理论级:光学基础知识
光学基础知识

光学基础知识一、光的性质a、发光体:像太阳或电灯自身能发光的“物体”叫做发光体;b、光的直线传播:发光体的光向各个方向发散。
发散的光在无障碍的情况下,都是沿直线传播;这种现象叫做光的直线传播;c、光的传播速度:在空气中的传播速度约为299790km/s。
二、球面的作用1、凸透镜:中心比边缘厚的透镜叫做凸透镜,具有将光会聚的作用。
2、凹透镜:中心比边缘薄的透镜叫做凹透镜,具有将光散开的作用。
三、光的反射与折射反射:水面发光,行走的汽车车玻璃的闪闪发光是因为太阳的反弹,光的反弹现象叫做反射;反射定律:入射光线与法线在同一平面上,且入射角与反射角相等;折射:光具有在同一物质(介质)中直线传播的性质。
但是,如果光倾斜地从空气进入水或玻璃中时,在空气与水或玻璃的界面上,一部分光被反射,剩余部分进入水或玻璃中。
这时在两种介质的界面上,进入界面后的传播方向发生了变化,此现象称为折射。
折射定律:a、进入水中的改变了方向的光线叫做折射光线;b、在水中折射光线与法线的夹角称折射角;c、入射光线、折射光线、法线在同一平面上;d、当两介质不变时,入射角的正弦与折射角的正弦的比值是一定的,此比值称为第二介质(水)相对于第一介质的折射率。
四、折射率a、即使同样的光,材质不同的话折射量也不一样,光的折射量用材质折射率来表示;b、即使的相同的材质,光的波长(色)不同的话折射率也不一样;c、所以在说某一材质的折射率时,一定要弄清楚是与哪个波长相对应的折射率。
五、光的波长波长:收音机的电波、红外线、紫外线等线都已被称作电磁波的横波以光的速度传播,这只不过波长不同而已。
光(电磁波)的传播真空中的速度虽然是固定的,但振动频率因光的颜色而不同,由振动数除以光的速度就是波长。
可见光的波长:约400-700nm 紫外波长:200-400nm 短红外波长:约860-1500nm。
初中物理光学知识点

初中物理光学知识点一、光的基础知识1. 光的来源:自然光源(太阳、萤火虫)和人造光源(灯泡、荧光灯)。
2. 光的传播:光在均匀介质中沿直线传播,例如激光束在空气中的直线传播。
3. 光速:在真空中,光速约为每秒299,792,458米,是宇宙中最快的速度。
二、光的反射1. 反射定律:入射光线、反射光线和法线都在同一平面内,且入射角等于反射角。
2. 平面镜成像:平面镜能形成正立、等大的虚像。
3. 镜面反射与漫反射:镜面反射指光线在光滑表面上反射,而漫反射指光线在粗糙表面上向各个方向散射。
三、光的折射1. 折射现象:光线从一种介质进入另一种介质时,其传播方向会发生改变。
2. 折射定律:入射光线、折射光线和法线都在同一平面内,且入射角和折射角的正弦值之比为常数(介质的折射率)。
3. 透镜成像:凸透镜能形成实像或虚像,凹透镜只能形成缩小的或放大的虚像。
四、光的色散1. 色散原理:不同颜色的光在通过介质时,由于折射率不同,传播速度不同,导致光线分离成不同颜色的现象。
2. 光谱:通过棱镜可以将白光分解成红、橙、黄、绿、蓝、靛、紫七种颜色的光谱。
3. 物体的颜色:物体的颜色由其反射或透过的光的颜色决定。
五、光的干涉和衍射1. 干涉现象:两个或多个相干光波相遇时,光强的增强或减弱现象。
2. 双缝干涉:通过两个相距很近的狭缝的光波相遇时,会在屏幕上形成明暗相间的干涉条纹。
3. 衍射现象:光波通过狭缝或绕过障碍物时发生的方向改变现象。
六、光的偏振1. 偏振光:只在一个方向上振动的光波称为偏振光。
2. 偏振片:只允许特定方向振动的光通过的光学元件。
3. 马吕斯定律:描述偏振光通过两个偏振片后光强变化的定律。
七、光的应用1. 光纤通信:利用光的全反射原理传输信息。
2. 激光技术:利用激光的高亮度、高单色性和高方向性的特点,在医疗、工业和科研等领域有广泛应用。
3. 光学仪器:如显微镜、望远镜等,利用光学原理放大或观察微小或远距离的物体。
光学基础知识详细版

光学基础知识详细版一、光的本质光是一种电磁波,是自然界中的一种能量传递形式。
光的本质可以通过波动理论和粒子理论来解释。
波动理论认为光是一种波动现象,具有波长、频率、振幅等特性;粒子理论则认为光是由光子组成的,光子是光的能量载体。
二、光的传播光在真空中的传播速度是恒定的,约为299,792,458米/秒。
光在不同介质中的传播速度不同,这是由于介质的折射率不同所致。
当光从一种介质传播到另一种介质时,会发生折射现象,即光线方向发生改变。
三、光的反射和折射光的反射是指光线在遇到界面时,按照一定规律返回原介质的现象。
光的折射是指光线在通过两种不同介质的界面时,传播方向发生改变的现象。
光的反射和折射遵循斯涅尔定律,即入射角和折射角满足一定的关系。
四、光的干涉和衍射光的干涉是指两束或多束相干光波相遇时,由于光波的叠加,形成新的光强分布的现象。
光的衍射是指光波在遇到障碍物或通过狭缝时,发生弯曲并绕过障碍物传播的现象。
五、光的偏振光的偏振是指光波的振动方向具有一定的规律性。
自然光是由无数个振动方向不同的光波组成的,因此不具有偏振性。
当光波通过某些特殊材料或经过反射、折射等过程后,可以形成具有一定偏振性的光波。
六、光的吸收和发射光的吸收是指光波在传播过程中,能量被物质吸收的现象。
光的发射是指物质在吸收光能后,以光波的形式释放能量的现象。
光的吸收和发射遵循一定的规律,如光的吸收强度与光的频率有关,光的发射强度与物质的性质有关。
七、光的成像光的成像是指利用光学系统(如透镜、反射镜等)使物体发出的光波或反射的光波在另一位置形成实像或虚像的过程。
光的成像原理是光的折射和反射现象,通过光学系统可以实现对物体形状、大小、位置的观察和研究。
八、光的测量光的测量是光学研究中的重要内容,主要包括光强、光强分布、波长、频率、相位等参数的测量。
光的测量方法有直接测量和间接测量两种,直接测量是通过光学仪器直接测量光波参数,间接测量是通过测量光波与物质相互作用的结果来推算光波参数。
光学基础知识点总结

光学基础知识点总结一、光的基本特性光是电磁波的一种,具有波粒二象性,既具有波动性,也具有粒子性。
光的波长决定了它的颜色,波长越短,频率越高,颜色就越偏向紫色;波长越长,频率越低,颜色就越偏向红色。
媒质对光的传播起到了阻碍的作用,阻碍的程度由折射率决定。
在真空中,光速是最高的,为3.0×10^8m/s。
二、光的传播光在真空中的传播速度是最快的,当光通过不同介质时,光速会减慢,并且折射。
光的折射是由于光速在不同介质中的差异导致的,根据折射定律,入射角和折射角之比等于两种介质的折射率之比。
当光从光密介质射向光疏介质时,入射角大于折射角;反之,当光从光疏介质射向光密介质时,入射角小于折射角。
这就是为什么水池里的东西看上去都有些歪的原因。
三、光的反射和折射光的反射是指光线从一种介质透过到另一种介质时,遇到界面时发生的现象。
根据反射定律,光线的入射角等于反射角,反射定律表明入射角和反射角是相等的。
光的折射是指光在通过两种介质的分界面时,由于介质折射率的不同,在两种介质中的传播方向发生改变的现象。
四、光的干涉和衍射光的干涉是光波相互叠加,在波峰与波谷相遇时叠加会增强,而在波峰与波峰相遇时叠加会减弱。
光的干涉现象有两种:一种是菲涅尔干涉,一种是朗伯干涉。
光的衍射是指光波通过一道障碍物,由于波的直线传播受到限制,在障碍物边缘处波前发生变形,这种现象就是衍射。
光的干涉和衍射是光学中非常重要的现象,也是很多光学仪器(如干涉仪、衍射光栅等)的原理基础。
五、光学成像光学成像是指通过光学器件将物体的形象投射到屏幕或者成像器件上的过程。
根据成像光学器件的不同,光学成像可以分为透镜成像和反射镜成像。
在透镜成像中,成像的原理是由于透镜对光的折射性质,使得光线汇聚或发散从而产生物体的形象。
在反射镜成像中,成像的原理是由于反射镜对光的反射性质,使得光线经过反射后,同样能够形成物体的形象。
光学成像技术在医学、军事、天文学、摄影等领域都有着非常重要的应用。
光学基础知识

光学基础知识1.光源:的物体称为光源。
2.光在物质中是沿传播的。
、、等是由于光的直线传播形成的现象。
3.光在真空中的速度c= m/s = km/h。
声音在空气中的传播速度v= m/s。
4.光反射时,、、在同一平面内,反射光线和入射光线分别位于两侧,角等于角。
(线一面、分居侧、角相等、变化同、光路可)。
5.反射类型分为和,两种发射类型都(遵守或不遵守)反射定律。
我们能从不同方向看见物体就是由于发射。
镜面反射时反射方向光很强刺眼,而在其他方向上基本没有反射光。
6.物体通过平面镜所成的像是像,像与物体的大小,像到平面镜的距离和物体到平面镜的距离,像和物体关于平面镜是的,即虚像、等大、等距、对称。
但左右相反。
7.光发生折射的条件是光从一种介质射入另一种介质,如果光垂直射入另一种介质传播防向不变,直线前进,不发生折射。
8.光折射时、、在同一平面内,折射光线和入射光线分别位于两侧,折射角随的增大而增大,随的减小而减小。
(线一面、分居侧、变化同、光路可)。
9.当光从空气斜射入水或玻璃等透明物质时折射角入射角;当光从水或玻璃物质斜射入空气时,折射角入射角。
10.光反射和折射时光路是(可逆、不可逆)的。
11.反射现象和折射现象的区别:光在同一种物质行进是反射现象;光的传播通过两种物质是折射现象。
如看见水中的白云是现象、潜水员在水中看见天上的白云是现象、光的色散是现象、树的倒影是现象。
12.光的三基色是、、;颜料的三原色是、、。
13透明体的颜色由它过的色光决定的,如红玻璃之所以是红色是因为它只让光通过。
不透明的物体的颜色是由它的色光决定的,如红花之所以是红色是因为它只反射光,所有色光都反射的物体是色的,所有色光都不反射的物体是色的。
如红光照射到白物体上物体呈色、照射到蓝物体和黑物体上物体都呈色。
14.凸透镜是透镜,对光有作用,凹透镜是透镜,对光有作用。
15.三条特殊光线:1.平行于主光轴的光线过、2.过焦点的光线、3.过光心的光线传播方向。
光学基础知识

光学基础知识1. 引言光学是一门研究光的传播、反射、折射和干涉现象的科学,它扮演着在现代科学和技术中非常重要的角色。
本文将介绍光学的基础知识,包括光的性质、光的传播方式、光的折射和光的干涉现象。
2. 光的性质光是一种电磁波,具有波粒二象性。
光的波动性体现在它的干涉、衍射和偏振现象上,而光的粒子性则体现在光子的概念上。
2.1 光的波动性光的波动性使得它能够发生干涉现象。
当两束光叠加时,它们的波峰和波谷可以相互加强或抵消,从而形成明暗的干涉条纹。
干涉现象在波导器件和干涉仪等光学设备中得到广泛应用。
光的波动性还体现在光的衍射现象中。
当光通过一个小孔或遇到障碍物时,会发生衍射现象,使光波转向并产生弯曲或扩散的效果。
衍射现象导致了很多实际应用,如衍射光栅和衍射成像等。
2.2 光的粒子性光的粒子性表现为光子。
光子是光的基本粒子,它具有能量和动量,可以与物质发生相互作用。
光子的能量和频率之间的关系由普朗克公式给出:E = hf,其中E为能量,h为普朗克常数,f为光的频率。
3. 光的传播方式光的传播方式分为直线传播和波动传播。
在光线传播中,光被视为沿直线传播的粒子,符合几何光学的规律。
而在波动传播中,光被视为电磁波,需要利用波动理论进行描述。
3.1 光线传播光线传播遵循几何光学的规律。
根据光的传播路径和光线的性质,可以使用折射定律和镜面反射定律来计算光的传播方向和路径。
光线传播可以用来解释光的直线传播、光的成像和透镜等光学现象。
3.2 波动传播在波动传播中,光以电磁波的形式传播。
光的传播速度取决于介质的折射率,当光从一种介质进入另一种介质时,会发生折射现象。
根据斯涅尔定律,入射角和折射角之间满足折射定律的关系。
4. 光的折射光的折射现象是光线从一个介质进入另一个介质时发生的偏向现象。
折射现象可以用斯涅尔定律进行描述,即入射角、折射角和介质折射率之间的关系。
当光从光密介质(如玻璃)进入光疏介质(如空气)时,折射角大于入射角;当光从光疏介质进入光密介质时,折射角小于入射角。
光学知识基础

光学知识基础一、光学基本概念光学是研究光的行为和性质的物理学科。
它探讨了光在真空、气体、液体和固体中的传播规律,以及光的产生、变化和相互作用。
光可以看作是一种电磁波,其波长范围覆盖了从伽马射线、X射线、紫外线和可见光到红外线、微波和无线电波的广泛频谱。
在光学中,有几个重要的基本概念需要理解。
首先是光的波动性,即光在传播过程中表现出振动的特性,具有相位和波长。
其次是光的粒子性,即光是由粒子或光子组成的,这些粒子具有能量和动量。
此外,光学还涉及到光的干涉、衍射、反射、折射等现象,以及光学仪器和系统的工作原理。
二、光学元件与仪器光学元件和仪器在科学实验、工业生产、通信、医疗等领域有广泛应用。
常见的光学元件包括透镜、反射镜、棱镜、滤光片、光栅等。
这些元件可以单独使用,也可以组合在一起形成复杂的系统,以实现特定的光学功能。
例如,透镜是由两个曲面组成的,可以会聚或发散光。
反射镜由涂有金属反射层的玻璃制成,可以反射光线。
棱镜可以将一束光分成不同颜色的光谱。
滤光片可以过滤特定波长的光,而光栅则由一系列狭缝或反射线组成,用于分光或成像。
常见的光学仪器包括显微镜、望远镜、照相机、投影仪等。
显微镜用于观察微小物体,望远镜用于观察远处物体,照相机用于记录图像,投影仪则用于展示图像或视频。
这些仪器利用了光的折射、反射、干涉和衍射等原理,以实现清晰、准确的成像。
三、光学应用光学在许多领域都有广泛的应用。
在科学研究方面,光学显微镜可用于观察生物样品,光谱仪可用于分析物质成分,激光雷达可用于地形测量和遥感监测等。
在工业生产方面,光学成像系统可用于产品质量检测,光学传感器可用于自动化生产线控制,激光加工可用于切割、打标和焊接等。
在通信领域,光纤通信利用光的传输速度快、抗干扰能力强等优点,已成为现代通信的主流方式。
在医疗领域,光学仪器可用于诊断和治疗,如内窥镜、激光手术刀等。
此外,光学还在照明、显示、传感等领域有广泛的应用。
四、光的干涉与衍射光的干涉是指两束或多束相干光波在空间某一点叠加时,产生明暗相间的干涉现象。
光学基础知识

轴向色像差:指的是光轴上的位置,因波长不同产生不同颜色有不同焦点的现象。由于不同色光焦距 不同,物点不能很好的聚焦成一个完美的像点,所以成像模糊。
倍率色像差:指由于不同色光焦距不同,所以放大率不同,引起的映像倍率改变,画面边缘部分明暗交 界处会有彩虹的边缘。
人眼的视网膜上有两种光感受器:视杆细胞和视锥细胞。 视杆细胞的非常灵敏,在很暗的光照下还能工作,但不能区别颜色,在较暗的环境亮度下主要是视杆细胞的 活动,称暗视觉; 视锥细胞不够灵敏,只有在较强的光照下才能工作,能区别颜色。在明亮的环境中主要是视锥细胞的活动,称 明视觉; 在中等亮度范围,两种感光细胞均参与视觉称间视觉。 正常眼睛的明视距离是250毫米。
视觉系统的空间分辨能力常用视敏度来表示,其定义为眼能够分辨的最小细节所对应的视角(以分为单位)的倒 数。
正常人眼的视敏度约对应视角1‘~30“。 物体两端对眼睛光心所张的角(即视角)不能小于1‘角度,否则人眼无法分辨该物体。
谢谢观赏
教学资料整理
•Байду номын сангаас仅供参考,
(2)、镜头焦距 镜头焦距越长,景深越小;焦距越短,景深越大;
(3)、拍摄距离 距离越远,景深越大;距离越近,景深越小。
光圈越大,景深越小;光圈越小,景深越大;
景深的实际拍摄照片 ---------- 只改变镜头光圈和快门速度
光圈f/2.8 曝光时间1/125 s
光圈f/5.6 曝光时间1/30 s
场曲在望远镜中表现比较明显,但是害处较小,我们使用望远镜很明显可以看到边缘成像不如中心,这种边 缘模糊就主要是场曲和彗差的综合作用,其中场曲是主要的。
场曲和彗差都与视场大小有关,视场越大则越严重,所以现代望远镜不是很追求广角设计。在视场较小的天 文望远镜中,场曲和彗差就要轻微得多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂 直
C:-2.00Ax90
三棱镜PRISM
单位:Δ
顶
棱镜底
三棱镜
光线向棱镜底部偏折 物像向棱镜顶部偏移
棱镜效应
O
棱镜效应
棱镜量:
P=Dh/10 D:屈光度 h:移心量(偏心量)单位:mm S:-5.00D,单眼瞳距做大3mm P=1.5 BI
3mm
f 焦距
O.
Power=1/f
(f单位:m)
特点: 使平行光线会聚 使物像变大
球透镜SPH
凹凸透镜
平凸透镜
双凸透镜
f:50cm S:+2.00D或+2.00Ds
柱镜CYL
单位:D或Dc
屈光方向 轴向AXIS
垂 直
C:+2.00Ax90
柱镜CYL
屈光方向 轴向AXIS
5m
三、光的反射
定律
入射角=反射角
平面反射
漫反射
漫反射
偏光镜—减少漫反射、眩光
镜面反射
面镜
平面镜
凹面镜
凸面镜
像:等大
像:放大
像:缩小
四、光的折射
光密质
光疏质
相对而言
α
n=Sinα/Sinβ
β
(一)光的折射定律
光路的可逆性 光线由光疏质进入光密质时,折射光线偏向法线 光线有光密质进入光疏质时,折射光线偏离法线 折射率越大光线的偏折程度也越大
光学基础知识
主讲人:张 铭
一、光---电磁波
(一)光谱
(二)紫外线
紫外线
UV-A
UV-B
部分照射到地面
UV-C 被臭氧层吸收
紫外线
眼睛
皮肤
紫外线
紫外线
(三)电磁波
二、光线
光的直线传播
光线的分类
平行光线 5m以外物体 发出或反射
发散光线 5m以内物体 发出或反射
会聚光线 人工光
光 γ α 光α =γ(二)透镜球透镜SPH
单位:D或Ds
O光心 F’虚焦点
.
f 焦距
O
Power=1/f
(f单位:m)
特点: 使平行光线发散 使物像变小
球透镜SPH
双凹透镜
平凹透镜
凸凹透镜
f:50cm
S:-2.00D或-2.00Ds
球透镜SPH
O光心
F’实焦点