行列式乘法规则的证明方法及其应用 毕业论文

合集下载

行列式的计算与技巧 毕业论文

行列式的计算与技巧  毕业论文

江西师范大学数学与信息科学学院学士学位论文行列式的计算与技巧The calculation of determinantand the skill姓名:* ***学号:090*0*0**2学院:数学与信息科学学院专业:数学与应用数学指导老师:*完成时间:2013-3-11行列式的计算与技巧【摘要】行列式是代数的一个重要的内容,也是讨论线性方程组的一个非常有力的工具,在数学的许多分支上有着极其广泛的应用。

同时,行列式的计算非常的灵活多变,有很强的技巧和规律性。

本文则主要讨论行列式的一些常用的方法,并坚持从实例出发,在以上几种常用方法的基础上,探讨并给出行列式的其他几种计算方法。

如:三角形法、升阶法、数学归纳法、递推法、提取因子法、范德蒙行列式法、拆行法等等,通过以上这些方法基本可以解决一般的n阶行列式的计算问题。

【关键词】行列式递推法范德蒙行列式降阶法The calculation of determinant and the skill【Abstract】Determinant is an important content of algebra, and discussthe system of linear equations is a very powerful tool, many branches of mathematics has the extremely widespread application. At the same time, the determinant calculation is very flexible, strong skills and regularity. This article mainly discuss some commonly used methods of the determinant, and proceed from the instance and on the basis of the above several kinds of commonly used method, and gives several calculation methods of the determinant are discussed. Such as: the triangle method, order method, mathematical induction, recursive method, extraction factor method, vandermonde determinant method, the split line method, and so on, through the above these methods can solve the general basic n-th-order determinant calculation problem.【Key words】:The determinant, Recursive method, Vandermonde determinant,Order reduction method目录1 引言 (1)2行列式的定义 (1)2.1 用定义法计算行列式 (1)3 行列式的相关性质 (3)3.1利用相关性质得到几种特殊解法 (3)3.1.1对角线法则计算行列式 (3)3.1.2 三角形法计算行列式 (3)3.1.2.1箭形(或爪形)行列式 (4)3.1.3加边法(升阶法)计算行列式 (5)3.1.4 分解行列法(又称拆项法)计算行列式 (6)3.1.5降阶法计算行列式 (7)4递推法计算行列式 (9)5 特征值法计算行列式 (10)6 数学归纳法计算行列式 (10)7 提取因子法计算行列式 (11)8 利用范德蒙行列式计算行列式 (12)9 利用拉普拉斯展开定理计算行列式 (14)10 因式分解法计算行列式 (15)11 乘法定理法(行列式乘积法)计算行列式 (16)12 小结 (17)参考文献 (18)1 引言行列式是一个基本的数学工具,是线性代数的重要研究对象,无论是在高精尖端科学领域,还是在日常工业生产、工程施工或经济管理中都有着广泛的应用。

行列式的计算技巧及其应用毕业论文【范本模板】

行列式的计算技巧及其应用毕业论文【范本模板】

本科生毕业论文(设计)题目: 行列式的计算技巧及应用学生姓名:谢芳学号: 201210010133专业班级:数学与应用数学12101班指导教师:颜亮完成时间: 2016 年 5 月目录摘要.。

.。

....。

.。

....。

.。

.。

.。

.。

.。

.。

.。

...。

..。

....。

.。

.。

..。

.。

.。

1 关键词.。

....。

.。

..。

.。

..。

..。

.。

.。

...。

....。

..。

..。

...。

..。

...。

1 0、前言。

..。

.。

.。

.。

....。

...。

.。

....。

.。

.。

..。

.。

....。

..。

.。

..。

1 1、基础知识及预备引理.。

....。

..。

.。

.。

.....。

....。

..。

..。

.。

.。

.。

.。

.。

2 1.1行列式的由来及定义。

..。

..。

...。

.。

..。

...。

.。

...。

....。

..。

....。

....。

..2 1.2行列式的性质。

.。

..。

.。

...。

..。

..。

...。

..。

.。

.。

....。

.。

.。

...。

.。

.。

.。

3 1。

3拉普拉斯定理及范德蒙德行列式的定义....。

.。

.。

..。

.。

.....。

.。

..。

4 2、行列式的计算方法。

.。

.。

...。

..。

...。

.。

..。

.。

...。

..。

..。

.....。

..。

.。

..。

.4 2。

1定义法。

.。

.。

...。

.。

...。

.。

...。

........。

.。

...。

.。

.。

.。

..。

..。

..4 2.2利用行列式的性质(化三角型)计算.。

.。

..。

..。

.。

.。

.。

.。

.。

..。

..。

..。

5 2.3拆行(列)法...。

..。

.。

..。

..。

.。

....。

.。

.。

...。

..。

.。

.。

..。

6 2。

4加边法(升阶法)。

..。

.。

....。

.。

..。

..。

...。

.。

.。

.。

..。

..。

..。

..。

.6 2。

5范德蒙德行列式的应用。

..。

...。

.。

.。

..。

.。

.。

.。

.。

.。

...。

.。

.。

..。

...。

.。

.7 3、n阶行列式的计算。

行列式计算方法研究毕业论文

行列式计算方法研究毕业论文

行列式计算方法研究毕业论文目录摘要………………………………………………………………………………………...错误!未定义书签。

Abstract……………………………………………………………………………………...错误!未定义书签。

第1章行列式的计算方法 (1)第1节利用行列式定义与性质计算 (1)第2节化三角形法 (3)第3节降阶法 (4)第4节递推公式法及数学归纳法 (5)第5节利用德蒙行列 (7)第6节行列式的特殊计算法 (8)第2章行列式的应用 (11)第1节行列式在代数中的应用 (11)第2节行列式在几何中的应用 (12)第3节行列式在多项式理论中的应用 (14)结论 (16)参考文献 (17)致谢 (18)第1章 行列式的计算方法第1 节 利用行列式定义与性质计算定义1[1] 对任何n 阶方阵()ij nA a =,其行列式记为ij nA a = .()()121212121n n n nt p p p ij p p p np p p A a a a a ==-∑ .其中12n p p p 是数组1,2,…,n 的全排列,∑表示对关于这些全排列的项(共有!n项)全体求和.性质1 行列互换,行列式不变,即nnn nn n nnn n n n a a a a a a a a a a a a a a a a a a 212221212111212222111211=.性质1表明,行列式中行与列的地位是对称的,所以凡是有关行的性质,对列同样成立.性质2 对换行列式两行的位置,行列式反号. 性质3 若行列式有两行相同,则行列式等于0.性质4 用一个数乘以行列式的某一行,等于用这个数乘以这个行列式,或者说某一行的公因式可以提出来,即nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a 212111************=. 推论1 若行列式某行(列)元素都是0,则行列式等于0. 推论2 若一个行列式的任两行成比例,则行列式值为0. 性质5 行列式具有分行相加性,即nnn n n n na a a cbc b c b a a a21221111211+++=nn n n n n a a a b b b a a a212111211+nnn n n n a a a c c c a a a212111211. 性质6 把行列式的某一行的若干倍加到另一行,行列式值不变, 即nnn n kn h k in i i nnn n n kn k k kn in k i k i na a a a a a a a a a a a a a a a a a ca a ca a ca a a a a212121112112121221111211=+++. 例1[1] 计算行列式0005004003002000=D . 解 展开式中项的一般形式是12341234j j j j a a a a .显然,如果51≠j ,那么011=j a ,从而这个项都等于零.因此只需考虑51=j 的那些项;同理,只需考虑24j =,33j =,42j =这些列指标的项.这就是说行列式不为零的项只有41322314a a a a 这一项,而6)3421(=τ这一项前面的符号应该是正的,所以1205432=⋅⋅⋅=D .例2[2] 计算n 级行列式cdddd c d dd d c dd d d c d =.解 这个行列式的特点是每一行有一个元素是c ,其余1-n 个是d . 根据性质6,把行列式第二列加到第一列,行列式不变,再把第三列加到第一列,行列式不变,直到第n 列也加到第一列,即得cddddn c d c d dn c dd c d n c dd d d n c d )1()1()1()1(-+-+-+-+= =[]11(1)11d d d d c d d d c n d d c d ddddc+-. 把第二行到第n 行都分别加上第一行的-1倍,就有[]dc dd c d d dc d d d d n c d ----+= 00001)1(.根据例1得[]1)()1(---+=n d c d n c d .把行列式的某一行(或列)的元素写成两数和的形式,然后利用行列式的性质5将原行列式写成两行列式之和, 进而使行列式简化以便计算.例3 计算行列式332132213211λλλ+++=a a a a a a a a a D .解332322321332132213210λλλλλ+++++=a a a a a a a a a a a a a a a D=[]3233221321))((a a a a a -+++λλλλλ.第2节 化三角形法化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法,这是计算行列式的重要方法之一. 利用行列式的定义容易求得上(下)三角形行列式或对角形行列式.对于各行(或各列)之和相等的行列式,将其各行(或列)加到第1行(或第1列)或第n 行(或第n 列),然后再化简.例1 计算行列式0112032120113110--=D . 解 4132310311020112423212-----=--↔r r r r r r D132014003110201123243----=+-r r r r 25132003110401143432-----=+↔r r r r =50. 原则上,每个行列式都可利用行列式的性质化为三角形行列式.但对于阶数高的行列式,在一般情况下,计算往往较繁,因此,在许多情况下,总是先利用行列式的性质将其作某种保值变形,再化为三角形行列式.例2 计算行列式xa a a a x a a aa x a a a a x D =.解 它的特点是各列元素之和为)3(x a +,因此把各行都加到第一行,然后第一行再提出)3(x a +,得xaa a ax a a aa x a x a D 1111)3(+=.将第一行乘以)(a -分别加到其余各行,化为三角形行列式,则ax a x a x x a D ---+=00000001111)3(=3))(3(a x x a -+.第3节 降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用行列式的性质化简,使行列式中有较多的零出现,然后再展开.例1 计算行列式4122743221010113-=D . 解221132214)1(21211432010021143223134--=---+--=c c c c D213767)1(22137067013423132-=----=---+-+=r r r r .第4节 递推公式法及数学归纳法应用行列式的性质,把一个n 阶行列式表示为具有相同结构的较低阶行列式(比如,1n -阶或1n -阶与2n -阶等)的线性关系式,这种关系式称为递推关系式.根据递推关系式及某个低阶初始行列式(比如二阶或一阶行列式)的值,便可递推求得所给n 阶行列式的值,这种计算行列式的方法称为递推法.使用递推方法首先要利用不完全归纳法寻找出行列式的猜想值,再用数学归纳法给出猜想的证明.但给定一个行列式要猜想其值是比较困难的,因此数学归纳法一般直是用来证明行列式等式.例1 计算n 阶行列式4314314314=n D . 解 按第一列展开2113443143143140134----=-=n n n n D D D D .于是有32211333------=-=-n n n n n n D D D D D D =1312=-=D D ,及)(3)(3322211------=-=-n n n n n n D D D D D D =n n D D 3)(3122=-=- .从上两式削去1-n D ,得)13(211-=+n n D . 对于形如 的所谓三角行列式,可直接展开得两项递推公式21--+=n n n D D D βα,然后采用如下方法求解.方法1 如果n 较小,则直接递推计算.方法2 用第二数学归纳法:即验证1=n 时结论成立,设k n ≤结论成立,若可证明出1+=k n 时结论也成立,则对任意自然数结论也成立.方法3 将21--+=n n n D D D βα变形为)(211----=-n n n n pD D q pD D ,其中α=+q p ,β=-pq .由韦达定理知p 和q 是一元二次方程02=--βαx x 的两个根.确定p 和q 后,令1)(--=n n pD D x f ,利用)1()(-=n qf n f 递推求出)(n f ,再由)(1n f pD D n n +=-递推求出n D .方法4 设n n D x =,代入021=----n n n D D D βα,得021=----n n n x x x βα,因此有02=--βαx x (称为特征方程),求出根1x 和2x (假设21x x ≠),则1122n n n D k x k x =+这里1k ,2k 可通过取1n =和2n =来确定.例2 求n 阶行列式的值0110110110110=n D .解 按第一行展开得2--=n n D D ,即.02=+-n n D D 作特征方程012=+x 解得i x i x -==21,,则n n n i b i a D )(-⋅+⋅= )1(当1=n 时,01=D ,代入)1(式得;0=-ib ia 当2=n 时,12-=D ,代入)1(得1-=--b a 联立求解得21==b a ,故1()2n nn D i i ⎡⎤=+-⎣⎦. 例3 计算n 阶行列式xa a a a a x x xD n n nn +---=--12211000010001. 解 用数学归纳法 当2=n 时21122)(1a a x x a x a x D ++=+-==212a x a x ++.假设k n =时,有k k k k k k a x a x a x a x D +++++=---12211 .则当1+=k n 时,把1+k D 按第一列展开,得11+++=k k k D xD D=1111)(+--+++++k k k k k a a x a x a x x =12111+-++++++k k k k k a x a x a x a x .第5节 利用德蒙行列式德蒙行列式具有逐行元素方幂递增的特点,因次遇到具有逐行(或列)元素方幂递增或者递减的行列式时,可以考虑将其转化为德蒙行列式并利用相应的结果求值.定义 1 德蒙行列式()1232222123111111231111n n ijnj i nn n n n na a a a D ab a a a a a a a a ≤≤----==-∏.例1 计算行列式2122122111222212121111111------+++++++++=n n n n n n n n n n x x x x x x x x x x x x x x x D. 解 把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第1-n 行的-1倍加到第n 行,便得德蒙行列式112112222121111---=n nn n n n x x x x x x x x x D=1()i j j i nx x ≤<≤-∏,其中“∏”表示连乘号.第6节 计算行列式杂例计算某些行列式有时特意把原行列式加上一行一列再进行计算,这种计算行列式的方法叫做加边法.当然,加边后要保证行列式的值不变,并且要使所得的高一阶行列式容易计算.要根据需要和原行列式的特点选取所加的行和列.加边法适用于某一行(列)有一个相同的字母的行列式,也可用于其列(行)的元素分别为1-n 个元素的倍数的情况.例1[3] 计算行列式db aD +++=111111111.解 给原行列式加边dba D +++=1110111011101111=+->ir r i 11db a 0010010011111---=+++121313111c c a c c dc c b db a d b a 000000001111111+++=abd d b a )1111(+++.例2[3]计算行列式229132413232213211x x D --=.解 由行列式定义知D 为x 的4次多项式,当1±=x 时,1,2行相同,有0=D ,所以1±=x 为D 的根;当2±=x 时,3,4行相同,有0=D , 所以2±=x 为0D =的根.故0D =有4个1次因式:1x +,1x -,2x +,2x -.设)2)(2)(1)(1(-+-+=x x x x a D ,令0=x ,则129132513232213211-==D ,即,12)2)(1(1-=--⋅⋅a ,所以3-=a .所以)2)(2)(1)(1(3-+-+-=x x x x D .当行列式各行(列)和相等,且除对角线外其余元素都相同可采用如下步骤. (1)在行列式D 的各元素中加上一个相同的元素x ,使新行列式D *除主对角线外,其余元素均为0;(2)计算D *的主对角线各元素的代数余子式()ij 1,2,,A i n =;(3) ∑=*-=nj i ij A x D D 1.例 3[3] 求行列式的值n 111211212111n n D n --=-.解 在n D 上的各个元素上加上(-1)后()()1(1)2001-n 001-n 0D1(1)1-n 0n n n n n -*==--.又12)1(11,21)1()1(-----====n n n n n n n A A A ,其它的是零,所以()()()()()()()()()1211211111)1(1121n -----*--=--+--=+=-∑n n n n n n nnij ij n n n n n A D D n .以上是行列式计算常用的方法,在实际计算中,不同的方法适应于具有不同特征的行列式,如定义法一般适用于0比较多的行列式.当某行或某列含有较多的零元素,可采用降阶的方法每一种方法都有其各自的优点及其独特之处,因此研究行列式的解法有非常重要的意义.第2章 行列式的应用第1节 行列式在代数中的应用2.1 用行列式解线性方程组如果线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* ,的系数行列式0≠D , 那么,这个方程组有解,并且解是唯一的,可表示为DD x D Dx D D x n n ===,,,2211 . 例1[4] 求一个二次多项式()f x ,使(1)1f =-,(1)9f -=,(2)3f =-. 解 设所求的二次多项式为,2012()f x a x a x a =++,则有012012012(1)1(1)9(2)423f a a a f a a a f a a a =++=-⎧⎪-=-+=⎨⎪=++=-⎩ ,可求得系数行列式11111160421D =-=≠,所以可用克拉默法则求解,又11119116321D -=-=-, 211119130431D -==--, 311111918423D -=-=-. 解得101D a D ==,215D a D ==-,323Da D==. 于是所求的二次多项式为2()53f x x x =-+.2.2 用行列式证明恒等式我们知道,把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式不变;如果行列式中有一行(列)的元素全部是零,那么这个行列式等于零,利用行列式的这些性质,我们可以构造行列式来证明等式.例2 已知0a b c ++=,求证abc c b a 3333=++. 证明 令abc c b a D 3333-++=,则0111)(=++=++++++==acb b ac c b a acbb ac c b a c b a c b a ac bb a cc b a D ,命题得证.第2节 行列式在几何中的应用利用行列式我们可以解决集合中的一些问题,例如求平面三角形面积,在解析几何中用行列式表示直线的方程,以及三线共点和三点共线的几何问题,接下来我们就来讨论一下行列式在这几方面的应用.1[5]用行列式表示三角形的面积以平面三点),(11y x P ,),(22y x Q ,),(33y x R 为顶点的PQR ∆的面积S 是11121332211y x y x y x . 证明 将平面),(11y x P ,),(22y x Q ,),(33y x R 三点扩充到三维空间,其坐标分别为),,(11k y x ,),,(22k y x ,),,(33k y x ,其中k 为任意常数, 由此可得)0,,(1212y y x x PQ --=,)0,,(1313y y x x PR --=.),0,0(13131212y y x x y y x x PR PQ ----=⨯.PQR ∆面积为><=PR PQ S ,21313121221yyxxyyxx----==1313121221yyxxyyxx----=11121332211yxyxyx.例1 (2001年全国高考试题)设抛物线pxy22=(0p>)的焦点为F,经过焦点F的直线交抛物线交于A、B两点,点C在抛物线的准线上,且xBC//轴,求证AC 经过原点.证明设A、B两点的坐标为),(11yxA、),(22yxB,由于点C在抛物线的准线上,且xBC//轴,则),2(2ypC-,由抛物线焦点弦性质221pyy-=,得122ypy-=,故ccccaaaayxyxyxyxyxyx+-ccccyxyxyxyx01111+-=22)22(112211221=-=+=ypyppyypypy,所以AC经过原点.2[5]用行列式表示直线方程直线通过两点),(11yxP和),(22yxQ的直线方程为11221101x yx yx y=)1(证明由两点式,直线PQ方程为221212x x y yx x y y--=--.将上式展开并化简,得2122121=+-+--xyyxyxyxxyxy,此式可进一步变形为0111122112121=+-y x y x x x yy y x,此式为行列式)1(按第三行展开所得结果,原式得证.3[6] 三线共点 平面三条互不平行的直线,0,0,333322221111=++=++=++c y b x a L c y b x a L c y b x a L 相交于一点的充要条件是1112223330a b c a b c a b c =. 4[6] 三点共线平面三点),(11y x P ,),(22y x Q ,),(33y x R 在一直线的充要条件是1122331101x y x y x y =. 第3节 行列式在多项式理论中的应用实系数二元二次多项式F Ey Dx Cy Bxy Ax +++++22在复数域是否可以分解因式,是初等数学的一个重要问题,它不仅关系到因式分解,而且关系到判别方程022=+++++F Ey Dx Cy Bxy Ax 表示曲线的类型及解二元二次方程,能简单明了地判定二元二次多项式的可分解性.例1[7] 求证)()()()(222cz by ax cy bx az cx bz ay cz by ax ++-++++++++))(())(()(cy bx az cz by ax cy bx az cx bz ay cx bz ay ++++-++++-++ ))((222222xz yz xy z y x ac bc ab c b a ---++---++=.证明 左边cxbz ay cz by ax cy bx az cy bx az cx bz ay cz by ax ++++++++++++=111xb a y ac z c b z a c y c b x b a cy bx az z a c y c b x b a z c b y b a x a c cz by ax )()()()()()()()()()()()(01-------+-+-++-------+-+-++= xb a y ac z c b z a c y c b x b a z a c y c b x b a z c b y b a x a c )()()()()()()()()()()()(-------+-+--------+-+-=⎝⎛------+------+------+------=)()()()()()()()(222a c b a c b a c z b a a c a c c b y a c c b c b b a x c b b a b a a c ⎝⎛------+⎪⎪⎭⎫------+ ⎝⎛------+⎪⎪⎭⎫------+)()()()()()()()(b a b a a c a c yz a c a c c b c b b a c b a c b a xy c b c b b a b a xz c b a c b a c b ⎪⎪⎭⎫------+)()(xy b a b a c b a c z b a a c a c c b y a c c b c b b a x c b b a b a a c )()()()()()()()(222------+------+------+------=xz c b a c b a c b yz b a c b a c b a )()()()(------+------+))((222222xz yz xy z y x ac bc ab c b a ---++---++=.结论本文对行列式的计算方法进行了概括和总结,主要从n阶行列式的特点出发,通过例题的形式列举了行列式的几种主要计算方法.不仅较完满地解决了一些较难的求解问题,而且解决了代数,解析几何等方面的问题,从数形结合方面又开辟了新的思考途径,使得行列式的作用不仅限于对方程组的研究,在初等数学的各个方面也看到了行列式的妙用.参考文献[1] 大学数学系几何与代数教研室代数小组,高等代数(第三版) [M],: 高等教育出社,(2003):27-38[2] 乔林,关于行列式的定义及其计算方法 [J],科技信息,2007(25):[3] 万广龙,行列式的计算方法与技巧 [J],China's Foreign Trade ,2011(04)[4] 梁波,例谈行列式的几个应用 [J],学院学报,2006,(4):27-28[5] 汤茂林,行列式在初等代数中的巧用 [J],师学院学报,2008,(3):9-10[6] 周立仁,行列式在初等数学中的几个应用 [J],理工学院学报,2008,(4):17-18[7] 彭丽清,行列式的应用 [J],师学院学报,2005,(5):40-41致谢在论文工作中,遇到了许许多多这样那样的问题,有的是专业上的问题,有的是论文格式上的问题,一直得到付丽老师的亲切关怀和悉心指导,使我的论文可以又快又好的完成,向她表示衷心的感谢!我还要感谢在一起愉快的度过大学生活的同学们,正是由于你们的帮助和支持,我才能克服一个一个的困难和疑惑,直至本文的顺利完成.感谢师长,同学,朋友们给了我无言的帮助,在这里请接受我诚挚的谢意!最后我还要感谢培养我长大含辛茹苦的父母,谢谢你们!。

行列式乘法规则的证明方法及其应用 2讲解

行列式乘法规则的证明方法及其应用 2讲解

本科毕业论文(设计)题目:行列式乘法规则的证明方法及其应用学生:学号:学院:数学学院专业:数学与应用数学入学时间:年月日指导教师:职称:完成日期:年月日诚信承诺我谨在此承诺:本人所写的毕业论文《行列式乘法规则的证明方法及其应用》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。

承诺人(签名):年月日行列式乘法规则的证明方法及其应用姓名:学号:指导老师:摘要:行列式的乘法规则是解决行列式相关问题的重要理论依据。

通过对它的学习,有利于我们更好的掌握和运用行列式的解题技巧去解决相关问题。

本文首先用三种方法证明了行列式的乘法规则,包括数学归纳法,利用拉普拉斯定理证明和用矩阵分块思想证明,最后,还给出了行列式乘法规则的应用。

关键字:行列式;拉普拉斯定理;分块矩阵Proof Method of Determinant Multiplication Rule and Its ApplicationName: Student Number: Advisor:Abstract:Determinant of the multiplication rule is the important theoretical basis to solve the problem of determinant associated. Through learning about it, be helpful for our better master and use the determinant problem solving skills to solve related problems. In this paper, using three methods proved determinant of the multiplication rule. Including mathematical induction, the use of Laplace theorem proving and the matrix block .And also gives a few examples.Key words:determinant; Laplace theorem; partitioned matrix目录1.引言及预备知识 (5)2.行列式乘法规则的证明方法 (5)2.1.利用数学归纳法证明 (5)2.2.利用拉普拉斯定理证明 (9)2.3.利用矩阵分块证明 (12)3.行列式乘法规则的应用举例 (13)4.结束语 (15)参考文献 (15)致谢 (17)1.引言及预备知识线性方程组是数学中最基础也是应用最广泛的内容之一,而行列式是解线性方程组的一个基本工具。

行列式的性质及应用论文

行列式的性质及应用论文

行列式的性质及应用论文行列式是线性代数中的重要概念,它具有许多重要的性质和广泛的应用。

本文将从性质和应用两个方面来探讨行列式的相关内容。

首先,我们来讨论行列式的性质。

行列式是一个标量,它可以表示矩阵所围成的平行四边形的面积或者体积。

行列式的计算可以通过拉普拉斯展开定理、三角矩阵法和克拉默法则等方法来进行。

下面是行列式的一些重要性质:1. 行列式的性质一:行列式的值与行列式的转置值相等。

即,对于一个n阶方阵A,有det(A) = det(A^T)。

2. 行列式的性质二:行列式的值等于它的任意两行(或两列)互换后的值的相反数。

即,如果将矩阵A的第i行和第j行进行互换,那么有det(A) = -det(A'),其中A'是矩阵A进行行互换后的矩阵。

3. 行列式的性质三:如果矩阵A的某一行(或某一列)的元素全为零,则行列式的值为零。

即,如果A的某一行(或某一列)所有元素都为零,则有det(A) = 0。

4. 行列式的性质四:行列式的某一行(某一列)的元素都乘以一个常数k,等于用该行(该列)的元素乘以k的行列式的值。

即,如果将矩阵A的第i行的所有元素都乘以k,那么有det(A) = k * det(A'),其中A'是矩阵A进行行数乘k后的矩阵。

行列式的这些性质使得我们可以通过简单的操作来计算复杂矩阵的行列式,从而简化线性代数的运算。

接下来,我们来探讨行列式的应用。

行列式在数学和工程中有广泛的应用,下面举几个例子:1. 线性方程组的解:行列式可以用来求解线性方程组的解。

对于一个n阶方阵A和一个n维向量b,如果det(A)≠0,那么方程组有唯一解;如果det(A) = 0,那么方程组无解或有无穷多解。

2. 矩阵的逆:行列式可以用来判断一个矩阵是否可逆。

对于一个n阶方阵A,如果det(A)≠0,那么A是可逆的,且其逆矩阵的行列式为1/det(A)。

3. 平面和体积的计算:行列式可以用来计算平面和体积的面积或体积。

行列式乘法的公式及应用研究 毕业论文

行列式乘法的公式及应用研究  毕业论文

行列式乘法的公式及应用研究摘要:本文主要介绍行列式的乘法公式及针对部分行列式的特点巧用行列式乘法公式来计算行列式。

关键词:行列式乘法公式应用英文题目:The multiplication formula and applicationof determinantAbstract: Determinant of multiplication formula were introduced in this paper,and according to the characteristics of partial determinant use opportunely multiplication formula to calculate the determinant.Key words:Determinant Multiplication Formula Application正文:1引言:行列式是高等代数课程里基本而重要的内容之一,在数学中有着广泛的应用,对于行列式的计算是应用行列式解决其他问题的基础,懂得如何计算行列式显得尤为重要,计算方法并非唯一,行列式有着自身的特点和性质,这就要求我们在掌握行列式的计算方法后,灵活运用,找到一种最简便的方法,使复杂问题简单化。

本文主要通过一些典型的例子,通过这些例子总结出行列式乘法公式在计算行列式中的应用。

2:行列式的乘法公式,,则其行列式具有性质。

这一结果,也给出了如何将两个阶行列式相乘得到一个阶行列式的方法,即其中这一公式也称为行列式乘法公式.灵活地运用该公式可以简化行列式的计算.3:行列式的乘法公式的应用类型一:应用D D T ,通过计算D 2而得到D 的值例1 计算4阶行列式。

分析 所给行列式易于利用行列式乘法公式求得,再确定出的符号即可求出.解 根据行列式乘法公式得所以根据行列式定义可知的展开式中有一项为故得:变式1:证明nnn n n n n nn n C C c C C C C C C C C C 22122242322111312111111++++=1,其中()!!!k n k n C kn -= 事实上)(1100k i C C C C C C C k k i k k k i ki k i ≥=+++ 等号左端课表为:nn n n C C C C C C212212111010010001.nnn nC C C C C C 0000000111122211211=1故nnn n n n n nn n C C c C C C C C C C C C 22122242322111312111111++++=1得证。

行列式的计算技巧——毕业论文.doc

行列式的计算技巧——毕业论文.doc

2016届本科毕业论文行列式的计算方法姓名:____ *** ____________ 院别:____数学与信息科学学院________ 专业:____数学与应用数学____________ 学号:___ 0000000000______________ 指导教师:__ __ *** ___ ____ 2016年 5月 1日2016届本科生毕业论文目录摘要.................................................... 错误!未定义书签。

关键词....................................................... 错误!未定义书签。

Abstract ..................................................... 错误!未定义书签。

Key words .................................................... 错误!未定义书签。

0 引言....................................................... 错误!未定义书签。

1 基本理论................................................... 错误!未定义书签。

2 行列式的计算技巧........................................... 错误!未定义书签。

2.1 化三角形法........................................... 错误!未定义书签。

2.2 递推法............................................... 错误!未定义书签。

2.3降阶法............................................... 错误!未定义书签。

行列式的计算方法研究毕业论文

行列式的计算方法研究毕业论文

昆明学院2010 届毕业设计(论文)设计(论文)题目行列式的计算方法研究姓名学号 S006054127所属系数学系专业年级数学与应用数学2006级数学<1>班指导教师2010年 5 月摘要在线性代数中,行列式是个函数。

在本质上,行列式描述的是在n维空间中一个线性变换所形成的“平行多面体”的“体积”。

行列式的概念出现的根源是解线性方程组。

本论文首先,对行列式的计算方法进行总结,并对计算方法进行举例。

其次,n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法。

最后,值得注意的是,在同一个行列式有时会有不同的求解方法,这就要根据行列式的特点选择适当的方法了。

关健词:行列式计算方法方法举例AbstractIn linear algebra, the determinant is a function.In essence, the determinant dimensional space described in a linear transformation.The formation of "parallel polyhedron" and "volume".The concept of the root of the determinant there is solution of linear equations.The paper on the summary of the calculation of the determinant and the calculation method for example.n-order determinant have many the calculation methods,Fewer non-zero elements Can be calculated using the definition(1.In accordance with the start of a column or a row. 2.Full expansion.). More determinant of the nature of the calculation is to use.In particular, observe the characteristics of the subject request,Flexible Selection Method.It is to be noted that In the same determinant sometimes will have different methods for solving. Here are some commonly used methods and illustrate with examples.Keywords:Determinant Calculation motheds illustrate with examples目录前言 (1)第一章普遍法求行列式1.1利用行列式的定义直接计算 (2)1.2利用行列式的性质计算 (2)1.3化为三角形行列式 (3)1.3.1直接化为阶梯型 (3)1.3.2相同去项化上三角形 (4)第二章特殊法求行列式2.1降阶法(按行(列)展开法) (5)2.1.1先简后展 (5)2.1.2 按第一行(列)展开 (6)2.2 递(逆)推公式法 (7)2.2.1等差数列递推 (7)2.2.2“一路直推” (9)2.2.3对角递推 (9)2.3利用德蒙行列式 (11)2.3.1变形德蒙行列式 (11)2.3.2 系数德蒙行列式 (12)2.3.3利用行列式性质凑德蒙行列式 (13)第三章其他方法求行列式3.1加边法(升阶法) (14)3.1.1“0”和“字母”加边 (14)3.1.2“0”和“1”加边 (14)3.2 数学归纳法 (16)3.2.1第一数学归纳法 (16)3.2.2第二数学归纳法 (17)3.2.3猜测归纳法 (17)3.3拆开法 (19)3.3.1对角拆开 (19)3.3.2按行(列)拆 (19)参考文献.............................................................................................21. 辞. (22)前言在线性代数中,行列式是一个函数,其定义域为的矩阵A,值域为一个标量,写作)det(A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业论文(设计)题目:行列式乘法规则的证明方法及其应用学生: *** 学号: *************学院:数学与计算科学学院专业:数学与应用数学入学时间: 2009 年 9 月 16 日指导教师: ** 职称:讲师完成日期: 2013 年 4 月 10 日诚信承诺我谨在此承诺:本人所写的毕业论文《行列式乘法规则的证明方法及其应用》均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。

承诺人(签名):2013 年4 月10 日行列式乘法规则的证明方法及其应用摘要:行列式的乘法规则是解决行列式相关问题的重要理论依据。

通过对它的学习,有利于我们更好的掌握和运用行列式的解题技巧去解决相关问题。

本文首先用三种方法证明了行列式的乘法规则,包括数学归纳法,利用拉普拉斯定理证明和用矩阵分块思想证明。

最后,还给出了行列式乘法规则的几个应用。

关键词:行列式;拉普拉斯定理;分块矩阵The Proof Methods of Determinant Multiplication Rule and ItsApplicationsAbstract:The multiplication rule of the determinant is the important theoretical basis to solve the associated problems. Through learning about it, it is helpful for us to better master and apply the solving skills of the determinant problem to solve related problems. Firstly, this paper use three methods to prove the multiplication rule of the determinant, including mathematical induction, the Laplace theorem and the through of partitioned matrices .Finally, give some applications of the multiplication rule of determinant.Key words:determinant; Laplace theorem; partitioned matrix目录1.引言及预备知识 (1)2.行列式乘法规则的证明方法 (1)2.1.利用数学归纳法证明 (1)2.2.利用拉普拉斯定理证明 (5)2.3.利用矩阵分块证明 (8)3.行列式乘法规则的应用举例 (9)4.结束语 (11)参考文献 (11)致谢 (13)1.引言及预备知识线性方程组是数学中最基础也是应用最广泛的内容之一,而行列式是解线性方程组的一个基本工具。

随着数学的不断发展,行列式的应用已经不仅仅局限于线性代数,在数学分析、解析几何、概率论与数理统计、数学建模等领域都有着广泛的应用。

在学习行列式的过程中,它自身的特点和性质是基础中的基础,决定着其它有关内容的掌握程度。

当然行列式的计算也是相当重要之内容。

由于行列式的计算方法多样,应用灵活,我们要根据题目的具体要求选择简便的方法,使问题解决简单化。

行列式的乘法规则是行列式中最基础也是必须掌握的内容之一,它的应用非常广泛,是解决相关问题的依据。

通过对行列式乘法规则的掌握,也有利于我们进一步的理解和应用行列式去探讨其它一些重要问题。

本文主要采用数学归法,利用拉普拉斯定理和利用矩阵分块这三种方法完整的证明了行列式乘法规则,同时给出了它们的常见应用。

命题1( 行列式的乘法规则)若两个r 阶行列式111211112121222212221212,r r r r r r rrr r rrn n n m m m n n n m m m N Μn n n m m m ==,则N 与M 的乘积NM 是一个r行列式111212122212,r r r r rrc c c c c c C c c c =其中1,,1,2,,.rik ij jk j n m i k r ===∑ c2.行列式乘法规则的证明方法 2.1.利用数学归纳法证明要证明行列式的乘法规则,需先证明以下两个引理: 引理1 证明:11121212221211121212221200000000010001001r r r r rr r r r r rrn n n n n n n n n D m m m m m m m m m =--- 111211112121222212221212.r r r r r r rr r r rrn n n m m m n n n m m m n n n m m m =.证明 首先我们对r的个数作数学归纳法。

当1r =时,左边=11111111=1n n m m -=右边,故引理结论成立。

假设当1r k =-时,引理结论成立,即111,11,11,1111,11,11,1111,1111,11,11,11,11,100001001=..k k k k k k k k k k k k k k k k n n n n D m m m m n n m m n n m m ----------------=-- 现在我们来看当r k =时,引理结论是否成立。

首先我们按第一行展开,则有11121212221211121212221222232323332311111212122212000000000100010001000000000100010001r r r r rr r r r r rrk k k k kk k k k k n n n n n n n n n D m m m m m m m m m n n n n n n n n n n m m m m m m m m =---=---212,12,121,1,11+i 1111121222,131323,112,11+11112121220000+(-1)1000001000000000++(-1)100010kk i i k k k i k i kk ik k kk k k k k k k kkk m n n n n n n n n n m m m m n n n n n n n n n n m m m m m -+-+---+----2121k k k kkm m m m -22232212,12,12323331+i 1111,1,12321222,11112131323,1212221+112,112(1)(1). ki i k k ik k i k i kkk k kkk r k rkkk k k k r r rrn n n n n n n n n n n n n n n n n n n n n n m m m n n n m m m n n n n m m m -+-+---⎡⎢⎢=++-⎢⎢⎢⎣⎤⎥⎥++-⎥⎥⎥⎦111211112121222212221212..r r r rr r rr r r rrn n n m m m n n n m m m n n n m m m =可见,当r k =时,引理的结论也成立。

因此,根据数学归纳法原理,引理1得证。

引理2 证明:11121212221112112212221112121222121200000000=,1000101r rr r r rr r r r r r rrr r rrn n n n n n c c c n n n c c c D m m m m m m c c c m m m =---其中1,,1,2,,.rik ij jk j c n m i k r ===∑证明 首先对D 作以下变换:第一列乘以11m ,第二列乘以21m ,依此类推,第r 列乘以1r m ,之和加到第1r +列;第一列乘以12m ,第二列乘以22m ,依此类推,第r 列乘以2r m ,之和加到第2r +列;如此下去,第一列乘以1,1r m -,第二列乘以2,1r m -,依此类推,第r 列乘以,1r r m -,之和加到第21r -列;第一列乘以1r m ,第二列乘以2r m ,依此类推,第r 列乘以rr m ,之和加到第2r 列,则有11121111211112122221222111121211111121111212122100000010000001000rrrr jj jj jjr j j j rrrrjjjjjjrj j j rrrr r rr rjj rjj rjjrj j j r r n n n nm nmnmn n n nm nm nm D n n n nm nm nm n n n c c c n n ==========---=∑∑∑∑∑∑∑∑∑2212221212,10000001000000000001r r r r rr r r rrn c c c n n n c c c ---然后再依次按1r +行,2r +行,…,21r -行展开,则有原式=11112111121221222212221212=.100r r r rrr rr r r rr r r rrn c c c c c c n c c c c c c n c c c c c c -因此,由引理1及引理2知行列式的乘法规则成立。

2.2.利用拉普拉斯定理证明 首先需证明以下引理:引理3 行列式D 的任一子式M 与它的代数余子式A 的乘积中的每一项都是行列式D 的展开式中的一项,而且符号也一致。

证明 令M 为行列式D 的任一r 阶子式,M '为M 对应的余子式。

令M 展开后 的一般项为12121122()()(1),r r r r p p p q q q p q p q p q a a a ττ+-(1)其中12,,,r p p p 为从小到大的行排列,12,,,r q q q 为次序不定的列排列。

再令M '展开后的一般项为12121122()()(1),r r n r r n r r r r n n p p p q q q p q p q p q a a a ττ+++++++++-(2)其中12,,,r r n q q q ++为从小到大的列排列,12,,,r r n p p p ++为次序不定的行排列。

又1212,,,,,,,r r r n p p p p p p ++与1212,,,,,,,r r r n q q q q q q ++都为1,2,,n 的一个排列。

相关文档
最新文档