2014-2015年江西省赣州市南康市六中片区八年级(上)数学期中试卷及参考答案

合集下载

江西省 八年级(上)期中数学试卷-(含答案)

江西省 八年级(上)期中数学试卷-(含答案)

八年级(上)期中数学试卷一、选择题(本大题共6小题,共18.0分)1.一直角三角形的两直角边长为3和4,则第三边长为()A. B. 5 C. 或5 D. 72.一个正数的两个平方根分别是2a-1与-a+2,则a的值为()A. B. 1 C. 2 D.3.已知x轴上的点P到y轴的距离为3,则点P的坐标为()A. B. C. 或 D. 或4.已知点A的坐标是(-5,10),点B的坐标是(x,x-1),直线AB∥y轴,则x的值是()A. B. 11 C. 5 D.5.如果=3,那么(m+n)2等于()A. 3B. 9C. 27D. 816.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B.C.D. 7二、填空题(本大题共6小题,共18.0分)7.计算:-=______.8.在△ABC中,∠C=90°,c=25cm,a:b=3:4,则S△ABC=______.9.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=______.10.如图所示,数轴上有A、B、C三个点,且点B是线段AC的中点,点A表示-3,点B表示的是-,则点C表示的数是______ .11.如图:有一个圆柱,底面圆的直径AB=,高BC=12,P为BC的中点,蚂蚁从A点爬到P点的最短距离是______.12.Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD的长为______.三、解答题(本大题共11小题,共84.0分)13.计算:3-9+2.14.解方程:27(x+1)3+64=0.15.如图是每个小正方形边长都为1的6×5的网格纸,请你在下列两幅图中用没有刻度的直尺各作一个斜边为5的格点直角三角形.(要求两个直角三角形不全等)16.已知点P(2x,3x-1)是平面直角坐标系上的点.(1)若点P在第一象限的角平分线上,求x的值;(2)若点P在第三象限,且到两坐标轴的距离和为11,求x的值.17.意大利著名画家达•芬奇验证勾股定理的方法如下:(1)在一张长方形的纸板上画两个边长分别为a、b的正方形,并连接BC、FE.(2)沿ABCDEF剪下,得两个大小相同的纸板Ⅰ、Ⅱ,请动手做一做.(3)将纸板Ⅱ翻转后与Ⅰ拼成其他的图形.(4)比较两个多边形ABCDEF和A′B′C′D′E′F′的面积,你能验证勾股定理吗?18.已知a=+1,b=-1,求下列代数式的值:(1)ab(2)a2+ab+b2(3)+.19.如图,已知四边形ABCD是长方形,△DCE是等边三角形,A(0,0),B(4,0),D(0,2),求E点的坐标.20.如图,A(-1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标.(2)求△ABC的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为7?若存在,请直接写出点P的坐标;若不存在,请说明理由.21.如图,在△ABC中,AB=10,BC=12,BC边上的中线AD=8.(1)证明:△ABC为等腰三角形;(2)点H在线段AC上,试求AH+BH+CH的最小值.22.探究题:=3,.=0.5,=______,=______,=0.根据计算结果,回答:(1)一定等于a吗?如果不是,那么=______;(2)利用你总结的规律,计算:①若x<2,则=______;②=______.(3)若a,b,c为三角形的三边长,化简:++23.如图1,AB=BC=CD=DA,∠A=∠B=∠BCD=∠ADC=90°,点E是AB上一点,点F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,如果点G在AD上,且∠GCE=45°,那么EG=BE+DG是否成立,请说明理由.(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图2,AD∥BC (BC>AD),∠B=90°,AB=BC=12,点E是AB上一点,且∠DCE=45°,BE=4,求DE的长.答案和解析1.【答案】B【解析】解:已知直角三角形的两直角边为3、4,则根据勾股定理得,第三边长为=5,故选:B.已知直角三角形的两条直角边,根据勾股定理即可求第三边长的长度.本题考查了勾股定理在直角三角形中的运用,正确应用勾股定理是解题关键.2.【答案】A【解析】解:由题意可知:2a-1-a+2=0,解得:a=-1故选(A)根据一个正数的平方根的性质即可求出a的值.本题考查平方根的性质,解题的关键是一个正数的平方根互为相反数从而列出方程求出a的值.3.【答案】D【解析】解:∵点P到y轴的距离为3,∴点P的横坐标为±3,∵在x轴上,∴纵坐标为0,∴点P的坐标为(3,0)或(-3,0),故选D.根据到y轴的距离易得横坐标的可能的值,进而根据x轴上点的纵坐标为0可得可能的坐标.考查点的坐标的相关知识;掌握x轴上点的特点是解决本题的关键.4.【答案】A【解析】解:∵AB∥y轴,∴点B横坐标与点A横坐标相同,为-5,可得:x=-5,故选A在平面直角坐标系中与y轴平行,则它上面的点横坐标相同,可求B点横坐标.此题考查平面直角坐标系中平行特点,解决本题的关键是在平面直角坐标系中与y轴平行,则它上面的点横坐标相同.5.【答案】D【解析】解:∵=3,∴m+n=32,即m+n=9,∴(m+n)2=81.故选:D.根据算术平方根的定义,即可解答.本题考查了算术平方根的定义,解决本题的关键是熟记算术平方根的定义.6.【答案】A【解析】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.7.【答案】-【解析】解:原式=-2=-.故答案为:-原式化简后,合并即可得到结果.此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.8.【答案】150cm2【解析】解:设a=3xcm,则b=4xcm,∵∠C=90°,∴a2+b2=c2,即(3x)2+(4x)2=252,解得:x=±5(负值舍去),∴x=5,∴a=3×5=15(cm),b=4×5=20(cm),∴S△ABC=ab=×15×20=150(cm2);故答案为:150cm2.设a=3xcm,则b=4xcm,由勾股定理得出方程,解方程求出a、b,S△ABC=ab,即可得出结果.本题考查了勾股定理、直角三角形面积的计算方法、解方程;熟练掌握勾股定理,由勾股定理得出方程求出a、b是解决问题的关键.9.【答案】-6【解析】解:∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=-3,∴ab=-6,故答案为:-6.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a=2,b=-3,进而可得答案.此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.10.【答案】-2+3【解析】解:设C点坐标为x,由题意,得=-,解得x=-2+3,故答案为:-2+3.根据线段中点的性质,可得答案.本题考查了实数与数轴,利用线段中点的性质得出=-是解题关键.11.【答案】10【解析】解:已知如图:∵圆柱底面直径AB=,高BC=12,P为BC的中点,∴圆柱底面圆的半径是,BP=6,∴AB=×2וπ=8,在Rt△ABP中,AP==10,∴蚂蚁从A点爬到P点的最短距离为10.故答案为:10.把圆柱的侧面展开,连接AP,利用勾股定理即可得出AP的长,即蚂蚁从A点爬到P点的最短距离.本题考查的是平面展开-最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.12.【答案】4或2或【解析】解:①以A为直角顶点,向外作等腰直角三角形DAC,∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°,又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=2×=,在Rt△BAC中,BC==2,∴BD===2;③以AC为斜边,向外作等腰直角三角形ADC,∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=ACsin45°=2×=,又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°,又∵在Rt△ABC中,BC==2,∴BD===.故BD的长等于4或2或.分情况讨论,①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.分情况考虑问题,主要利用了等腰直角三角形的性质、勾股定理等知识.13.【答案】解:原式=3×4-9×+2×2=12-3+4=13【解析】根据二次根式的运算法则即可求出答案.本题考查二次根式的加减法,解题的关键是将二次根式化为最简二次根式,本题属于基础题型.14.【答案】解:27(x+1)3+64=0,27(x+1)3=-64,(x+1)3=-,x+1=-,解得:x=-.【解析】先把64移到等号的右边,再系数化为1,根据立方根的定义求出x+1的值,继而可得出x的值.本题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方,由开立方和立方是互逆运算,用立方的方法求这个数的立方根,注意一个数的立方根与原数的性质符号相同.15.【答案】解:如图所示,Rt△ABC的三边长为3、4、5;如图所示,Rt△DEF的三边长为、2、5.故△ABC和△DEF即为所求.【解析】由勾股定理可得,当直角三角形的直角边为3和4时,其斜边为5;当直角三角形的直角边为和2时,其斜边为5,据此进行画图即可.本题主要考查了复杂作图以及勾股定理的运用,解题时注意:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.16.【答案】解:(1)由题意得,2x=3x-1,解得x=1;(2)由题意得,-2x+[-(3x-1)]=11,则-5x=10,解得x=-2.【解析】(1)根据角平分线上的点到角的两边的距离相等可得第一象限角平分线上的点的横坐标与纵坐标相等,然后列出方程求解即可;(2)根据第三象限的点的横坐标与纵坐标都是负数,然后列出方程求解即可.本题考查了坐标与图形性质,主要利用了角平分线上的点到角的两边的距离相等的性质,各象限内点的坐标特征.17.【答案】解:∵四边形ABOF、四边形CDEO是正方形,∴OB=OF,OC=OE,∠BOF=∠COE=90°,∴∠BOC=∠FOE=90°,在△BOC和△FOE中,∴△BOC≌△FOE(SAS),同理可证△BOC≌△B′A′F′≌△E′D′C′,∴BC=EF,B′C′=B′F′=F′E′=E′C′,设BC=EF=c,∴四边形B′C′E′F′是菱形,B′C′=c,∵∠DEF=∠A′F′E′,∠OEF=∠A′F′B′,∴∠B′F′E′=90°,∴四边形B′C′E′F′是正方形,∵两个多边形ABCDEF和A′B′C′D′E′F′的面积相等,∴正方形ABOF的面积+正方形OCDE的面积=正方形B′C′F′的面积,∴a2+b2=c2.【解析】只要证明四边形B′C′E′F′是正方形,再证明△BOC≌△FOE,同理可证△BOC≌△B′A′F′≌△E′D′C′,推出BC=EF,B′C′=B′F′=F′E′=E′C′,设BC=EF=c,推出四边形B′C′E′F′是菱形,B′C′=c,由两个多边形ABCDEF和A′B′C′D′E′F′的面积相等,推出正方形ABOF的面积+正方形OCDE的面积=正方形B′C′F′的面积,即a2+b2=c2.本题考查勾股定理的证明,全等三角形的判定和性质,正方形的性质等知识,解题的关键是证明正方形ABOF的面积+正方形OCDE的面积=正方形B′C′F′的面积,体现了数形结合的思想,属于中考常考题型.18.【答案】解:(1)∵a=+1,b=-1,∴ab=(+1)(-1)=2-1=1,(2)∵a=+1,b=-1,∴a+b=+1+-1=2,∴a2+ab+b2=(a+b)2-ab=8-1=7;(3)+====6.【解析】(1)把a,b的值代入,根据平方差公式进行计算即可;(2)把a2+ab+b2化为(a+b)2-ab,再代入计算即可;(3)先通分,再计算即可.本题考查了二次根式的化简求值,掌握完全平方公式的变形是解题的关键.19.【答案】解:分为两种情况:如图,当E在DC的上方时,过E作EF⊥DC于F,∵A(0,0),B(4,0),D(0,2),四边形ABCD是矩形,∴DC=AB=4,AD=BC=2,∵△DCE是等边三角形,∴DE=DC=EC=4,DF=FC=2,在Rt△DFE中,由勾股定理得:EF==2,即E的坐标为(2,2+2),当E在CD的下方时,E的坐标为(2,2-2).【解析】得出两种情况,当E在DC的上方时,当E在CD的下方时,过E作EF⊥DC于F,求出DF和EF,即可得出E的坐标.本题考查了矩形的性质,等边三角形的性质,点的坐标等知识点,能求出符合的所有情况是解此题的关键.20.【答案】解:(1)∵A(-1,0),点B在x轴上,且AB=4,∴-1-4=-5,-1+4=3,∴点B的坐标为(-5,0)或(3,0).(2)∵C(1,4),AB=4,∴S△ABC=AB•|y C|=×4×4=8.(3)假设存在,设点P的坐标为(0,m),∵S△ABP=AB•|y P|=×4×|m|=7,∴m=±.∴在y轴上存在点P(0,)或(0,-),使以A、B、P三点为顶点的三角形的面积为7.【解析】(1)由点A的坐标结合AB的长度,即可得出点B的坐标;(2)由线段AB的长度以及点C的纵坐标,利用三角形的面积公式即可求出△ABC的面积;(3)假设存在,设点P的坐标为(0,m),根据△ABP的面积为7,即可得出关于m的含绝对值符号的一元一次方程,解之即可得出点P的坐标.本题考查了坐标与图形性质、两点间的距离、三角形的面积以及解一元一次方程,解题的关键是:(1)利用两点间的距离求出点B的坐标;(2)套用三角形的面积公式求值;(3)根据△ABP的面积找出关于m的含绝对值符号的一元一次方程.21.【答案】解:(1)∵AD是BC边上的中线,∴BD=DC=6.在△ABD中,BD2+AD2=62+82=102=AB2,∴△ABD为直角三角形.∴∠ADB=90°.∴AD⊥BC.∵AD⊥BC,BD=DC,∴AB=AC.∴△ABC为等腰三角形.(2)∵AH+BH+CH=AC+BH=10+BH,∴当BH最小时,AH+BH+CH有最小值.由垂线段的性质可知当BH⊥AC时,BH有最小值.∴BH•AC=BC•AD,即×10•BH=×12×8,解得:BH=9.6.∴AH+BH+CH的最小值=10+9.6=19.6.【解析】(1)由三角形的中线的定义可知BD=DC=6,然后依据勾股定理的逆定理可证明△ABD为直角三角形,故此AD⊥BC,则AD为BC的垂直平分线,依据线段垂直平分线的性质可知AB=AC;(2)由题意可得到CH+AC=AC=10,故此当BH最小时,AH+BH+CH有最小值,依据垂线段的性质可知当BH⊥AC时,BH有最小值,在△ABC中,依据面积法可求得BH的最小值.本题主要考查的是最短路径问题,解答本题主要应用了勾股定理的逆定理、线段垂直平分线的性质,垂线段的性质,明确当BH⊥AC时,AH+BH+CH有最小值是解题的关键.22.【答案】6;;|a|;2-x;π-3.14【解析】解:==6,==,(1)由题意可知:=|a|,(2)①当x<2时,∴x-2<0,∴=|x-2|=-(x-2)=2-x,②∵3.14-π<0,∴=|3.14-π|=π-3.14,(3)∵a+b>c,b<c+a,b+c>a,∴a+b-c>0,b-c-a<0,b+c-a>0,∴原式=|a+b-c|+|b-c-a|+|b+c-a|=a+b-c-(b-c-a)+(b+c-a)=a+b+c故答案为:6;(1)|a|;(2)①2-x;②π-3.4根据二次根式的性质即可求出答案.本题考查二次根式的性质,解题的关键是正确理解题目所给出的相关例子,本题属于基础题型.23.【答案】(1)证明:在△CBE和△CDF中,,∴△CBE≌△CDF,∴CE=CF;(2)解:EG=BE+DG成立,∵△CBE≌△CDF,∴CE=CF,∠BCE=∠DCF,BE=DF,∵∠BCD=90°,∠GCE=45°,∴∠BCE+∠DCG=45°,∴∠DCF+∠DCG=45°,即∠FCG=45°,∴∠FCG=∠GCE,在△ECG和△FCG中,,∴△ECG≌△FCG,∴GE=GF,∴EG=BE+DG;(3)作CF⊥AD交AD的延长线于F,由(2)得,DE=BE+DF,设DE=x,∵AB=12,BE=4,∴AE=8,∴DF=x-4,AD=12-(x-4)=16-x,由勾股定理得,82+(16-x)2=x2,解得,x=10,∴DE的长为10.【解析】(1)证明△CBE≌△CDF,根据全等三角形的性质证明;(2)根据全等三角形的性质得到CE=CF,∠BCE=∠DCF,BE=DF,证明△ECG≌△FCG,根据全等三角形的性质解答;(3)根据(2)的结论和勾股定理计算即可.本题考查的是全等三角形的判定和性质、勾股定理的应用,掌握三角形全等的判定定理和性质定理是解题的关键.。

江西省赣州市八年级上学期期中数学试卷

江西省赣州市八年级上学期期中数学试卷

江西省赣州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列图形既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (2分) (2019八上·海安期中) 已知三角形的两边长分别为3和4,则第三边长x的范围是()A . 3<x<4B . 1<x<7C . 1<x<5D . 无法确定3. (2分) (2018八上·阳江月考) 正多边形的一个内角等于135°,则该多边形是正()边形.A . 8B . 9C . 10D . 114. (2分) (2020八上·新罗月考) 如图,,垂足分别为、、相交于点,则图中全等三角形共有()A . 3对B . 4对C . 5对D . 6对5. (2分)(2018·株洲) 如图,直线被直线所截,且,过上的点A作AB⊥ 交于点B,其中∠1<30°,则下列一定正确的是()A . ∠2>120°B . ∠3<60°C . ∠4-∠3>90°D . 2∠3>∠46. (2分)(2017·昆山模拟) 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A . 8B . 6C . 4D . 2二、填空题 (共6题;共6分)7. (1分) (2020八上·邳州期末) 若点与关于轴对称,则 ________.8. (1分) (2020九上·浦东月考) 如图,在△ABC中,AB=6,DE∥AC,将△DBE绕点B顺时针旋转得到△D'BE',点D的对应点落在边BC上,已知BE'=5,D'C=4,则BC的长为________。

9. (1分)(2020·马龙模拟) 如图,等腰△ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为________.10. (1分) (2020八上·漳平期中) 已知,,的角平分线和的角平分线的反向延长线交于点P ,且,则 ________度.11. (1分) (2020八下·镇江月考) 如图,正方形 ABCD 的边长为2,△ABE是等边三角形,点 E在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD+PE 的和最小,则这个最小值为________.12. (1分)(2017·黔东南) 如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件________使得△ABC≌△DEF.三、作图题 (共5题;共45分)13. (5分)现要在三角地ABC内建一中心医院,使医院到A、B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.14. (10分)(2016·高邮模拟) 如图,△ABC中,AB=4,AC=2,BC=2 ,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB于点E.(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;(2)求图中阴影部分的面积(结果可保留根号和π).15. (10分) (2018·长清模拟) 如图(1)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.(2)如图,AB是的直径,PA与相切于点A,OP与相交于点C,连接CB,∠OPA=40°,求∠ABC的度数.16. (5分)如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.17. (15分) (2016八上·延安期中) 已知:如图,已知△ABC,(1)分别画出与△ABC关于y轴对称的图形△A1B1C1(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.四、解答题 (共6题;共60分)18. (15分)(2019·铁西模拟) 点P是矩形ABCD对角线AC所在直线上的一个动点(点P不与点A,C重合),分别过点A,C向直线BP作垂线,垂足分别为点E,F,点O为AC的中点.(1)如图1,当点P与点O重合时,请你判断OE与OF的数量关系;(2)当点P运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;(3)若点P在射线OA上运动,恰好使得∠OEF=30°时,猜想此时线段CF,AE,OE之间有怎样的数量关系,直接写出结论不必证明.19. (5分)(2017·兴庆模拟) 如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF,CE.求证:AF∥CE.20. (10分) (2017八上·西湖期中) 如图,和都是等边三角形,点是的边上的一点,连接,.(1)求证:.(2)求、所夹锐角的度数,并写出推理过程.21. (10分)(2018·吉林模拟) 如图,正方形ABCD中,E是BD上一点,AE的延长线交CD于F,交BC的延长线于G,M是FG的中点.(1)求证:① ∠1=∠2;② EC⊥MC.(2)试问当∠1等于多少度时,△ECG为等腰三角形?请说明理由.22. (10分)(2020·昆明模拟) 如图,△ABC中.∠BCA=90°,以AB为直径的⊙O与∠BAC的平分线交于点D,作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠B=30°,⊙O的半径为4,求弧CD,线段CE及切线DE围成的阴影部分面积.23. (10分)(2016·西城模拟) 在等腰直角三角形ABC中,AB=AC,∠BAC=90°.点P为直线AB上一个动点(点P不与点A,B重合),连接PC,点D在直线BC上,且PD=PC.过点P作PE⊥PC,点D,E在直线AC的同侧,且PE=PC,连接BE.(1)情况一:当点P在线段AB上时,图形如图1 所示;情况二:如图2,当点P在BA的延长线上,且AP<AB时,请依题意补全图2;.(2)请从问题(1)的两种情况中,任选一种情况,完成下列问题:①求证:∠ACP=∠DPB;②用等式表示线段BC,BP,BE之间的数量关系,并证明.参考答案一、选择题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共6题;共6分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:三、作图题 (共5题;共45分)答案:13-1、考点:解析:答案:14-1、答案:14-2、考点:解析:答案:15-1、答案:15-2、考点:解析:答案:16-1、考点:解析:答案:17-1、答案:17-2、答案:17-3、考点:解析:四、解答题 (共6题;共60分)答案:18-1、答案:18-2、答案:18-3、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:。

南康区八年级上册数学试卷

南康区八年级上册数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √9B. 2.5C. √2D. 0.333...2. 下列各式中,正确的是()A. a² = b²,则a = bB. a² = b²,则a = ±bC. a² = b²,则a = ±cD. a² = b²,则a = c3. 已知一元二次方程ax² + bx + c = 0(a≠0)的两根为x₁和x₂,则x₁ + x₂的值是()A. aB. -b/aC. c/aD. b/c4. 下列函数中,定义域为全体实数的是()A. y = √(x - 2)B. y = 1/xC. y = x²D. y = √(x² - 1)5. 已知直角三角形ABC中,∠C为直角,且a² + b² = c²,则三角形ABC的面积S为()A. c/2B. c²/2C. ab/2D. √(ab)6. 下列各式中,正确的是()A. √(4²) = 4B. √(4²) = -4C. √(4²) = 2D. √(4²) = -27. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 1/xC. y = x²D. y = √x8. 已知一次函数y = kx + b(k≠0)的图象经过点(1,3),则k的值为()A. 2B. 3C. 1D. -29. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²10. 下列各式中,正确的是()A. (a + b)(a - b) = a² - b²B. (a + b)(a - b) = a² + b²C. (a - b)(a + b) = a² - b²D. (a - b)(a + b) = a² + b²二、填空题(每题3分,共30分)11. 3√(4/9) = ______12. 已知x² - 5x + 6 = 0,则x的值为 ______13. 下列函数中,值域为[1, 3]的是 ______14. 已知一次函数y = 2x - 3的图象与x轴交于点(3,0),则该函数的截距b 为 ______15. 下列各式中,正确的是 ______16. 已知直角三角形ABC中,∠C为直角,且a² + b² = c²,则三角形ABC的面积S为 ______17. 下列各式中,正确的是 ______18. 下列各式中,正确的是 ______19. 下列各式中,正确的是 ______20. 下列各式中,正确的是 ______三、解答题(每题10分,共30分)21. 已知一元二次方程2x² - 3x - 2 = 0,求该方程的两个根。

2014-2015学年八年级上学期期中联考数学试题(含答案)

2014-2015学年八年级上学期期中联考数学试题(含答案)

2014-2015学年八年级上学期期中联考 数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,142、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( )A.4个 B.3个 C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH ==C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A .∠A =∠1+∠2 B .2∠A =∠1+∠2 C .3∠A =2∠1+∠2 D .3∠A =2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根 木条这样做的道理是_______________。

南康区期中考试数学试卷

南康区期中考试数学试卷

一、选择题(每题5分,共50分)1. 已知函数f(x) = 2x - 3,若f(x)的值比x的值大1,则x的值为:A. 1B. 2C. 3D. 42. 下列函数中,定义域为实数集R的是:A. y = √xB. y = 1/xC. y = x^2D. y = |x|3. 已知数列{an}的通项公式为an = 2n - 1,则数列的前10项之和为:A. 55B. 90C. 100D. 1104. 在等腰三角形ABC中,AB = AC,若∠B = 40°,则∠A的度数为:A. 40°B. 50°C. 60°D. 70°5. 下列不等式中,恒成立的是:A. x^2 + 1 > 0B. x^2 - 1 > 0C. x^2 + 1 < 0D. x^2 - 1 < 06. 已知一元二次方程x^2 - 3x + 2 = 0,则它的两个根为:A. 1和2B. 2和1C. -1和-2D. -2和-17. 下列命题中,正确的是:A. 函数y = x^2在R上单调递增B. 函数y = √x在R上单调递增C. 函数y = log2x在R上单调递增D. 函数y = 1/x在R上单调递增8. 已知等差数列{an}的公差为d,若a1 = 2,a3 = 8,则d的值为:A. 2B. 3C. 4D. 59. 在等腰直角三角形ABC中,AB = AC,若∠B = 45°,则BC的长度为:A. √2B. √3C. √6D. √1210. 已知函数f(x) = x^2 - 2x + 1,则f(2)的值为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共50分)11. 若a > b,则a - b > _______。

12. 已知函数f(x) = x^2 + 2x + 1,则f(-1)的值为 _______。

13. 在等腰三角形ABC中,AB = AC,若∠B = 30°,则∠A的度数为 _______。

江西省赣州市 八年级(上)期中数学试卷

江西省赣州市 八年级(上)期中数学试卷

八年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共6小题,共18.0分)1.六边形的内角和是( )A. 540∘B. 720∘C. 900∘D. 1080∘2.下列图案是轴对称的图形的有( )A. B. C. D.3.如图,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是( )A. 10cmB. 15cmC. 20cmD. 25cm4.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合.其中正确的是( )A. ①②B. ②③C. ③④D. ①④5.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为( )A. 2cmB. 4cmC. 6cmD. 8cm6.如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为( )A. 60∘B. 67.5∘C. 72∘D. 75∘二、填空题(本大题共6小题,共18.0分)7.点M(1,2)关于x轴对称的点的坐标为______.8.一个数字映在镜子里的像如图所示,则这个数字是______.9.若三角形两边长为3cm与5cm,则这个三角形周长L的取值范围是______.10.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC是对称轴,∠A=35°,∠BCO=30°,那么∠AOB=______.11.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF=______度.12.如图所示,在△ABC中,AB=AC,点D,E,F在边BC上,且∠BAD=∠CAD,BE=CF,AD⊥BC,则图中共有______组全等三角形.三、解答题(本大题共11小题,共84.0分)13.如图,AB=AD,∠B=∠D,∠BAD=∠CAE,求证:BC=DE.14.已知一个等腰三角形的两边长a、b满足方程组2a−b=3a+b=3,求此等腰三角形的周长是多少?15.(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(______,______),B′(______,______),C′(______,______).16.把一张形状是矩形的纸片剪去其中某个角,剩下的部分是一个多边形,则这个多边形的内角和是多少?17.如图,D、E分别是AB、AC的中点,CD⊥AB于D,BE⊥AC于E,求证:AC=AB.18.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在线段BC上,且AE=CF,连接EF.(1)求证:BE=BF.(2)若∠EAC=30°,则∠CFE是多少度?19.如图,三角形是等边三角形,P是△ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.(1)若BQ=2,求PE的长.(2)试判断△EFP的形状,并说明理由.20.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边△ABC的BC、CA边上,且BM=CN,AM、BN交于点Q,求证:∠BQM=60°.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出许多问题,譬如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?请你选择其中一个问题并画出图形,给出证明.23.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:操作发现:(1)在等腰△ABC中,AB=AC,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图①所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是______.(填写序号即可)①AF=AG=12AB;②MD=ME;③整个图形是轴对称图形;数学思考:定义:在三角形中,连接其两边中点的线段称为该三角形的中位线,它具有平行第三边且等于第三边一半的性质.如:△ABC中,已知点D,E分别为AB,AC的中点,则DE称为△ABC的中位线,故有DE∥BC且DE=BC;现在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图②所示,M是BC 的中点,连接MD和ME,则MD与ME具有怎样的数量关系?请给出证明过程.答案和解析1.【答案】B【解析】解:由内角和公式可得:(6-2)×180°=720°,故选:B.多边形内角和定理:n变形的内角和等于(n-2)×180°(n≥3,且n为整数),据此计算可得.此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n-2)•180°(n≥3,且n为整数)..2.【答案】A【解析】解:根据轴对称图形的定义:A是轴对称图形,B、C、D都不是轴对称图形.故选:A.根据轴对称图形的概念求解.注意找到对称轴可很快的判断是否是轴对称图形.本题考查轴对称图形的概念,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.3.【答案】C【解析】解:如图,过点M作DM⊥AB于D,∵∠C=90°,AM是∠CAB的平分线,∴DM=CM=20cm,即M到AB的距离为20cm.故选:C.过点M作DM⊥AB于D,根据角平分线上的点到角的两边距离相等可得DM=CM.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.4.【答案】D【解析】解:①全等三角形的对应边相等,正确;②、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;③、全等三角形的周长相等,但周长的两个三角形不一定能重合,不一定是全等三角形.故该选项错误;④、全等三角形是指能够完全重合的两个三角形,故正确;故正确的是①④.故选D.依据全等三角形的定义:能够完全重合的两个三角形.即可求解.本题主要考查全等三角形的定义,全等是指形状相同,大小相同,两个方面必须同时满足.5.【答案】B【解析】解:∵直角三角形中30°角所对的直角边为2cm,∴斜边的长为2×2=4cm.故选:B.根据直角三角形30°角所对的直角边等于斜边的一半解答.本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,是基础题,熟记性质是解题的关键.6.【答案】B【解析】解:第一次折叠后,∠EAD=45°,∠AEC=135°;第二次折叠后,∠AEF=67.5°,∠FAE=45°;故由三角形内角和定理知,∠AFE=67.5度.故选:B.折叠是一种对称变换,它属于轴对称,根据轴对称的性质,可利用角度的关系求解.本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.7.【答案】(1,-2)【解析】解:点M(1,2)关于x轴对称的点的坐标为:(1,-2).故答案为:(1,-2).利用关于x轴对称点的性质,关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.8.【答案】15【解析】解:根据镜面对称的性质,“2”和“5”关于镜面对称,又在平面镜中的像与现实中的事物恰好顺序颠倒,则这个数字是15.故答案为:15.根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称;据此分析并作答.此题主要考查了镜面对称,注意体会物体与镜面平行放置和垂直放置的不同.9.【答案】10<L<16【解析】解:设第三边长为x,根据三角形的三边关系,得5-3<x<5+3,即2<x<8.所以这个三角形周长l的取值范围是5+3+2<l<5+3+8,即10<l<16.已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围;从而可以求出三角形的周长的取值范围.此类求三角形周长的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.10.【答案】130°【解析】解:依题意有∠AOB=2(∠A+∠ACO)=2(∠A+∠BCO)=130°.故答案为:130°.根据轴对称的性质可知,轴对称图形的两部分是全等的.主要考查了轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.11.【答案】80【解析】解:根据折叠的性质,可得:AD=DF,∵D是AB边上的中点,即AD=BD,∴BD=DF,∵∠B=50°,∴∠DFB=∠B=50°,∴∠BDF=180°-∠B-∠DFB=80°.故答案为:80.由折叠的性质,即可求得AD=DF,又由D是AB边上的中点,即可得DB=DF,根据等边对等角的性质,即可求得∠DFB=∠B=50°,又由三角形的内角和定理,即可求得∠BDF的度数.此题考查了折叠的性质,等腰三角形的判定与性质,以及三角形内角和定理.此题难度不大,解题的关键是注意数形结合思想的应用.12.【答案】4【解析】解:∵AB=AC,∠BAD=∠CAD,∴AD⊥BC,又∵BE=CF,∴图形关于AD成轴对称,∴全等的三角形有△ABE≌△ACF,△ABD≌△ACD,△ABF≌△ACE,△AED≌△AFD共4对.故答案为:4根据等腰三角形三线合一的性质可得AD⊥BC,然后根据对称性找出全等的三角形即可得解.本题考查了全等三角形的判定,等腰三角形的性质,注意找出全等三角形时要按照一定的顺序,做到不重不漏.13.【答案】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,AB=AD∠BAC=∠DAEAC=AE,∴△ABC≌△ADE(SAS).∴BC=DE.【解析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.【答案】解:解方程组得2a−b=3a+b=3,解得a=2b=1所以等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5.【解析】先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案.本题考查了等腰三角形的性质及解二元一次方程组,难度一般,关键是掌握分类讨论的思想解题.15.【答案】2 3 3 1 -1 -2【解析】解:(1)如图所示:(2)A′,B′,C′三点的坐标:A′(2,3),B′(3,1),C′(-1,-2).(1)从三角形的各顶点向y轴引垂线并延长相同的长度,线段的端点就是要找的三顶点的对应点,顺次连接;(2)从画出的图形上找出新图形的三顶点的坐标.本题主要考查了轴对称图形的画法及对直角坐标系的认识.16.【答案】解:把一张形状是矩形的纸片剪去其中某一个角,剩下的部分的形状可能是三角形或四边形或五边形,故这个多边形的内角和可能是180°或360°或540°.【解析】把一张形状是矩形的纸片剪去其中某一个角,剩下的部分的形状可能是三角形或四边形或五边形,再根据多边形的内角和定理判断即可.本题考查了多边形的内角和定理,判断剩下的部分的形状可能是三角形或四边形或五边形是解题的关键.17.【答案】证明:如图,连接BC∵CD⊥AB于D,D是AB的中点,即CD垂直平分AB,∴AC=BC(中垂线的性质),∵E为AC中点,BE⊥AC,∴BC=AB(中垂线的性质),∴AC=AB.【解析】作辅助线:连接BC,由CD垂直于AB,且D为AB中点,即CD所在直线为AB 的垂直平分线,根据线段垂直平分线上的点到线段两端点的距离相等,得到AC=BC,又E为AC中点,且BE垂直于AC,即BE所在的直线为AC的垂直平分线,同理可得BC=AB,等量代换即可得证.本题主要考查了中垂线的性质.做这类题,要学会作辅助线,以便使解题更简便.18.【答案】(1)证明:∵∠ABC=90°,∴在Rt△ABE和Rt△CBF中AB=CBCF=AE,∴Rt△ABE≌Rt△CBF(HL),∴BE=BF;(2)∵AB=CB,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠CAE=30°,∴∠BAE=45°-30°=15°,∵Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,BE=BF,∴△BEF是等腰直角三角形,∴∠FEB=45°,∴∠CFE=180°-45°=135°.【解析】(1)可根据“HL”判断Rt△ABE≌Rt△CBF,则可得到BE=BF;(2)由AB=CB,∠ABC=90°,可判断△ABC为等腰直角三角形,则∠BAC=∠BCA=45°,可得到∠BAE=15°,再根据Rt△ABE≌Rt△CBF得到∠BCF=∠BAE=15°,BE=BF,进而得出∠FEB=45°,进而解答即可.本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质.19.【答案】解:(1)∵△ABC是等边三角形,BP是∠ABC的平分线,∴∠EBP=30°,∵PE⊥AB于点E,∴∠BEP=90°,∴PE=12BP,∵QF为线段BP的垂直平分线,∴BP=2BQ,∵BQ=2,∴BP=4,∴PE=2.(2)结论:△EFP是直角三角形.理由:连接PF,EF.∵BA=BC,BD平分∠ABC,∠ABC=60°,∴∠ABP=∠CBD=30°,∵PE⊥AB,∴∠PEB=90°,∴∠BPE=60°,∵FQ垂直平分线段BP,∴FB=FP,∴∠FBQ=∠FPQ=30°,∴∠EPF=∠EPB+∠BPF=90°,∴△EFP是直角三角形.【解析】(1)先根据△ABC是等边三角形,BP是∠ABC的平分线,可知∠EBP=30°,由PE⊥AB于点E,进而可得PE=BP,然后由线段BP的垂直平分线交BC于点F,可得BP=2BQ=4,进而可求PE的长.(2)结论:△EFP是直角三角形.想办法证明∠BPE=60°,∠BPF=3°即可;本题考查的是等边三角形的性质、角平分线的性质、直角三角形的性质、线段的垂直平分线的性质等知识,熟知等边三角形的三个内角都是60°是解答此题的关键.20.【答案】解:(1)∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)过E作BC边的垂线,F为垂足,则EF为所求的E到BC边的距离,过A作BC边的垂线AG,∴AD为△ABC的中线,BD=5,∴BC=2BD=2×5=10,∵△ABC的面积为40,∴12BC•AG=40,即12×10•AG=40,解得AG=8,∵EF⊥BC于F,∴EF∥AG,∵E为AD的中点,∴EF是△AGD的中位线,∴EF=12AG=12×8=4.∴E到BC边的距离为4.【解析】(1)根据三角形内角与外角的性质解答即可;(2)过E作BC边的垂线即可得:E到BC边的距离为EF的长,然后过A作BC 边的垂线AG,再根据三角形中位线定理求解即可.本题考查了三角形外角的性质、三角形中位线定理及三角形的面积公式,涉及面较广,但难度适中.添加适当的辅助线是解题的关键.21.【答案】解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.【解析】(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE,同理可得出DE=2EF即可得出结论.本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.22.【答案】解:(1)∵在△ABM和△BCN中,BM=CN∠B=∠CAB=BC,∴△ABM≌△BCN(SAS).∴∠BAM=∠CBN(全等三角形对应角相等).∵∠QBA+∠CBN=∠CBA=60°(已知),∴∠QBA+∠BAM=60°(等量代换).∴∠BQM=60°.(2)①是.∵∠BQM=60°(已知),∴∠QBA+∠BAM=60°.∵∠QBA+∠CBN=60°(由(1)得出的结论),∴∠BAM=∠CBN(等量代换).在△ABM和△BCN中,∠ABM=∠BCNAB=AC∠BAM=∠CBN∴△ABM≌△BCN(ASA).∴BM=CN(全等三角形对应边相等).②成立.∵BM=CN(①的结论),∴CM=AN(等量代换).∵AB=AC,∠ACM=∠BAN=180°-60°=120°(平角的性质),在△BAN和△ACM中,BA=AC∠BAN=∠ACMAN=CM∴△BAN≌△ACM(SAS).∴∠NBA=∠MAC,∴∠BQM=∠BNA+∠NAQ=180°-∠NCB-(∠CBN-∠NAQ)=180°-60°-60°=60°(三角形内角和定理).【解析】(1)由已知条件得△ABM≌△BCN,得∠BAM=∠CBN,又因为∠QBA+∠CBN=∠CBA=60°,所以∠QBA+∠BAM=60°,即有∠BQM=60°;(2)①因为∠BQM=60°,所以∠QBA+∠BAM=60°,又因为∠QBA+∠CBN=60°,所以∠BAM=∠CBN,已知∠B=∠C,AB=AC,则ASA可判定△ABM≌△BCN,即BM=CN;②成立.本题考查了全等三角形的判定和性质及等边三角形的性质;此题把全等三角形的判定和性质结合求解.有利于培养学生综合运用数学知识的能力,全等三角形的证明是正确解答本题的关键.23.【答案】①②③【解析】解:(1)操作发现:∵△ADB和△AEC是等腰直角三角形,∴∠ABD=∠DAB=∠ACE=∠EAC=45°,∠ADB=∠AEC=90°在△ADB和△AEC中,,∴△ADB≌△AEC(AAS),∴BD=CE,AD=AE,∵DF⊥AB于点F,EG⊥AC于点G,∴AF=BF=DF=AB,AG=GC=GE=AC.∵AB=AC,∴AF=AG=AB,故①正确;∵M是BC的中点,∴BM=CM.∵AB=AC,∴∠ABC=∠ACB,∴∠ABC+∠ABD=∠ACB+∠ACE,即∠DBM=∠ECM.在△DBM和△ECM中,,∴△DBM≌△ECM(SAS),∴MD=ME.故②正确;连接AM,根据前面的证明可以得出将图形1,沿AM对折左右两部分能完全重合,∴整个图形是轴对称图形,故③正确,故答案为:①②③(2)数学思考:MD=ME,MD⊥ME.理由:作AB、AC的中点F、G,连接DF,MF,EG,MG,∴AF=AB,AG=AC.∵△ABD和△AEC是等腰直角三角形,∴DF⊥AB,DF=AB,EG⊥AC,EG=AC,∴∠AFD=∠AGE=90°,DF=AF,GE=AG.∵M是BC的中点,∴MF∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴AG=MF,MG=AF,∠AFM=∠AGM.∴MF=GE,DF=MG,∠AFM+∠AFD=∠AGM+∠AGE,∴∠DFM=∠MGE.在△DFM和△MGE中,,∴△DFM≌△MGE(SAS),∴DM=ME,∠FDM=∠GME.∵MG∥AB,∴∠GMH=∠BHM.∵∠BHM=90°+∠FDM,∴∠BHM=90°+∠GME,∵∠BHM=∠DME+∠GME,∴∠DME+∠GME=90°+∠GME,即∠DME=90°,∴MD⊥ME.∴DM=ME,MD⊥ME;(1)操作发现:由条件可以通过三角形全等和轴对称的性质,直角三角形的性质就可以得出结论;(2)数学思考:作AB、AC的中点F、G,连接DF,MF,EG,MG,根据三角形的中位线的性质和等腰直角三角形的性质就可以得出四边形AFMG是平行四边形,从而得出△DFM≌△MGE,根据其性质就可以得出结论;本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,三角形的中位线的性质的运用,平行四边形的判定及性质的运用,解答时根据三角形的中位线的性质制造全等三角形是解答本题的关键.。

2014-2015八年级第一学期期中试卷(含答案)

2014-2015八年级第一学期期中试卷(含答案)

ACB D E 人教版2014-2015学年度第一学期八年级数学期中考试试卷(含参考答案)一、选择题:(本题满分24分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填在题后的括号内。

......... 1.下列各组线段能组成一个三角形的是( ).(A)5cm ,8cm ,12cm (B)2cm ,3cm ,6cm (C)3cm ,3cm ,6cm (D)4cm ,7cm ,11cm 2.下列图案是轴对称图形的有( )。

A.(1)(2)B.(1)(3)C.(1)(4)D.(2)(3)(1) (2) (3) (4)3.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合。

其中正确的是( )。

A. ①② B. ②③ C. ③④ D. ①④ 4.已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( )。

A. 2 ㎝B. 4 ㎝C. 6 ㎝D. 8㎝ 5.点M (1,2)关于y 轴对称的点的坐标为 ( )。

A.(—1,2)B.(-1,-2)C. (1,-2)D. (2,-1) 6.如图,∠B=∠D=90°,CB=CD ,∠1=40°,则∠2=( )。

A .40° B. 45° C. 60° D. 50°7. 如图所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且S △ABC=4cm 2,则阴影部分的面积等于( )A.2cm 2B.1cm 2C.12cm 2D.1 4 cm 28.已知等腰三角形一个内角是70°,则另外两个内角的度数是( )A.55°, 55°B.70°, 40°C.55°, 55°或70°, 40°D.以上都不对 二 、填空题:(本题满分24分,每小题3分)9.一扇窗户打开后,用窗钩可将其固定,这里运用的几何原理为 。

2014-2015学年新人教版八年级上期中数学试卷及答案解析

2014-2015学年新人教版八年级上期中数学试卷及答案解析

2014-2015学年八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C. D.2.三角形的一个外角小于和它相邻的内角,这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上三种都有可能3.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°4.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6D.(﹣2m)2÷2m3=6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是( )A.4 B.8 C.±4 D.±87.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣38.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BCD=160°,那么△ABC 是( )A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD 的长为( )A.6cm B.8cm C.3cm D.4cm10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )A.B.C.D.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.B.3 C.4 D.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发现某种植物的细胞直径约为0.000000102mm,用科学记数法表示这个数为__________.14.分解因式:ab2﹣4ab+4a=__________.15.若3x=4,9y=7,则3x﹣2y的值为__________.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=__________.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=180°;④∠AFB>∠ACB 其中正确命题的代号是__________.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试说明∠BPD与∠CPG的大小关系,并说明理由.22.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛.比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点向后退3m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.23.如图③,点E,D分别是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为__________,图③中,∠AFB的度数为__________;(3)继续探索,可将本题推广到一般的正n边形情况,用含n的式子表示∠AFB的度数.2014-2015学年四川省绵阳中学八年级(上)期中数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.)1.下列交通标志是轴对称图形的是( )A.B.C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.三角形的一个外角小于和它相邻的内角,这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.以上三种都有可能【考点】三角形的外角性质.【分析】此题依据三角形的外角性质,即三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形的结论.【解答】解:∵三角形的一个外角与它相邻的内角和为180°,而题中说这个外角小于它相邻的内角,∴与它相邻的这个内角是一个大于90°的角即钝角,∴这个三角形就是一个钝角三角形.故选C.【点评】本题考查的是三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.3.已知图中的两个三角形全等,则∠1等于( )A.72°B.60°C.50°D.58°【考点】全等三角形的性质.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【点评】本题考查了全等三角形的性质,解题的关键是找准对应角.4.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是( )A.13cm B.6cm C.5cm D.4cm【考点】三角形三边关系.【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.【点评】本题考查了三角形三边关系,一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.5.下列等式成立的是( )A.(﹣3)﹣2=﹣9 B.m•m﹣2•m3=m5C.(﹣a﹣1b﹣3)﹣2=﹣a2b6D.(﹣2m)2÷2m3=【考点】负整数指数幂;整式的除法.【分析】根据负整数指数幂、同底数幂的乘法以及整式的除法运算法则进行计算.【解答】解:A、原式=9,故本选项错误;B、原式=m(1﹣2+3)=m2,故本选项错误;C、原式=(﹣1)﹣2•a﹣1×(﹣2)•b(﹣3)×(﹣2)=a2b6,故本选项错误;D、原式==,故本选项正确.‘故选:D.【点评】本题考查了负整数指数幂、整式的除法.掌握运算法则的解题的关键.6.若b为常数,要使16x2+bx+1成为完全平方式,那么b的值是( )A.4 B.8 C.±4 D.±8【考点】完全平方式.【专题】常规题型.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定b的值.【解答】解:16x2+bx+1=(4x)2+bx+1,∴bx=±2×4x×1,解得b=±8.故选D.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.7.若分式的值为零,则x的值为( )A.0 B.﹣3 C.3 D.3或﹣3【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件得到当x2﹣9=0且x+3≠0时,分式的值为零,然后解方程和不等式即可得到x的值.【解答】解:∵分式的值为零,∴x2﹣9=0且x+3≠0,∴x=3.故选C.【点评】本题考查了分式的值为零的条件:分式的分子为零且分母不为零时,分式的值为零.也考查了解方程与不等式.8.已知,△ABC和△ADC关于直线AC轴对称,如果∠BAD+∠BCD=160°,那么△ABC 是( )A.直角三角形B.等腰三角形C.钝角三角形D.锐角三角形【考点】轴对称的性质.【分析】作出图形,根据轴对称的性质可得∠BAC=∠DAC,∠ACB=∠ACD,然后求出∠BAC+∠ACB,再根据三角形的内角和定理求出∠B,然后判断三角形的形状即可.【解答】解:如图,∵△ABC和△ADC关于直线AC轴对称,∴∠BAC=∠DAC,∠ACB=∠ACD,∴∠BAC+∠ACB=(∠BAD+∠BCD)=×160°=80°,在△ABC中,∠B=180°﹣(∠BAC+∠ACB)=180°﹣80°=100°,∴△ABC是钝角三角形.故选C.【点评】本题考查了轴对称的性质,根据成轴对称的两个图形能够完全重合得到相等的角是解题的关键,作出图形更形象直观.9.如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,线段DE=1cm,则BD 的长为( )A.6cm B.8cm C.3cm D.4cm【考点】线段垂直平分线的性质;含30度角的直角三角形;三角形中位线定理.【专题】计算题.【分析】过A作AF∥DE交BD于F,则DE是△CAF的中位线,根据线段垂直平分线的性质,即可解答.【解答】解:过A作AF∥DE交BD于F,则DE是△CAF的中位线,∴AF=2DE=2,又∵DE⊥AC,∠C=30°,∴FD=CD=2DE=2,在△AFB中,∠1=∠B=30°,∴BF=AF=2,∴BD=4.故选D.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段两个端点的距离相等.10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.11.如图,设k=(a>b>0),则有( )A.k>2 B.1<k<2 C.D.【考点】分式的乘除法.【专题】计算题.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.12.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.B.3 C.4 D.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点P',连接BD.∵点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.∵正方形ABCD的面积为16,∴AB=4,又∵△ABE是等边三角形,∴BE=AB=4.故选C.【点评】本题考查的是正方形的性质和轴对称﹣最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.二、填空题(本大题共5小题,每小题3分,共18分)13.一生物教师在显微镜下发现某种植物的细胞直径约为0.000000102mm,用科学记数法表示这个数为1.02×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.15.若3x=4,9y=7,则3x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据3x﹣2y=3x÷32y=3x÷9 y即可代入求解.【解答】解:3x﹣2y=3x÷32y=3x÷9 y=.故答案是:.【点评】本题考查了同底数的幂的除法运算,正确理解3x﹣2y=3x÷32y=3x÷9 y是关键.16.在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=70°或20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由于△ABC的形状不能确定,故应分△ABC是锐角三角形与钝角三角形两种情况进行讨论.【解答】解:如图①,当AB的中垂线与线段AC相交时,则可得∠ADE=50°,∵∠AED=90°,∴∠A=90°﹣50°=40°,∵AB=AC,∴∠B=∠C==70°;如图②,当AB的中垂线与线段CA的延长线相交时,则可得∠ADE=50°,∵∠AED=90°,∴∠DAE=90°﹣50°=40°,∴∠BAC=140°,∵AB=AC,∴∠B=∠C==20°.∴底角B为70°或20°.故答案为:70°或20°.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.17.如图,在长方形ABCD中,AB>BC,BE⊥AC,垂足为E,延长BE交CD于F,S表示面积,则给出的下列命题:①Rt△ABC≌Rt△CDA;②S△AEF<S△BCE;③∠DAE+∠DFE=180°;④∠AFB>∠ACB 其中正确命题的代号是①③④.【考点】矩形的性质;全等三角形的判定与性质.【分析】由矩形的性质得出∠ABC=∠D=∠BCD=∠BAD=90°,BC=DA,AB=CD,由SAS 证明△ABC≌△CDA,①正确;由△ABF的面积=△ABC的面积,得出△AEF的面积=△BCE的面积,②不正确;证明A、E、F、D四点共圆,得出∠DAE+∠DFE=180°,③正确;延长AF交矩形ABCD的外接圆于G,连接BG,由圆周角定理得出∠AGB=∠ACB,由三角形的外角性质得出∠AFB>∠AGB,得出∠AFB>∠ACB,④正确;即可得出结论.【解答】解:∵四边形ABCD是矩形,∴∠ABC=∠D=∠BCD=∠BAD=90°,BC=DA,AB=CD,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴①正确;∵△ABF的面积=△ABC的面积=AB•BC,∴△AEF的面积=△BCE的面积,∴②不正确;∵BE⊥AC,∴∠AEF=90°,∴∠AEF+∠D=180°,∴A、E、F、D四点共圆,∴∠DAE+∠DFE=180°,∴③正确;∵A、B、C、D四点共圆,如图所示:延长AF交矩形ABCD的外接圆于G,连接BG,则∠AGB=∠ACB,∵∠AFB>∠AGB,∴∠AFB>∠ACB,∴④正确;正确的代号是①③④;故答案为:①③④.【点评】本题考查了矩形的性质、全等三角形的判定与性质、四点共圆、圆周角定理、圆内接四边形的性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.三、解答题:(本大题共6小题,共46分)18.(1)解不等式:(2x﹣5)2+(3x+1)2>13(x2﹣10)(2)解分式方程:.【考点】整式的混合运算;解分式方程;解一元一次不等式.【分析】(1)直接利用完全平方公式化简求出即可;(2)首先去分母进而合并同类项求出即可.【解答】解:(1)(2x﹣5)2+(3x+1)2>13(x2﹣10)去括号得:4x2+25﹣20x+9x2+1+6x>13x2﹣130整理得:﹣14x>﹣156解得:x<11;(2)去分母得:x(x+2)﹣(x﹣1)(x+2)=3(x﹣1),x2+2x﹣(x2+2x﹣x﹣2)=3x﹣3,则﹣2x=﹣5,解得:x=,检验:当x=时,(x﹣1)(x+2)≠0,则x=是原方程的根.【点评】此题主要考查了整式的混合运算以及分式方程的解法,正确利用乘法公式是解题关键.19.先化简:÷(a+),当b=﹣1时,请你为a任选一个适当的数代入求值.【考点】分式的化简求值.【专题】开放型.【分析】主要考查了分式的化简求值,其关键步骤是分式的化简.要熟悉混合运算的顺序,正确解题.注意化简后,代入的数不能使分母的值为0.【解答】解:原式=÷==,∵a≠0、a≠±1,∴答案不唯一.当a=2时,原式=1.【点评】本题主要考查分式的化简求值,式子化到最简是解题的关键.20.如图,∠1=∠2,∠3=∠4,求证:AC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠ABC=∠ABD,再由ASA证明△ABC≌△ABD,得出对应边相等即可.【解答】证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.21.如图,已知△ABC,P为内角平分线AD,BE,CF的交点,过点P作PG⊥BC于G,试说明∠BPD与∠CPG的大小关系,并说明理由.【考点】三角形内角和定理.【分析】利用AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,得出∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,再利用三角形的外角意义得出∠BPD=∠BAD+∠ABE 等量代换得出∠BPD=90°﹣∠ACB;再利用PG⊥BC,得出三角形CPG是直角三角形,利用三角形的内角和表示出∠CPG=90°﹣∠ACB,证明结论成立.【解答】∠BPD=∠CPG证明:∵AD平分∠BAC,BE平分∠ABC,CF平分∠ACB,∴∠BAD=∠BAC,∠ABE=∠ABC,∠BCF=∠ACB,∴∠BPD=∠BAD+∠ABE=(∠BAC+∠ABC),∵∠BAC+∠ABC=180﹣∠ACB,∴∠BPD=(180﹣∠ACB)=90°﹣∠ACB;∵PG⊥BC,∴∠PGC=90°,∴∠BCP+∠CPG=180°﹣∠PGC=90°,∴∠CPG=90°﹣∠BCP=90°﹣∠ACB,∴∠BPD=∠CPG.【点评】此题考查角平分线的性质,三角形内角和定理,三角形外角的意义,垂直的性质等知识点.22.用电脑程序控制小型赛车进行50m比赛,“畅想号”和“和谐号”两辆赛车进入了决赛.比赛前的练习中,两辆车从起点同时出发,“畅想号”到达终点时,“和谐号”离终点还差3m.已知“畅想号”的平均速度为2.5m/s.(1)求“和谐号”的平均速度;(2)如果两车重新开始比赛,“畅想号”从起点向后退3m,两车同时出发,两车能否同时到达终点?若能,求出两车到达终点的时间;若不能,请重新调整一辆车的平均速度,使两车能同时到达终点.【考点】分式方程的应用.【分析】(1)设“和谐号”的平均速度为x,根据,“畅想号”运动50m与“和谐号”运动47m所用时间相等,可得方程,解出即可.(2)不能同时到达,设调整后“和谐号”的平均速度为y,根据时间相等,得出方程求解即可.【解答】解:(1)设“和谐号”的平均速度为x,由题意得,=,解得:x=2.35,经检验x=2.35是原方程的解.答:“和谐号”的平均速度2.35m/s.(2)不能同时到达.设调整后“和谐号”的平均速度为y,=,解得:y=.答:调整“畅想号”的车速为m/s可使两车能同时到达终点.【点评】本题考查了分式方程的应用,解答本题的关键是仔细审题,找到等量关系,建立方程,难度一般.23.如图③,点E,D分别是正三角形ABC,正四边形ABCM,正五边形ABCMN中以点C为顶点的一边延长线和另一边反向延长线上的点,且△ABE与△BCD能相互重合,DB 的延长线交AE于点F.(1)在图①中,求∠AFB的度数;(2)在图②中,∠AFB的度数为90°,图③中,∠AFB的度数为108°;(3)继续探索,可将本题推广到一般的正n边形情况,用含n的式子表示∠AFB的度数.【考点】正多边形和圆;全等三角形的判定与性质;相似三角形的判定与性质.【分析】(1)先根据等边三角形的性质得出∠AC=60°,再由补角的定义可得出∠ABE与∠BCD的度数,根据△ABE与△BCD能相互重合可得出∠E=∠D,∠DBC=∠BAE,由三角形外角的性质可得出结论;(2)根据(1)中的方法可得出△BEF∽△BDC,进而可得出结论;(3)根据(1)(2)的结论找出规律即可.【解答】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∴∠ABE=∠BCD=120°.∵△ABE与△BCD能相互重合,∴∠E=∠D,∠DBC=∠BAE.∵∠FBE=∠CBD,∴∠AFB=∠E+∠FBE=∠D+∠CBD=∠ACB=60°;(2)图②中,∵△ABE与△BCD能相互重合,∴∠E=∠D.∵∠FBE=∠CBD,∠D+∠CBD=90°,∴∠AFB=∠E+∠FBE=∠D+∠CBD=90°;同理可得,图③中∠AFB=108°.故答案为:90°,108°;(3)由(1)(2)可知,在正n边形中,∠AFB=.【点评】本题考查的是正多边形和圆,在解答此题时要注意正三角形、正四边形及正五边形的性质的应用,根据题意找出规律是解答此题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014-2015学年江西省赣州市南康市六中片区八年级(上)期中数学试卷一.选择题(本题共10题,每小题3分,总共30分)1.(3分)下列图形是轴对称图形的有()A.2个 B.3个 C.4个 D.5个2.(3分)下列几何图形中,对称轴最多的是()A.平行四边形B.长方形C.等边三角形D.半圆3.(3分)以下列线段为边不能组成等腰三角形的是()A.2,2,4 B.6,3,6 C.4,4,5 D.1,1,14.(3分)如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE 垂直于横梁AC,AB=8米,∠A=30°,则DE等于()A.4米 B.3米 C.2米 D.1米5.(3分)如图,AC=DF,∠ACB=∠DFE,下列哪个条件不能判定△ABC≌△DEF ()A.∠A=∠D B.BE=CF C.AB=DE D.AB∥DE6.(3分)课本107页,画∠AOB的角平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M,N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS7.(3分)在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点8.(3分)下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等.(4)全等三角形的周长和面积相等.其中真命题的个数有()A.3个 B.2个 C.1个 D.0个9.(3分)如图,在直角△ABC中,∠C=90°,AB的垂直平分线交AB于D,交AC于E,且∠EBC=2∠EBA,则∠A等于()A.20°B.22.5°C.25°D.27.5°10.(3分)如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()A.1 号袋B.2 号袋C.3 号袋D.4 号袋二.填空题(总共8题,每题3分,总共24分)11.(3分)请你写出3个字(可以是数字、字母、汉字)要求它们都是轴对称图形、、.12.(3分)在平面直角坐标系内点P(﹣3,a)与点Q(b,﹣1)关于y轴对称,则a+b的值为.13.(3分)如果等腰三角形两边长为25cm和12cm,它的第三边长为.14.(3分)直角三角形两锐角平分线相交所成的钝角的度数是.15.(3分)如图,PD⊥AB于D,PE⊥AC于E且PD=PE,若∠BAC=30°,则∠BAP=.16.(3分)如图,在△ABD和△ACD中,∠1=∠2,增加条件可得到△ABD≌△ACD,(只需填写一个你认为合适的条件).17.(3分)如下图,在△ABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,若AD=2cm,则CD=cm.18.(3分)如图:在三角形ABC中,AB=AC,D在AC上,且BD=BC=AD,则△ABC各内角中,∠A=;∠ABC=;∠C=.三、作图题(本大题共2小题,共14分,要求用尺规作图,保留作图痕迹)19.(6分)如图所示,107国道OA和320国道OB在某巿相交于O点,在∠AOB的内部有工厂C和D,现要建一个货站P,使P到OA和OB的距离相等,且使PC=PD,用尺规作出P点的位置.(不写作法,保留作图痕迹,写出结论)20.(8分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.四.解答题(本大题共4小题,共32分)21.(6分)如图,∠A=∠B,CE∥DA,CE交AB于E.求证:△CEB是等腰三角形.22.(8分)△ABC中,DE是AC的垂直平分线,AE=5cm,△CBD的周长为24cm,求△ABC的周长.23.(8分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.24.(10分)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?2014-2015学年江西省赣州市南康市六中片区八年级(上)期中数学试卷参考答案与试题解析一.选择题(本题共10题,每小题3分,总共30分)1.(3分)下列图形是轴对称图形的有()A.2个 B.3个 C.4个 D.5个【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.2.(3分)下列几何图形中,对称轴最多的是()A.平行四边形B.长方形C.等边三角形D.半圆【解答】解:平行四边形不是轴对称图形,长方形有2条对称轴,等边三角形有3条对称轴,半圆有1条对称轴.故选:C.3.(3分)以下列线段为边不能组成等腰三角形的是()A.2,2,4 B.6,3,6 C.4,4,5 D.1,1,1【解答】解:∵2+2=4,不符合三角形的任意两边之和大于第三边,∴不能组成等腰三角形.故选:A.4.(3分)如图,是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE 垂直于横梁AC,AB=8米,∠A=30°,则DE等于()A.4米 B.3米 C.2米 D.1米【解答】解:∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,BC=AB=4米,∴DE=2米.故选:C.5.(3分)如图,AC=DF,∠ACB=∠DFE,下列哪个条件不能判定△ABC≌△DEF ()A.∠A=∠D B.BE=CF C.AB=DE D.AB∥DE【解答】解:A、符合ASA,可以判定三角形全等;B、符合SAS,可以判定三角形全等;D、符合SAS,可以判定三角形全等;C、∵AC=DF,∠ACB=∠DFE,若添加C、AB=DE满足SSA时不能判定三角形全等的,C选项是错误的.故选:C.6.(3分)课本107页,画∠AOB的角平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M,N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选:A.7.(3分)在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点【解答】解:∵在△ABC内一点P满足PA=PB=PC,∴点P一定是△ABC三边垂直平分线的交点.故选:B.8.(3分)下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等.(4)全等三角形的周长和面积相等.其中真命题的个数有()A.3个 B.2个 C.1个 D.0个【解答】解:形状、大小完全相同的两个三角形是全等形,所以①错误;在两个全等三角形中,相等的角是对应角,相等的边是对应边,所以②错误;全等三角形对应边上的高、中线及对应角平分线分别相等,所以③正确;全等三角形的周长和面积相等,所以④正确.故选:B.9.(3分)如图,在直角△ABC中,∠C=90°,AB的垂直平分线交AB于D,交AC于E,且∠EBC=2∠EBA,则∠A等于()A.20°B.22.5°C.25°D.27.5°【解答】解:设∠A=x,∵DE⊥AB,DE平分AB,∴∠A=∠ABE=x,∵∠EBC=2∠EBA,∴∠EBC=2x,∵△ABC是直角三角形,∴∠A+∠EBC+∠EBA=90°,即4x=90°,∴x=22.5°.故选:B.10.(3分)如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()A.1 号袋B.2 号袋C.3 号袋D.4 号袋【解答】解:如图所示,该球最后落入2号袋.故选B.二.填空题(总共8题,每题3分,总共24分)11.(3分)请你写出3个字(可以是数字、字母、汉字)要求它们都是轴对称图形田、H、3.【解答】解:例如:田,H,3.故答案可为:田,H,3.12.(3分)在平面直角坐标系内点P(﹣3,a)与点Q(b,﹣1)关于y轴对称,则a+b的值为2.【解答】解:∵点P(﹣3,a)与点Q(b,﹣1)关于y轴对称,∴a=﹣1,b=3,∴a+b=﹣1+3=2.故答案为:2.13.(3分)如果等腰三角形两边长为25cm和12cm,它的第三边长为25cm.【解答】解:当腰长为25cm时,则三角形的三边分别为25cm、25cm、12cm,此时三边满足三角形三边关系,则第三边长为25cm;当腰长为12cm时,则三角形的三边分别为12cm、12cm、25cm,此时12+12<25,不满足三角形三边关系,故该情况不存在;综上可知三角形的第三边长为25cm,故答案为:25cm.14.(3分)直角三角形两锐角平分线相交所成的钝角的度数是135°.【解答】解:如图:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°,两角平分线组成的角有两个:∠BOE与∠EOD这两个交互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°﹣45°=135°,故答案为:135°.15.(3分)如图,PD⊥AB于D,PE⊥AC于E且PD=PE,若∠BAC=30°,则∠BAP= 15°.【解答】解:∵PD⊥AB,PE⊥AC,PD=PE,∴AP平分∠BAC,∵∠BAC=30°,∴∠BAP=∠BAC=×30°=15°.故答案为:15°.16.(3分)如图,在△ABD和△ACD中,∠1=∠2,增加条件AB=AC可得到△ABD≌△ACD,(只需填写一个你认为合适的条件).【解答】解:添加条件是AB=AC,理由是:在△ABD和△ACD中,∴△ABD≌△ACD(SAS),故答案为:AB=AC.17.(3分)如下图,在△ABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平分线,若AD=2cm,则CD=4cm.【解答】解:∵BD是∠ABC的平分线,∠A=90°,DE是BC的垂直平分线,∴AD=DE,BD=CD,∴∠C=∠DBC=∠ABD,而∠C+∠DBC+∠ABD=180°﹣∠A=90°,∴∠C=∠DBC=∠ABD=30°,∴CD=2DE,而AD=DE=2,∴CD=4.故填4.18.(3分)如图:在三角形ABC中,AB=AC,D在AC上,且BD=BC=AD,则△ABC各内角中,∠A=36°;∠ABC=72°;∠C=72°.【解答】解:∵AB=AC,∴∠ABC=∠C,∵DA=DB,∴∠A=∠ABD,∵BD=BC,∴∠C=∠BDC=2∠A,设∠A=x°,则∠ABC=∠C=2x°,∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,解得x=36,∴∠A=36°,∠ABC=∠C=72°,故答案为:36°;72°;72°.三、作图题(本大题共2小题,共14分,要求用尺规作图,保留作图痕迹)19.(6分)如图所示,107国道OA和320国道OB在某巿相交于O点,在∠AOB 的内部有工厂C和D,现要建一个货站P,使P到OA和OB的距离相等,且使PC=PD,用尺规作出P点的位置.(不写作法,保留作图痕迹,写出结论)【解答】解:如图:20.(8分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.【解答】解:(1);(2)A′(1,5),B′(1,0),C′(4,3);(3)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB=5,AB边上的高为3,=.∴S△ABC四.解答题(本大题共4小题,共32分)21.(6分)如图,∠A=∠B,CE∥DA,CE交AB于E.求证:△CEB是等腰三角形.【解答】证明:∵CE∥DA,∴∠A=∠CEB.又∵∠A=∠B,∴∠CEB=∠B.∴CE=CB.∴△CEB是等腰三角形.22.(8分)△ABC中,DE是AC的垂直平分线,AE=5cm,△CBD的周长为24cm,求△ABC的周长.【解答】解:∵△ABC中,DE是AC的垂直平分线,∴AD=CD,CE=AE=5cm,∴AC=AE+CE=10cm,∵△CBD的周长为24cm,∴BC+CD+BD=BC+AD+BD=BC+AB=24(cm),∴△ABC的周长为:AC+AB+BC=10+24=34(cm).23.(8分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE=BF.求证:(1)AF=CE;(2)AB∥CD.【解答】证明:(1)∵DE⊥AC,BF⊥AC,∴在Rt△DCE和Rt△BAF中,AB=CD,DE=BF,∴Rt△DCE≌Rt△BAF(HL),∴AF=CE;(2)由(1)中Rt△DCE≌Rt△BAF,可得∠C=∠A,∴AB∥CD.24.(10分)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【解答】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B(9分)∵AB=AC,∠A=40°∴∠DEF=∠B=.(3)解:△DEF不可能是等腰直角三角形.∵AB=AC,∴∠B=∠C≠90°∴∠DEF=∠B≠90°,∴△DEF不可能是等腰直角三角形.。

相关文档
最新文档