2019-2020学年高中数学第二章推理与证明2.2.2反证法教案新人教A版选修2.doc

合集下载

高中数学第二章推理与证明2.2.2反证法学案含解析新人教A版

高中数学第二章推理与证明2.2.2反证法学案含解析新人教A版

2.2.2 反证法[学习目标]1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题. [知识链接]1.有人说反证法就是通过证明逆否命题来证明原命题,这种说法对吗?为什么? 答 这种说法是错误的,反证法是先否定命题,然后再证明命题的否定是错误的,从而肯定原命题正确,不是通过逆否命题证题.命题的否定与原命题是对立的,原命题正确,其命题的否定一定不对.2.反证法主要适用于什么情形?答 ①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形. [预习导引] 1.反证法定义假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这种证明方法叫做反证法. 2.反证法常见的矛盾类型反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.要点一 用反证法证明“至多”“至少”型命题 例1 已知x ,y >0,且x +y >2. 求证:1+x y ,1+y x中至少有一个小于2.证明 假设1+x y ,1+y x都不小于2,即1+x y ≥2,1+y x≥2.∵x ,y >0,∴1+x ≥2y,1+y ≥2x .∴2+x +y ≥2(x +y ),即x +y ≤2与已知x +y >2矛盾. ∴1+x y ,1+y x中至少有一个小于2.规律方法 对于含有“至多”、“至少”的命题适合用反证法,对于此类问题,需仔细体会“至少有一个”、“至多有一个”等字眼的含义,弄清结论的否定是什么,避免出现证明遗漏的错误.跟踪演练1 已知a ,b ,c ,d ∈R ,且a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个是负数.证明 假设a ,b ,c ,d 都是非负数, ∵a +b =c +d =1, ∴(a +b )(c +d )=1.又∵(a +b )(c +d )=ac +bd +ad +bc ≥ac +bd , ∴ac +bd ≤1.这与已知ac +bd >1矛盾,∴a ,b ,c ,d 中至少有一个是负数. 要点二 用反证法证明不存在、唯一性命题例2 求证对于直线l :y =kx +1,不存在这样的实数k ,使得l 与双曲线C :3x 2-y 2=1的交点A 、B 关于直线y =ax (a 为常数)对称.证明 假设存在实数k ,使得A 、B 关于直线y =ax 对称,设A (x 1,y 1)、B (x 2,y 2),则有(1)直线l :y =kx +1与直线y =ax 垂直;(2)点A 、B 在直线l :y =kx +1上;(3)线段AB 的中点⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22在直线y =ax 上,所以⎩⎪⎨⎪⎧ka =-1 ①y 1+y 2=k x 1+x 2+2 ②y 1+y 22=a x 1+x 22 ③由⎩⎪⎨⎪⎧y =kx +1,y 2=3x 2-1,得(3-k 2)x 2-2kx -2=0.④当k 2=3时,l 与双曲线仅有一个交点,不合题意. 由②、③得a (x 1+x 2)=k (x 1+x 2)+2⑤ 由④知x 1+x 2=2k3-k2,代入⑤整理得: ak =3,这与①矛盾.所以假设不成立,故不存在实数k ,使得A 、B 关于直线y =ax 对称.规律方法 证明“唯一性”问题的方法:“唯一性”包含“有一个”和“除了这个没有另外一个”两层意思.证明后一层意思时,采用直接证法往往会相当困难,因此一般情况下都采用间接证法,即用反证法(假设“有另外一个”,推出矛盾)或同一法(假设“有另外一个”,推出它就是“已知那一个”)证明,而用反证法有时比用同一法更方便. 跟踪演练2 求证方程2x=3有且只有一个根.证明 ∵2x=3,∴x =log 23,这说明方程2x=3有根.下面用反证法证明方程2x=3的根是唯一的:假设方程2x =3至少有两个根b 1,b 2(b 1≠b 2), 则2b 1=3,2b 2=3, 两式相除得2b 1-b 2=1.若b 1-b 2>0,则2b 1-b 2>1,这与2b 1-b 2=1相矛盾. 若b 1-b 2<0,则2b 1-b 2<1,这也与2b 1-b 2=1相矛盾. ∴b 1-b 2=0,则b 1=b 2.∴假设不成立,从而原命题得证. 要点三 用反证法证明否定性命题例3 等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.(1)解 设公差为d ,由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2,故a n =2n -1+2,S n =n (n +2). (2)证明 由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0. ∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0,∴p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.规律方法 (1)当结论中含有“不”、“不是”、“不可能”、“不存在”等词语的命题,此类问题的反面比较具体,适于应用反证法.例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾.(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法. 跟踪演练3 已知f (x )=a x+x -2x +1(a >1),证明方程f (x )=0没有负数根. 证明 假设x 0是f (x )=0的负数根,则x 0<0且x 0≠-1且ax 0=-x 0-2x 0+1,由0<ax 0<1⇒0<-x 0-2x 0+1<1,解得12<x 0<2,这与x 0<0矛盾,所以假设不成立,故方程f (x )=0没有负数根.1.证明“在△ABC 中至多有一个直角或钝角”,第一步应假设( ) A .三角形中至少有一个直角或钝角 B .三角形中至少有两个直角或钝角 C .三角形中没有直角或钝角 D .三角形中三个角都是直角或钝角 答案 B2.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中( ) A .有一个内角小于60° B .每一个内角都小于60°C .有一个内角大于60°D .每一个内角都大于60° 答案 B3.“a <b ”的反面应是( ) A .a ≠b B .a >b C .a =b D .a =b 或a >b 答案 D4.用反证法证明“在同一平面内,若a ⊥c ,b ⊥c ,则a ∥b ”时,应假设( ) A .a 不垂直于c B .a ,b 都不垂直于c C .a ⊥b D .a 与b 相交 答案 D5.已知a是整数,a2是偶数,求证a也是偶数.证明(反证法)假设a不是偶数,即a是奇数.设a=2n+1(n∈Z),则a2=4n2+4n+1.∵4(n2+n)是偶数,∴4n2+4n+1是奇数,这与已知a2是偶数矛盾.由上述矛盾可知,a一定是偶数.1.反证法证明的基本步骤(1)假设命题结论的反面是正确的;(反设)(2)从这个假设出发,经过逻辑推理,推出与已知条件、公理、定义、定理、反设及明显的事实矛盾;(推谬)(3)由矛盾判定假设不正确,从而肯定原命题的结论是正确的.(结论)2.用反证法证题要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的.一、基础达标1.反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是( )①与已知条件矛盾②与假设矛盾③与定义、公理、定理矛盾④与事实矛盾A.①②B.①③C.①③④D.①②③④答案 D2.已知a,b是异面直线,直线c平行于直线a,那么c与b的位置关系为( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线答案 C解析假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.故应选C.3.有下列叙述:①“a >b ”的反面是“a <b ”;②“x =y ”的反面是“x >y 或x <y ”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有( ) A .0个 B .1个 C .2个 D .3个答案 B解析 ①错:应为a ≤b ;②对;③错:应为三角形的外心在三角形内或在三角形的边上;④错:应为三角形可以有2个或2个以上的钝角.4.用反证法证明命题:“a 、b ∈N ,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,假设的内容应为( ) A .a ,b 都能被5整除 B .a ,b 都不能被5整除 C .a ,b 不都能被5整除 D .a 不能被5整除答案 B解析 “至少有一个”的否定是“一个也没有”,即“a ,b 都不能被5整除”. 5.用反证法证明命题:“若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理根,那么a ,b ,c 中存在偶数”时,否定结论应为________答案 a ,b ,c 都不是偶数解析 a ,b ,c 中存在偶数即至少有一个偶数,其否定为a ,b ,c 都不是偶数. 6.“任何三角形的外角都至少有两个钝角”的否定应是________. 答案 存在一个三角形,其外角最多有一个钝角解析 “任何三角形”的否定是“存在一个三角形”,“至少有两个”的否定是“最多有一个”.7.设二次函数f (x )=ax 2+bx +c (a ≠0)中,a 、b 、c 均为整数,且f (0),f (1)均为奇数.求证f (x )=0无整数根.证明 设f (x )=0有一个整数根k ,则ak 2+bk =-c .①又∵f (0)=c ,f (1)=a +b +c 均为奇数, ∴a +b 为偶数,当k 为偶数时,显然与①式矛盾; 当k 为奇数时,设k =2n +1(n ∈Z ),则ak 2+bk =(2n +1)·(2na +a +b )为偶数,也与①式矛盾,故假设不成立,所以方程f (x )=0无整数根. 二、能力提升8.已知x 1>0,x 1≠1且x n +1=x n x 2n +3x 2n +1(n =1,2,…),试证“数列{x n }对任意的正整数n 都满足x n >x n +1”,当此题用反证法否定结论时应为( )A .对任意的正整数n ,有x n =x n +1B .存在正整数n ,使x n =x n +1C .存在正整数n ,使x n ≥x n +1D .存在正整数n ,使x n ≤x n +1 答案 D解析 “任意”的反语是“存在一个”.9.设a ,b ,c 都是正数,则三个数a +1b ,b +1c ,c +1a( )A .都大于2B .至少有一个大于2C .至少有一个不小于2D .至少有一个不大于2 答案 C解析 假设a +1b <2,b +1c <2,c +1a<2,则⎝ ⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫b +1c +⎝⎛⎭⎪⎫c +1a <6. 又⎝⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫b +1c +⎝⎛⎭⎪⎫c +1a =⎝⎛⎭⎪⎫a +1a +⎝⎛⎭⎪⎫b +1b +⎝⎛⎭⎪⎫c +1c ≥2+2+2=6,这与假设得到的不等式相矛盾,从而假设不正确,所以这三个数至少有一个不小于2.10.若下列两个方程x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根,则实数a 的取值范围是________. 答案 a ≤-2或a ≥-1解析 若两方程均无实根,则Δ1=(a -1)2-4a 2=(3a -1)(-a -1)<0,∴a <-1或a >13.Δ2=(2a )2+8a =4a (a +2)<0,∴-2<a <0,故-2<a <-1.若两个方程至少有一个方程有实根,则a ≤-2或a ≥-1.11.已知a +b +c >0,ab +bc +ca >0,abc >0,求证a >0,b >0,c >0. 证明 用反证法:假设a ,b ,c 不都是正数,由abc >0可知,这三个数中必有两个为负数,一个为正数, 不妨设a <0,b <0,c >0,则由a +b +c >0, 可得c >-(a +b ),又a +b <0,∴c (a +b )<-(a +b )(a +b )ab +c (a +b )<-(a +b )(a +b )+ab即ab +bc +ca <-a 2-ab -b 2∵a 2>0,ab >0,b 2>0,∴-a 2-ab -b 2=-(a 2+ab +b 2)<0,即ab +bc +ca <0, 这与已知ab +bc +ca >0矛盾,所以假设不成立. 因此a >0,b >0,c >0成立.12.已知a ,b ,c ∈(0,1),求证(1-a )b ,(1-b )c ,(1-c )a 不可能都大于14.证明 假设三个式子同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )a ·(1-b )b ·(1-c )c >143,①又因为0<a <1,所以0<a (1-a )≤⎝⎛⎭⎪⎫a +1-a 22=14.同理0<b (1-b )≤14,0<c (1-c )≤14,所以(1-a )a ·(1-b )b ·(1-c )c ≤143,②①与②矛盾,所以假设不成立,故原命题成立. 三、探究与创新13.已知f (x )是R 上的增函数,a ,b ∈R .证明下面两个命题: (1)若a +b >0,则f (a )+f (b )>f (-a )+f (-b ); (2)若f (a )+f (b )>f (-a )+f (-b ),则a +b >0. 证明 (1)因为a +b >0,所以a >-b ,b >-a , 又因为f (x )是R 上的增函数,所以f (a )>f (-b ),f (b )>f (-a ),由不等式的性质可知f (a )+f (b )>f (-a )+f (-b ). (2)假设a +b ≤0,则a ≤-b ,b ≤-a ,因为f (x )是R 上的增函数,所以f (a )≤f (-b ),f (b )≤f (-a ), 所以f (a )+f (b )≤f (-a )+f (-b ), 这与已知f (a )+f (b )>f (-a )+f (-b )矛盾, 所以假设不正确,所以原命题成立.。

高中数学 第二章《2.2.2间接证明--反证法》教案 新人教A版选修2-2

高中数学 第二章《2.2.2间接证明--反证法》教案 新人教A版选修2-2

"福建省长乐第一中学2014高中数学 第二章《2.2.2间接证明--反证法》教案 新人教A 版选修2-2 "1.教学目标:知识与技能:结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。

过程与方法: 多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

2.教学重点:了解反证法的思考过程、特点3. 教学难点:反证法的思考过程、特点4.教具准备:与教材内容相关的资料。

5.教学设想:利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。

6.教学过程:学生探究过程:综合法与分析法归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。

推理必须严谨。

导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

上,都需要翻转奇数次,所以 3 枚硬币全部反面朝上时,需要翻转 3 个奇数之和次,即要翻转奇数次.但由于每次用双手同时翻转 2 枚硬币, 3 枚硬币被翻转的次数只能是 2 的倍数,即偶数次.这个矛盾说明假设错误,原结论正确,即无论怎样翻转都不能使 3 枚硬币全部反面朝上.一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法 ( reduction to absurdity ) .例1、已知直线,a b 和平面,如果,a b αα⊄⊂,且||a b ,求证||a α。

证明:因为||a b , 所以经过直线a , b 确定一个平面β。

因为a α⊄,而a β⊂,所以 α与β是两个不同的平面.因为b α⊂,且b β⊂,所以b αβ=.下面用反证法证明直线a 与平面α没有公共点.假设直线a 与平面α有公共点P ,则P b αβ∈=,即点P 是直线 a 与b 的公共点,这与||a b 矛盾.所以 ||a α.点评:线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:,,////a b a b a ααα⊄⊂⇒.例2、求证:2不是有理数分析:直接证明一个数是无理数比较困难,我们采用反证法.假设2不是无理数,那么它就是有理数.我们知道,任一有理数都可以写成形如m n(,m n 互质, *,m Z n N ∈∈”的形式.下面我们看看能否由此推出矛盾.正是2的发现,使人们认识到在有理数之外,还有一类数与 1 是不可公度的,这就是无理数;从而引发了数学史上的第一次危机,大大推动了数学前进的步伐。

高中数学新人教版A版精品教案《2.2.2 反证法》

高中数学新人教版A版精品教案《2.2.2 反证法》

[教学设计•高中数学]《反证法》教学设计姓名:赵钊学校:西安市铁一中学区县:碑林区:地址:友谊东路12021邮编:710054《反证法》教学设计陕西省西安市铁一中学赵钊第一部分:教学内容解析本节课是《普通高中课程标准实验教科书选修2-2》(人教A版)第一章《推理与证明》的第3节《反证法》“逻辑推理能力”是高中数学核心素养中非常重要的一个环节,也是人们学习和生活中,经常使用的思维方式。

推理与证明贯穿于高中数学的整个体系,也是学数学、做数学的基本功。

这一部分的学习是新课标教材的一个亮点,是对以前所学知识与方法的总结、归纳,并对后继学习起到引领的作用第二部分:学生学情诊断学生在初中已经接触过反证法,但是不够系统和详细。

也已经在选修2-1《逻辑与推理》环节接触过命题的真假、逆否命题。

但用反证法证明数学问题却是学生学习的一个难点。

究其原因,主要是反证法的应用需要逆向思维,但在中小学阶段,逆向思维的训练和发展都是不充分的,所以本节课要引导学生联系已学过的教学实例学习新内容进行教学。

由于所教学生基础较好,但是数学思维相对欠缺,对于反证法证明简单命题问题不大,但由于对数论基础知识不是特别专长、对生活中的逻辑学生对数的了解不多,研究不够,所以例1能顺利解决,但是例2例3,解决起来还是会出现一定困难。

第三部分:教学目标设置1知识与能力:了解反证法证题的基本步骤,会用反证法证明简单的命题。

通过实例,培养学生用反证法证明简单问题的推理技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力。

2过程与方法:通过直观感知—观察—操作确认的认识方法培养学生观察、探究、发现的能力和逻辑思维能力。

让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。

3情感、态度、价值观:通过体验数学活动,渗透事物之间都是相互对立、相互矛盾、相互转化的辩证唯物主义思想。

高中数学第二章推理与证明2.2.2反证法教案新人教版

高中数学第二章推理与证明2.2.2反证法教案新人教版

§2.2.2 反证法教学目标:1.结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;2.通过本节内容的学习了解间接证明反证法的思考过程、特点;3.增强学生的数学应用意识,提高学生数学思维的情趣,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度。

教学重点:会用反证法证明问题;了解反证法的思考过程;教学难点:根据问题的特点,选择适当的证明方法.教学过程设计(一)、情景引入,激发兴趣。

【教师引入】 三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)。

(二)、探究新知,揭示概念反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。

反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

(三)、分析归纳,抽象概括一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.证明基本步骤:假设原命题的结论不成立 → 从假设出发,经推理论证得到矛盾 → 矛盾的原因是假设不成立,从而原命题的结论成立应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.(四)、知识应用,深化理解例1 已知直线a ,b 和平面αβ, ,如果,a b αα⊄⊂ ,且//a b ,求证: //a α。

例2 已知三个正数 ,,a b c .证明:假设=即4a c b ++=,而2b ac =,即b =20∴==.从而a b c ==,与,,a b c .点评:结论中含有“不”“不是”“不可能”“不存在”等词语的命题的反面比较具体,适用反证法.(2)反证法属于“间接解题的方法”书写格式易错之处是“假设”易错写成“设”例3. ( 提示:有理数可表示为/m n )/m n =(m ,n 为互质正整数),从而:2(/)2m n =,222m n =,可见m 是2的倍数.设m =2p (p 是正整数),则 22224n m p ==,可见n 也是2的倍数.这样,m , n 就不是互质的正整数(矛盾)./m n =不可能,是无理数.课堂练习:1、课本P91页 练习1、2(五)、归纳小结、布置作业反证法是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确. 注意证明步骤和适应范围(“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征的问题)布置作业:.课本P91页 A 组4。

2020学年高中数学第2章推理与证明2.2.2反证法课件新人教A版选修1_2

2020学年高中数学第2章推理与证明2.2.2反证法课件新人教A版选修1_2

◎变式训练
1.在题设不变的情况下,证明“1a,1b,1c不可能成 等比数列” .
证明 假设1a,1b,1c成等比数列,则b12=1a·1c,即 b2=ac,
又 a,b,c 成等差数列,∴2b=a+c,∴(a+4 c)2
=ac,∴(a-c)2=0,∴a=c,
这与 a≠c 相矛盾,从而假设错误,原命题成立.
原词
否定形式
至多有n个(即 至少有n+1个(即x>n⇔x≥n
x≤n∈N*)
+1,n∈N*)
至少有n个(即x≥n, 至多有n-1个(即x<n⇔x≤n
n∈N*)
-1,n∈N*)
n个都是
n个不都是(即至少有1个不是)
特例
至多有1个 至少有1个
至少有2个 至多有0个,即一个也没有
◎变式训练
3.已知 x,y>0,且 x+y>2.
2.反证法常见的矛盾类型:反证法的关键是在正确 的推理下得出矛盾.这个矛盾可以是与已__知__条___件_矛盾, 或 与 _假__设__ 矛 盾 , 或 与定__义__、__公__理__、__定__理__、__事__实_ 矛 盾 等.
核心要点探究
►知识点 反证法
【探究1】 反证法的适用范围是什么? 提示 宜用反证法证明的常见题型有: (1)一些基本命题、基本定理;(2)易导出与已知矛盾 的 命 题 ; (3)“ 否 定 性 ” 命 题 ; (4)“ 唯 一 性 ” 命 题 ; (5)“必然性”命题;(6)“至多”“至少”类的命题; (7)涉及“无限”结论的命题等.
所以f(x)在(a,b)内至少存在一个零点,设零点为m, 则f(m)=0,
假设f(x)在(a,b)内还存在另一个零点n,即f(n)=0, 则n≠m,
若n>m,则f(n)>f(m),即0>0,矛盾, 若n<m,则f(n)<f(m),即0<0,矛盾, 因此假设不正确,即f(x)在(a,b)内有且只有一个零 点.

2019_2020学年高中数学第2章推理与证明2.2.2反证法学案新人教A版选修2_2

2019_2020学年高中数学第2章推理与证明2.2.2反证法学案新人教A版选修2_2

2.2.2 反证法反证法的定义及证题的关键思考1:反证法的实质是什么?[提示] 反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的. 思考2:有人说反证法的证明过程既可以是合情推理也可以是一种演绎推理,这种说法对吗?为什么?[提示] 反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理.1.“a <b ”的反面应是( ) A .a ≠b B .a >b C .a =b D .a =b 或a >b[答案] D2.用反证法证明“如果a >b ,那么3a >3b ”,假设的内容应是________. [答案]3a ≤3b3.用反证法证明“一个三角形不能有两个直角”有三个步骤:①∠A +∠B +∠C =90°+90°+∠C >180°,这与三角形内角和为180°矛盾,故假设错误.②所以一个三角形不能有两个直角.③假设△ABC中有两个直角,不妨设∠A=90°,∠B=90°.上述步骤的正确顺序为________.③①②[由反证法的一般步骤可知,正确的顺序应为③①②.]4.应用反证法推出矛盾的推导过程中,下列选项中可以作为条件使用的有________.(填序号)①结论的反设;②已知条件;③定义、公理、定理等;④原结论.①②③[反证法的“归谬”是反证法的核心,其含义是:从命题结论的假设(即把“反设”作为一个新的已知条件)及原命题的条件出发,引用一系列论据进行正确推理,推出与已知条件、定义、定理、公理等相矛盾的结果.]成等差数列.[证明] 假设a,b,c成等差数列,则a+c=2b,即a+c+2ac=4b.∵a,b,c成等比数列,∴b2=ac,即b=ac,∴a+c+2ac=4ac,∴(a-c)2=0,即a=c.从而a=b=c,与a,b,c不成等差数列矛盾,故a,b,c不成等差数列.1.用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法.2.用反证法证明数学命题的步骤1.设SA,SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面SOB不垂直.[证明] 假设AC⊥平面SOB,如图,∵直线SO在平面SOB内,∴SO⊥AC.∵SO⊥底面圆O,∴SO⊥AB.∴SO⊥平面SAB.∴平面SAB∥底面圆O.这显然出现矛盾,所以假设不成立,即AC与平面SOB不垂直.[证明] ∵2x=3,∴x=log23,这说明方程2x=3有根.下面用反证法证明方程2x=3的根是唯一的:假设方程2x=3至少有两个根b1,b2(b1≠b2),则2b1=3,2b2=3,两式相除得2b1-b2=1.若b1-b2>0,则2b1-b2>1,这与2b1-b2=1相矛盾.若b1-b2<0,则2b1-b2<1,这也与2b1-b2=1相矛盾.∴b1-b2=0,则b1=b2.∴假设不成立,从而原命题得证.巧用反证法证明唯一性命题(1)当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证法证明.(2)用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立.(3)证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性.2.求证:两条相交直线有且只有一个交点.[证明] 假设结论不成立,则有两种可能:无交点或不止一个交点.若直线a,b无交点,则a∥b或a,b是异面直线,与已知矛盾.若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.1.你能阐述一下“至少有一个、至多有一个、至少有n 个”等量词的含义吗? [提示]词吗?[提示]【例2=0,x 2+2ax -2a =0中至少有一个方程有实数解.[证明] 假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:⎩⎪⎨⎪⎧(4a )2-4(-4a +3)<0,(a -1)2-4a 2<0,(2a )2+4×2a <0,即⎩⎪⎨⎪⎧-32<a <12,a >13或a <-1,-2<a <0.∴-32<a <-1,这与已知a ≥-1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解.当命题中出现“至少……”“至多……”“不都……”“都不……”“没有……”“唯一”等指示性词语时,宜用反证法.提醒:对于此类问题,需仔细体会“至少有一个”“至多有一个”等字眼的含义,弄清结论的否定是什么,避免出现证明遗漏的错误.用反证法证题要把握三点:(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的.(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法.(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的.1.用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是( ) A.有两个内角是钝角B.有三个内角是钝角C.至少有两个内角是钝角D.没有一个内角是钝角C[“最多只有一个”的否定是“至少有两个”,故选C.]2.如果两个实数之和为正数,则这两个数( )A.一个是正数,一个是负数B.两个都是正数C.至少有一个正数D.两个都是负数C[假设两个数分别为x1,x2,且x1≤0,x2≤0,则x1+x2≤0,这与两个数之和为正数矛盾,所以两个实数至少有一个正数,故应选C.]3.已知平面α∩平面β=直线a,直线b⊂α,直线c⊂β,b∩a=A,c∥a,求证:b 与c是异面直线,若利用反证法证明,则应假设________.b与c平行或相交[∵空间中两直线的位置关系有3种:异面、平行、相交,∴应假设b与c平行或相交.]4. 设数列{a n}是公比为q的等比数列,S n是它的前n项和.求证:数列{S n}不是等比数列.[证明] 假设数列{S n}是等比数列,则S22=S1S3,即a21(1+q)2=a1·a1(1+q+q2),因为a1≠0,所以(1+q)2=1+q+q2,即q=0,这与公比q≠0矛盾.所以数列{S n}不是等比数列.。

高中数学1-2 第二章 推理与证明 2.2.2反证法【教案】

高中数学1-2 第二章 推理与证明 2.2.2反证法【教案】

反证法一、教学目标:1。

知识与技能:(1)了解间接证明的一种基本方法──反证法;(2)了解反证法的思考过程与特点,会用反证法证明数学问题。

2.过程与方法:通过学生动手及简单实例,让学生充分体会反证法的数学思想,并学会简单应用。

3.情感态度与价值观通过反证法的学习,让学生形成逆向思维的模式,体验数学方法的多样性。

提高学生推导、推理能力及思考问题和解决问题的能力,并在合作探究中找到一种解决生活生产实际问题的新方法。

二.教学重点:了解反证法的思考过程与特点。

三。

教学难点:正确理解、运用反证法。

四.教学方法:多媒体辅助教学;小组合作探究,多元活动。

教学过程:一、课前复习与思考:(1)请学生复习旧知,为本节课夯实基础:直接证明:是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推理证明结论的真实性。

常用的直接证明方法:综合法与分析法。

综合法的思路是由因导果;分析法的思路是执果索因.(2)让学生思考间接证明是什么?它有哪些方法?(初中所学)间接证明:不是从正面证明命题的真实性,而是证明命题的反面为假,或改证它的等价命题为真,间接地达到证明的目的。

反证法就是一种常用的间接证明方法.二、探究新知【新课导引】多媒体课件显示9个白色球.上课时要求学生将9个球分别染成红色或绿色.让学生注意观察现象.提问学生,让学生由感性认识上升到理性认识:同学们请看,这9个球无论如何染色,至少有5个球是同色的。

你能用数学中的什么方法来证明这个结论吗?【学生自主合作探究】学生阅读完教材后,小组合作探究以下问题:1、什么是反证法?2、反证法的证题步骤有哪几步?3、什么样的命题适合用反证法来证明?4、反证法的应用关键在于什么?【学生展示、交流】(1)反证法概念反证法:假设命题结论不成立(即命题结论的反面成立),经过正确的推理,引出矛盾,因此说明假设错误,从而证明原命题成立,这样的的证明方法叫反证法。

(2)反证法的一般步骤:a、反设:假设命题结论不成立(即假设结论的反面成立);b、归缪:从假设出发,经过推理论证,得出矛盾;c、下结论:由矛盾判定假设不成立,从而肯定命题成立。

高中数学 第二章 推理与证明 2.2.2.2 反证法课件 新人教A版选修2-2

高中数学 第二章 推理与证明 2.2.2.2 反证法课件 新人教A版选修2-2

类型三 用反证法证明“至多”、“至少”型命题 【例 3】 用反证法证明:如果函数 f(x)在区间[a,b]上是增
函数,那么方程 f(x)=0 在区间[a,b]上至多有一个实数根.(不 考虑重根)
【证明】 假设方程 f(x)=0 在区间[a,b]上至少有两个实 数根,设 α,β 为它的两个实数根,则 f(α)=f(β)=0.
3.已知 a,b 是异面直线,直线 c 平行于直线 a,那么 c 与
b 的位置关系为( C )
A.一定是异面直线
B.一定是相交直线
C.不可能是平行直线 D.不可能是相交直线
解析:假设 c∥b,而由 c∥a,可得 a∥b,这与 a,b 异面 矛盾,故 c 与 b 不可能是平行直线.
4.在△ABC 中,若 AB=AC,P 是△ABC 内的一点,∠APB> ∠APC,求证:∠BAP<∠CAP.用反证法证明时应分:
休息时间到啦
同学们,下课休息十分钟。现在是休息时间,你们休息一 看看远处,要保护好眼睛哦~站起来动一动,久坐对身体
解:(1)证明:任取 x1,x2∈(-1,+∞),不妨设 x1<x2,则 x2-x1>0,ax2-x1>1,且 ax1>0,
∴ax2-ax1=ax1(ax2-x1-1)>0. 又∵x1+1>0,x2+1>0, ∴xx22- +21-xx11-+21=x2-2x1x+1+11-x2x+1-12 x2+1 =x13+x12-xx2+1 1>0, ∴f(x2)-f(x1)=ax2-ax1+xx22- +21-xx11- +21>0. 故函数 f(x)在(-1,+∞)上为增函数.
因为 AB⊥平面 α,AC⊥平面 α, a⊂α,所以 AB⊥a,AC⊥a,在平面 β 内经过点 A 有两条直 线都和直线 a 垂直,这与平面几何中经过直线上一点只能有已知 直线的一条垂线相矛盾. (2)如图,点 A 在平面 α 外,假设经过点 A 至少有平面 α 的 两条垂线 AB 和 AC(B、C 为垂足),那么 AB、AC 是两条相交直 线,它们确定一个平面 β,平面 β 和平面 α 相交于直线 BC,因 为 AB⊥平面 α,AC⊥平面 α,BC⊂α,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学第二章推理与证明2.2.2反证法教案新人教A 版选修2 教学目标:
1.结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;
2.通过本节内容的学习了解间接证明反证法的思考过程、特点;
3.增强学生的数学应用意识,提高学生数学思维的情趣,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度。

教学重点:会用反证法证明问题;了解反证法的思考过程;
教学难点:根据问题的特点,选择适当的证明方法.
教学过程设计
(一)、情景引入,激发兴趣。

【教师引入】 三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?
(原因:偶次)。

(二)、探究新知,揭示概念
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。

反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

(三)、分析归纳,抽象概括
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.
证明基本步骤:假设原命题的结论不成立 → 从假设出发,经推理论证得到矛盾 → 矛盾的原因是假设不成立,从而原命题的结论成立
应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).
方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.
(四)、知识应用,深化理解
例1 已知直线a ,b 和平面αβ, ,如果,a b αα⊄⊂ ,且//a b ,求证: //a α。

例2 已知三个正数 ,,a b c .
证明:假设
=即4a c b ++=,
而2b ac =,即b =
2
0∴==
从而a b c ==,与,,a b c .
点评:结论中含有“不”“不是”“不可能”“不存在”等词语的命题的反面比较具体,适用反证法.(2)反证法属于“间接解题的方法”书写格式易错之处是“假设”易错写成“设”
例3. ( 提示:有理数可表示为/m n )
/m n (m ,n 为互质正整数),
从而:2(/)2m n =,222m n =,可见m 是2的倍数.
设m =2p (p 是正整数),则 22224n m p ==,可见n 也是2的倍数.
这样,m , n 就不是互质的正整数(矛盾).
/m n =不可能,
.
课堂练习:
1、课本P91页 练习1、2
(五)、归纳小结、布置作业
反证法是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确. 注意证明步骤和适应范围(“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征的问题)布置作业:.
课本P91页 A 组4。

相关文档
最新文档