可.【详解】∵抛物线经过点(1,3),(2,3), ∴抛物线的对称轴为直线2012x +==,∴抛物线的顶点坐标为(1,4),抛物线开口向下, ∵抛物线与x 轴的一个交点坐标为(﹣1,1), ∴抛物线与x 轴的一个交点坐标为(3,1), ∴当﹣1<x <3时,y >1. 故选:C . 【点睛】本题考查了二次函数与x 轴的交点、二次函数的性质等知识,解题的关键是要认真观察,利用表格中的信息解决问题.8.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(3,0)-,对称轴为1x =-.下列说法:①0abc <;②20a b -=;③420a b c ++<;④若()15,y -,()22,y 是抛物线上两点,则12y y >,错误的是( )A .①B .②C .③D .④【答案】C【分析】根据抛物线的对称轴和交点问题可以分析出系数的正负. 【详解】由函数图象可得:a>0,c<0,12bx a=-=- 所以b>0,2a-b=0, 所以abc<0,抛物线与x 轴的另一个交点是(1,0),当x=2时,y>0, 所以420a b c ++>,故③错误,因为()15,y -,()22,y 是抛物线上两点,且()15,y -离对称轴更远, 所以12y y > 故选:C 【点睛】考核知识点:二次函数图象.理解二次函数系数和图象关系是关键. 9.下列四个点,在反比例函数y=6x图象上的是( ) A .(1,-6) B .(2,4)C .(3,-2)D .(-6,-1)【答案】D【解析】由6y x=可得xy=6,故选D . 10.tan60︒的值为( ) A .33B .23C .3D .2【答案】C【分析】根据特殊角的三角函数值解答即可. 【详解】tan60°=3, 故选C. 【点睛】本题考查了特殊角三角函数值,熟记特殊角的三角函数值是解题关键.11.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =- B .0m =C .4m =D .5m =【答案】D【分析】利用m=5使方程x 2-4x+m=0没有实数解,从而可把m=5作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例.【详解】当m=5时,方程变形为x 2-4x+m=5=0, 因为△=(-4)2-4×5<0, 所以方程没有实数解,所以m=5可作为说明命题“关于x 的方程x 2-4x+m=0一定有实数根”是假命题的反例. 故选D . 【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.如图,一段抛物线y=﹣x 2+4(﹣2≤x≤2)为C 1,与x 轴交于A 0,A 1两点,顶点为D 1;将C 1绕点A 1旋转180°得到C 2,顶点为D 2;C 1与C 2组成一个新的图象,垂直于y 轴的直线l 与新图象交于点P 1(x 1,y 1),P 2(x 2,y 2),与线段D 1D 2交于点P 3(x 3,y 3),设x 1,x 2,x 3均为正数,t=x 1+x 2+x 3,则t 的取值范围是( )A .6<t≤8B .6≤t≤8C .10<t≤12D .10≤t≤12【答案】D【解析】首先证明x 1+x 2=8,由2≤x 3≤4,推出10≤x 1+x 2+x 3≤12即可解决问题. 【详解】翻折后的抛物线的解析式为y=(x ﹣4)2﹣4=x 2﹣8x+12,∵设x 1,x 2,x 3均为正数,∴点P 1(x 1,y 1),P 2(x 2,y 2)在第四象限, 根据对称性可知:x 1+x 2=8, ∵2≤x 3≤4, ∴10≤x 1+x 2+x 3≤12, 即10≤t≤12, 故选D .【点睛】本题考查二次函数与x 轴的交点,二次函数的性质,抛物线的旋转等知识,熟练掌握和灵活应用二次函数的相关性质以及旋转的性质是解题的关键.二、填空题(本题包括8个小题) 13.因式分解:334-=a b ab ____. 【答案】()()2121ab ab ab +-【分析】先提取公因式ab ,再利用平方差公式分解即可得答案. 【详解】4a 3b 3-ab =ab(a 2b 2-1) =ab(ab+1)(ab-1)故答案为:ab(ab+1)(ab-1) 【点睛】本题考查了因式分解,因式分解的方法有提取公因式法、公式法、十字相乘法、分组分解法等,根据题目的特点,灵活运用适当的方法是解题关键. 14.如图,AB 为O 的直径,30,CDB ∠=︒则CBA ∠=_______________________.【答案】60°【分析】连接AC ,根据圆周角定理求出∠A 的度数,根据直径所对的圆周角是直角得到∠ACB=90°,根据三角形内角和定理计算即可. 【详解】解:连接AC ,由圆周角定理得,∠A=∠CDB=30°, ∵AB 为⊙O 的直径, ∴∠ACB=90°,∴∠CBA=90°-∠A=60°, 故答案为:60°.【点睛】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、直径所对的圆周角是直角是解题的关键. 15.如图,已知反比例函数y=(k 为常数,k≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB的面积为1,则k=________________.【答案】-1【解析】试题解析:设点A 的坐标为(m ,n),因为点A 在y=的图象上,所以,有mn =k ,△ABO 的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.考点:反比例外函数k 的几何意义. 16.如图,直线AB 与双曲线()0ky k x=<交于点,A B ,点P 是直线AB 上一动点,且点P 在第二象限.连接PO 并延长交双曲线与点C .过点P 作PD y ⊥轴,垂足为点D .过点C 作CE x ⊥轴,垂足为E ,若点A 的坐标为()1,3-,点B 的坐标为(),1m ,设POD ∆的面积为1,S COE ∆的面积为2S ,当12S S >时,点P 的横坐标x 的取值范围为_________.【答案】-3<x<-1【分析】根据点A 的坐标求出()0ky k x=<中k ,再根据点B 在此图象上求出点B 的横坐标m ,根据12S S >结合图象即可得到答案. 【详解】∵A(-1,3)在()0ky k x=<上, ∴k=-3,∵B (m ,1)在()0ky k x=<上, ∴m=-3,由图象可知:当12S S >时,点P 在线段AB 上, ∴点P 的横坐标x 的取值范围是-3<x<-1, 故答案为:-3<x<-1. 【点睛】此题考查一次函数与反比例函数交点问题,反比例函数解析式的求法,正确理解题意是解题的关键. 17.从地面竖直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的关系式是h =30t ﹣5t 2,小球运动中的最大高度是_____米. 【答案】1【分析】首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h =30t ﹣5t 2的顶点坐标即可.【详解】解:h =﹣5t 2+30t =﹣5(t 2﹣6t+9)+1 =﹣5(t ﹣3)2+1, ∵a =﹣5<0,∴图象的开口向下,有最大值, 当t =3时,h 最大值=1. 故答案为:1. 【点睛】本题考查了二次函数的应用,解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果.18.△ABC 中,∠A 、∠B 都是锐角,若sinA =3,cosB =12,则∠C =_____.【答案】60°.【分析】先根据特殊角的三角函数值求出∠A 、∠B 的度数,再根据三角形内角和定理求出∠C 即可作出判断.【详解】∵△ABC 中,∠A 、∠B 都是锐角,sinA =32,cosB =12,∴∠A =∠B =60°.∴∠C =180°﹣∠A ﹣∠B =180°﹣60°﹣60°=60°. 故答案为:60°. 【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单. 三、解答题(本题包括8个小题)19.如图,已知BD 为⊙O 的直径,AB 为⊙O 的一条弦,点P 是⊙O 外一点P ,且PO AB ⊥,垂足为点C ,交⊙O 于点N ,PO 的延长线交⊙O 于点M ,连接BM AD AP 、、. (1)求证:PMAD ;(2)若2BAP M ∠=∠,求证:PA 是⊙O 的切线; (3)若6AD =,1tan 2M =,求⊙O 的半径.【答案】(1)见解析;(2)见解析;(3)5【分析】(1)根据圆周角定理可得出90DAB ∠=,再结合PO AB ⊥,即可证明结论;(2)连接OA ,利用三角形内角和定理以及圆周角定理可得出OAB OBA ∠=∠,BON BAP ∠=∠,得出90OAP OAB BAP OBA BON ∠=∠+∠=∠+∠=即可证明; (3)由已知条件得出132OC AD ==,设BC x =,则2MC x =,23OB OM x ==-利用勾股定理求解即可.【详解】(1)证明:∵BD 是直径,∴90DAB ∠=,∵PO AB ⊥,∴90DAB MCB ∠=∠=, ∴PMAD ;(2)证明:如图,连接OA , ∵OB OM =,∴M OBM ∠=∠,∴2BON M ∠=∠, ∵2BAP M ∠=∠, ∴BON BAP ∠=∠, ∵PO AB ⊥,∴90BON OBA ∠+∠=, ∵OA OB =, ∴OAB OBA ∠=∠,∴90OAP OAB BAP OBA BON ∠=∠+∠=∠+∠=, ∵OA 是半径, ∴PA 是⊙O 的切线; (3)解:∵PO AB ⊥ ∴AC BC = 又∵OD OB = ∴132OC AD == 设BC x = ∵1tan 2BC M MC ∠== ∴2MC x =23OB OM x ==-在Rt OBC ∆中,()222323x x +=- 解得,14x =,20x =(舍去) ∴⊙O 的半径为5.【点睛】本题是一道关于圆的综合题目,涉及到的知识点有平行线的判定、切线的判定、三角形内角和定理、勾股定理、圆周角定理等,掌握以上知识点是解此题的关键.20.已知12,x x 是关于x 的一元二次方程222(1)50x m x m -+++=的两个实数根.(1)求m 的取值范围;(2)若()()121128x x --=,求m 的值;【答案】(1)2m ≥;(2)6m =.【分析】(1)由方程有两个实数根可知0∆≥,代入方程的系数可求出m 的取值范围.(2)将等式左边展开,根据根与系数的关系12b x x a +=-,12c x x a =,代入系数解方程可求出m ,再根据m 的取值范围舍去不符合题意的值即可.【详解】解:(1)方程有两个实数根()()2221458160⎡⎤∴∆=-+-+=-≥⎣⎦m m m 2m ∴≥(2)由根与系数的关系,得:()1221x x m +=+,2125=+x x m()()121128x x --=()1212270x x x x -+-=()2521270m m ∴+-+-=126,4m m ∴==-2m ≥6m ∴=【点睛】本题考查一元二次方程根的判别式,根与系数的关系,熟记公式是解题的关键.21.关于x 的一元二次方程为(m-1)x 2-2mx +m+1=0(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?【答案】(1)∴12m 1x x 1m 1+==-,. (2)m=2或3 .【解析】(1)利用一元二次方程求根根式解方程.(2)利用(1)中x 的值来确定m 的值.【详解】解:(1)根据题意得m≠1,△=(–2m)2-4(m-1)(m+1)=4 ,∴()()122m 2m 12m 2x x 12m 1m 12m 1++-====---,. (2)由(1)知1m 12x 1m 1m 1+==+--, ∵方程的两个根都是正整数,∴2m 1-是正整数. ∴m-1=1或2. .∴m=2或3 .考点:公式法解一元二次方程,一元二次方程的解.22.图中是抛物线形拱桥,当水面宽为4米时,拱顶距离水面2米;当水面高度下降1米时,水面宽度为多少米?【答案】6【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再根据通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.【详解】解:建立平面直角坐标系.设二次函数的解析式为2y ax =(a ≠0). ∵图象经过点(2,-2),∴-2=4a ,解得:12a =-. ∴212y x =-. 当y=-3时,6x =答:当水面高度下降1米时,水面宽度为26.【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,难度一般.23.如图,在△ABC 中,O 是AB 边上的点,以O 为圆心,OB 为半径的⊙0与AC 相切于点D ,BD 平分∠ABC ,AD 3OD ,AB =12,求CD 的长.【答案】CD =3【分析】由切线的性质得出AC ⊥OD ,求出∠A =30°,证出∠ODB =∠CBD ,得出OD ∥BC ,得出∠C =∠ADO =90°,由直角三角形的性质得出∠ABC =60°,BC =12AB =6,得出∠CBD =30°,再由直角三角形的性质即可得出结果.【详解】∵⊙O 与AC 相切于点D ,∴AC ⊥OD ,∴∠ADO =90°,∵AD 3OD , ∴tanA =OD AD =33, ∴∠A =30°,∵BD 平分∠ABC ,∴∠OBD =∠CBD ,∵OB =OD ,∴∠OBD =∠ODB ,∴∠ODB =∠CBD ,∴OD ∥BC ,∴∠C =∠ADO =90°,∴∠ABC =60°,∴BC =12AB =6, ∴∠CBD =12∠ABC =30°, ∴CD =33=3. 【点睛】本题考查了圆的切线问题,掌握圆的切线的性质以及直角三角形的性质是解题的关键.24.如图1,ABC ∆中,,BD CE 是ABC ∆的高.(1)求证:~ABD ACE ∆∆.(2)ADE ∆与ABC ∆相似吗?为什么?(3)如图2,设5cos ,12,ABD DE DE ∠==的中点为,F BC 的中点为M ,连接FM ,求FM 的长. 【答案】(1)见解析;(2)~ADE ABC ∆∆,理由见解析;(3)35FM =【解析】(1)由题意,BD 、CE 是高,则∠ADB =∠AEC =90°,A ∠是公共角,即可得出△ABD ∽△ACE ; (2)由△ABD ∽△ACE 可推出AD AE AB AC=,又A A ∠=∠ ,根据相似三角形的判定定理即可证得; (3)连接DM 、EM ,根据等腰三角形的性质可得EM DM =,MF DE ⊥,根据三角函数可得23AD DE AB BC==,进而可求得9EM DM ==,由勾股定理即可求出FM 的长. 【详解】(1)BD 、CE 是ABC ∆的高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省绍兴市柯桥区2020届九年级上学期数学期末考试试卷一、单选题(共10题;共20分)1.若,则下列比例式中正确的是()A. B. C. D.2.下列事件中,是随机事件的是()A. 三角形任意两边之和大于第三边B. 任意选择某一电视频道,它正在播放新闻联播C. a是实数,|a|≥0D. 在一个装着白球和黑球的袋中摸球,摸出红球3.已知⊙O的半径为4cm,点P在⊙O上,则OP的长为()A. 2cmB. 4cmC. 6cmD. 8cm4.如图,△ABC的顶点A,B,C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A. 25°B. 50°C. 65°D. 75°5.如图,线段AB两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的后,得到线段CD,则点C的坐标为()A. (﹣2,﹣3)B. (﹣3,﹣2)C. (﹣3,﹣1)D. (﹣2,﹣1)6.如图,点G是△ABC的重心,下列结论中正确的个数有()① ;② ;③△EDG∽△CBG;④ .A. 1个B. 2个C. 3个D. 4个7.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC= AB,②AC= AB,③AB:AC=AC:BC,④AC≈0.618ABA. 1个B. 2个C. 3个D. 4个8.如图,将边长为6的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为()A. S1=S2B. S1<S2C. S1=S2D. S1>S29.若抛物线y=x2+ax+b与x轴两个交点间的距离为4,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x=2,将此抛物线向左平移2个单位,再向上平移3个单位,得到的抛物线过点()A. (1,0)B. (1,8)C. (1,﹣1)D. (1,﹣6)10.如图坐标系中,O(0,0),A(3,3 ),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则AC:AD的值是()A. 1:2B. 2:3C. 6:7D. 7:8二、填空题(共6题;共7分)11.抛物线y=(x﹣1)2﹣2与y轴的交点坐标是________.12.计算:2sin245°﹣tan45°=________.13.如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C; 直线DF交l1,l2,l3,于点D,E,F,已知,则=________.14.如图,点A,B,C均在的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为________.15.如图,扇形OAB中,∠AOB=60°,OA=4,点C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在半径OA上,则OE=________.16.如图,抛物线y=﹣(x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则的最大值为________.三、解答题(共8题;共95分)17.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.18.港珠澳大桥是世界上最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A 点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知≈1.732,tan20°≈0.36,结果精确到0.1)19.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.20.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE =105°.(1)求∠CAD的度数;(2)若⊙O的半径为4,求弧BC的长.21.我国互联网发展走到了世界的前列,尤其是电子商务,据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示:(1)当销售单价定为50元时,求每月的销售件数;(2)设每月获得的利润为W(元),求利润的最大值;(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)22.如图①,是一张直角三角形纸片,∠B=90°,AB=12,BC=8,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.(1)请通过计算说明小明的猜想是否正确;(2)如图②,在△ABC中,BC=10,BC边上的高AD=10,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,求矩形PQMN面积的最大值;(3)如图③,在五边形ABCDE中,AB=16,BC=20,AE=10,CD=8,∠A=∠B=∠C=90°.小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.23.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.24.已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F(1)如图1,求证:BD平分∠ADF;(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3 ,DN=9.求sin∠ADB的值.答案解析部分一、单选题1.【答案】C2.【答案】B3.【答案】B4.【答案】C5.【答案】A6.【答案】D7.【答案】C8.【答案】D9.【答案】A10.【答案】B二、填空题11.【答案】(0,﹣1)12.【答案】013.【答案】214.【答案】515.【答案】4 ﹣416.【答案】三、解答题17.【答案】(1)解:根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)解:由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为.18.【答案】解:如图,由题意得,在△ABC中,CD=100,∠ACD=30°,∠DCB=20°,CD⊥AB,在Rt△ACD中,AD=CD•tan∠ACD=100× ≈57.73(米),在Rt△BCD中,BD=CD•tan∠BCD≈100×0.36≈36(米),∴AB=AD+DB=57.73+36=93.73≈93.7(米),答:斜拉索顶端A点到海平面B点的距离AB约为93.7米.19.【答案】(1)证明:∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)解:由(1)可知:△ADE∽△ABC,∴由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=20.【答案】(1)解:∵AB=AC,∴= ,∴∠ABC=∠ACB,∵D为的中点,∴= ,∴∠CAD=∠ACD,∴=2 ,∴∠ACB=2∠ACD,又∵∠DAE=105°,∴∠BCD=105°,∴∠ACD= ×105°=35°,∴∠CAD=35°;(2)解:∵∠DAE=105°,∠CAD=35°,∴∠BAC=180°-∠DAE-∠CAD=40°,连接OB,OC,∴∠BOC=80°,∴弧BC的长= = .21.【答案】(1)解:设函数关系式为y=kx+b,把(40,600),(75,250)代入可得,解得:,∴y=﹣10x+1000,当x=50时,y=﹣10×50+1000=500(件);(2)解:根据题意得,W=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000.当x=70时,利润的最大值为9000;(3)解:由题意,解得:60≤x≤75,设成本为S,∴S=40(﹣10x+1000)=﹣400x+40000,∵﹣400<0,∴S随x增大而减小,∴x=75时,S有最小值=10000元,答:每月的成本最少需要10000元.22.【答案】(1)解:正确;理由:设BF=x(0<x<12),∵AB=12,∴AF=12﹣x,过点F作FE∥BC交AC于E,过点E作ED∥AB交BC于D,∴四边形BDEF是平行四边形,∵∠B=90°,∴▱BDEF是矩形,∵EF∥BC,∴△AFE∽△ABC,∴= ,∴,∴EF= (12﹣x),∴S矩形BDEF=EF•BF= (12﹣x)•x=﹣(x﹣6)2+24∴当x=6时,S矩形BDEF最大=24,∴BF=6,AF=6,∴AF=BF,∴当沿着中位线DE、EF剪下时,所得的矩形的面积最大;(2)解:设DE=a,(0<a<10),∵AD=10,∴AE=10﹣a,∵四边形MNPQ是矩形,∴PQ=DE=a,PN∥BC,∴△APN∽△ABC,∴= ,∴= ,∴PN=10﹣a,∴S矩形MNPQ=PN•PQ=(10﹣a)•a=﹣(a﹣5)2+25,∴当a=5时,S矩形MNPQ最大为25;(3)解:延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,连接IK,过点K作KL⊥BC于L,如图③所示:∵∠A=∠HAB=∠BCH=90°,∴四边形ABCH是矩形,∵AB=16,BC=20,AE=10,CD=8,∴EH=10、DH=8,∴AE=EH、CD=DH,在△AEF和△HED中,,∴△AEF≌△HED(ASA),∴AF=DH=8,∴BF=AB+AF=16+8=24,同理△CDG≌△HDE,∴CG=HE=10,∴BG=BC+CG=20+10=30,∴BI= BF=12,∵BI=12<16,∴中位线IK的两端点在线段AB和DE上,∴IK= BG=15,由(1)知矩形的最大面积为BI•IK=12×15=180.23.【答案】(1)解:直线y=﹣x+3与x轴、y轴分别交于B、C两点,令x=0,则y=3,令y=0,则x=3,∴点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3;(2)解:如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,此时EC+ED为最小,则△EDC的周长最小,令x=0,则﹣x2+2x+3=0,解得:,∴点A的坐标为(-1,0),∵y=﹣x2+2x+3 ,∴抛物线的顶点D的坐标为(1,4),则点C′的坐标为(0,﹣3),设直线C′D的表达式为,将C′、D的坐标代入得,解得:,∴直线C′D的表达式为:y=7x﹣3,当y=0时,x= ,故点E的坐标为( ,0);(3)解:①当点P在x轴上方时,如图2,∵点B、C的坐标分别为(3,0)、(0,3),∴OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=a,则PB=PA= a,由勾股定理得:AB2=AH2+BH2,∴16=a2+( a﹣a)2,解得:a2=8+4 ,则PB2=2a2=16+8 ;②当点P在x轴下方时,同理可得.综合以上可得,PB2的值为16+8 .24.【答案】(1)证明:如图1,∵AC⊥BD,DE⊥BC,∴∠AHD=∠BED=90°,∴∠DAH+∠ADH=90°,∠DBE+∠BDE=90°,∵∠DAC=∠DBC,∴∠ADH=∠BDE,∴BD平分∠ADF;(2)证明:连接OA、OB.∵OB=OC=OA,AC=BC,∴△OCB≌△OCA(SSS),∴∠OCB=∠OCA,∴OC平分∠ACB;(3)解:如图3中,连接BN,过点O作OP⊥BD于点P,过点O作OQ⊥AC于点Q.则四边形OPHQ是矩形,∵DN∥AC,∴∠BDN=∠BHC=90°,∴BN是直径,则OP= DN= ,∴HQ=OP= ,设AH=x,则AQ=x+ ,AC=2AQ=2x+9,BC=AC=2x+9,∴CH=AC﹣AH=2x+9﹣x=x+9在Rt△AHB中,BH2=AB2﹣AH2=( )2﹣x2.在Rt△BCH中,BC2=BH2+CH2,即(2x+9)2=( )2﹣x2+(x+9)2,整理得2x2+9x﹣45=0,(x﹣3)(2x+15)=0,解得:x=3(负值舍去),BC=2x+9=15,CH=x+9=12,BH=9∵∠ADB=∠BCH,∴sin∠ADB=sin∠BCH= = = . 即sin∠ADB的值为.。