十二烷基硫酸钠辅助下低温合成碱式碳酸镁微球

合集下载

十二烷基硫酸钠改性氢氧化镁阻燃剂的实验研究

十二烷基硫酸钠改性氢氧化镁阻燃剂的实验研究

十二烷基硫酸钠改性氢氧化镁阻燃剂的实验研究
刘立华
【期刊名称】《《化工科技市场》》
【年(卷),期】2009(032)012
【摘要】氢氧化镁具有阻燃、消烟、填充多种功能,是一种重要的无机环保型阻燃材料。

实验采用十二烷基硫酸钠对氢氧化镁阻燃剂进行了湿法表面改性研究,对改性前后的氢氧化镁粉体进行了黏度、吸油值、堆积密度及红外光谱等表面物化性能表征,从而确定最佳的表面改性工艺条件。

实验结果表明:对氢氧化镁的最佳改性时间为60 m in,改性温度为90℃,改性剂用量为2%。

改性前后氢氧化镁粉体红外光谱图的对比分析显示氢氧化镁表面有新的化学键形成。

【总页数】4页(P17-20)
【作者】刘立华
【作者单位】唐山师范学院化学系河北唐山 063000
【正文语种】中文
【中图分类】TQ132.2; TQ314.28+8
【相关文献】
1.硬脂酸镁改性氢氧化镁阻燃剂的实验研究 [J], 刘立华
2.十二烷基苯磺酸钠和聚乙烯醇改性氢氧化镁阻燃剂的实验研究 [J], 白俊红;刘有智;申红艳
3.氢氧化镁阻燃剂的改性及其对聚丙烯热分解行为和机械力学性能的影响 [J], 邢丹;刘立华
4.十二烷基硫酸钠改性氢氧化镁阻燃剂的实验研究 [J], 刘立华
5.片状氢氧化镁阻燃剂的制备、表面改性及其测试 [J], 刘春英;冯锡兰;李汝奕;刘大鹏;沈国平;罗立文;柳云骐
因版权原因,仅展示原文概要,查看原文内容请购买。

碱式碳酸镁分解温度

碱式碳酸镁分解温度

碱式碳酸镁分解温度碱式碳酸镁(Mg(HCO3)2)是一种重要的镁盐化合物,广泛应用于化学工业、农业和医药领域。

了解碱式碳酸镁的分解温度对于合理利用和应用这一化合物具有重要意义。

碱式碳酸镁的分解温度是指在一定条件下,碱式碳酸镁分解为碱式氢碳酸镁(Mg(HCO3)OH)和二氧化碳(CO2)的温度。

碱式碳酸镁的分解温度受多种因素的影响,包括温度、压力、反应时间等。

温度是影响碱式碳酸镁分解的主要因素之一。

实验表明,碱式碳酸镁在高温下分解较快,而在低温下分解较慢。

一般来说,碱式碳酸镁的分解温度在200°C左右。

当温度超过分解温度时,碱式碳酸镁会开始分解,生成碱式氢碳酸镁和二氧化碳。

压力对碱式碳酸镁的分解温度也有一定影响。

在一定温度下,增加压力可以提高碱式碳酸镁的分解温度。

这是因为增加压力会增加反应物的浓度,促进反应的进行。

然而,过高的压力也会对反应产生负面影响,因此需要找到适宜的压力条件。

反应时间也是影响碱式碳酸镁分解的因素之一。

在相同温度和压力条件下,反应时间越长,碱式碳酸镁的分解程度越高。

这是因为反应需要一定的时间来进行,较长的反应时间可以使反应更充分地进行。

碱式碳酸镁的分解温度对于其在工业生产和应用中的合理利用至关重要。

在制备过程中,需要根据具体需求确定适宜的温度和压力条件,以提高碱式碳酸镁的分解效率和产率。

此外,在农业中,碱式碳酸镁可以作为镁肥使用,合理控制分解温度可以提高镁肥的效果。

在医药领域,了解碱式碳酸镁的分解温度可以帮助合理选择合成方法和控制药物质量。

碱式碳酸镁的分解温度是影响其分解反应的重要因素。

温度、压力和反应时间是影响分解温度的主要因素。

合理控制这些因素可以提高碱式碳酸镁的分解效率和产率,从而实现其在化学工业、农业和医药领域的有效应用。

一种非离子型复合表面活性剂在碱性及酸性环境中的应用

一种非离子型复合表面活性剂在碱性及酸性环境中的应用

第53卷第3期 辽 宁 化 工 Vol.53,No. 3 2024年3月 Liaoning Chemical Industry March,2024一种非离子型复合表面活性剂在碱性及酸性环境中的应用张侠婷,江存,何彦波(德旭新材料(广州)股份有限公司,广东 广州 510520)摘 要: 以一种自制的非离子型复合表面活性剂为研究对象,主要研究了该复合剂碱性清洗体系的清洗性、漂洗性和稳定性以及测试其对酸性体系除油效率的影响情况。

结果表明:该复合剂碱性清洗体系具有优异的清洗性、易漂洗、稳定性佳,除油率可达90%以上;在酸性溶液中,该复合剂能够有效提高有机酸、无机酸溶液的清洗效果,除油率均达到90%以上。

因此,该非离子型复合剂与酸、碱互溶,不析出不分层且具有优异的乳化除油效果,能够应用于金属加工清洗的碱、酸性溶液中。

关 键 词:非离子;复合剂;碱性;酸性;除油中图分类号:TQ423.9 文献标识码: A 文章编号: 1004-0935(2024)03-0362-04在金属加工的除油工序中,油污的种类包括皂化油和非皂化油,皂化油可以用只含碱性物质的清洗剂清洗。

但金属加工中往往混有多种油污,因此需要通过多种物质配合清洗,而表面活性剂是目前工业上应用极广泛的一种清洗剂组分[1-2]。

通过表面活性剂的润湿、卷离、分散、乳化作用以及碱性助剂的皂化作用、有机溶剂的溶解作用,达到所需的清洗效果[3-4]。

对于与碱复配的表面活性剂,要求其能够与碱溶液互溶,避免碱破坏表面活性剂的分子结构影响表面活性,从而导致其性能变差[5-6]。

为了除去金属表面的锈迹、氧化层,一般在碱洗后会进行酸洗操作,有的金属加工厂为了减少加工工序,选择除油除锈同时进行,将表面活性剂加入酸洗液中,使其同时具有清洗性[7-9]。

与碱性除油不同的是,酸性主要由表面活性剂和有机溶剂实现除油作用[10]。

因此要求表面活性剂具有耐酸性,在酸溶液中不会出现析出絮状物或浮油现象,这是表面活性剂实现清洗作用的前提。

玫瑰花状多孔碱式碳酸镁微球的合成_英文_

玫瑰花状多孔碱式碳酸镁微球的合成_英文_

收稿日期:2010-08-24。

收修改稿日期:2011-01-21。

上海市自然科学基金(09ZR147900),中央高校基本科研业务费专项基金,教育部新世纪优秀人才计划(NCET -08-0776)和上海市重点学科建设(No.B506)资助项目。

*通讯联系人。

E -mail :xfsong@玫瑰花状多孔碱式碳酸镁微球的合成宋兴福*杨晨汪瑾孙淑英于建国(国家盐湖资源综合利用工程技术研究中心华东理工大学,上海200237)摘要:介绍了一种便利的玫瑰花状多孔碱式碳酸镁(4MgCO 3·Mg(OH)2·4H 2O)微球的合成方法,该方法分为三水碳酸镁(MgCO 3·3H 2O)前驱物合成与其在水中的热解制备过程。

采用搅拌诱导结晶辅助陈化的方法合成前驱物,得到长约115μm ,长径比约10.4的均一微棒,将微棒在353.2K 的水中热解,即可得到由弯曲的纳米片组成的具有“卡片箱”结构(house of cards )的玫瑰花状多孔碱式碳酸镁微球,微球直径为30~60μm ,平均约40μm ,具有良好分散性。

研究了热解过程中的形貌转变和相转移过程,采用XRD ,FTIR 及SEM 表征样品的结构和形貌。

结果表明:MgCO 3·3H 2O 在较高温度下因不稳定而溶解,形成局部过饱和,生成无定形颗粒,并在微棒上成核结晶为4MgCO 3·Mg(OH)2·4H 2O 纳米片。

纳米片由与微棒附着部位向外生长,形成玫瑰花状微球,微球长大伴随微棒的消溶,生长在棒上不同部位的颗粒在微观结构上将留有不同痕迹。

分析认为热解转变过程是(MgCO 3·3H 2O)溶解-无定形物生成-(4MgCO 3·Mg(OH)2·4H 2O)结晶的过程。

关键词:三水碳酸镁;碱式碳酸镁;形貌;热解中图分类号:O614.22;TQ132.2文献标识码:A文章编号:1001-4861(2011)05-1008-07Synthesis of Porous Hydromagnesite Microspheres with Rosette -Like MorphologySONG Xing -Fu *YANG Chen WANG JinSUN Shu -YingYU Jian -Guo(National Engineering Research Center for Integrated Utilization of Salt Lake Resource,East China University of Science and Technology,Shanghai 200237,China )Abstract :Porous hydromagnesite (4MgCO 3·Mg(OH)2·4H 2O)microspheres with rosette -like morphology weresynthesized by a facile pathway.The procedure involved the synthesis of nesquehonite (MgCO 3·3H 2O)precursorand its pyrogenation in water.MgCO 3·3H 2O precursors were synthesized via a stirring -induced crystallization method assisted by aging.Uniform rod -like precursor could be obtained with a length of about 115μm and aspect ratio of about 10.4.4MgCO 3·Mg (OH)2·4H 2O porous microspheres with “house of cards ”structure composed of curly nano -sheets crystals were obtained via the pyrogenation of MgCO 3·3H 2O in water at 353.2K.The diameter of hydromagnesite spheres is in the range of 30~60μm and 40μm in average with well dispersity.Shape evolution and phase transfer during the transformation were studied by time -evolution experiments.Thesynthesized samples were characterized by XRD and FTIR as well as SEM.The results show that MgCO 3·3H 2O dissolves and local supersaturation is formed.Amorphous particles are produced and crystallized into 4MgCO 3·Mg(OH)2·4H 2O nanosheets on the microrods.Hydromagnesite nano -sheets grow outward from the attachment site forming porous rosette -like microspheres.A mechanism form MgCO 3·3H 2O microrods to 4MgCO 3·Mg(OH)2·4H 2Omicrospheres is suggested to be (MgCO 3·3H 2O)dissolution -amorphous particles formation -(4MgCO 3·Mg(OH)2·4H 2O)crystallization.Key words :nesquehonite;hydromagnesite;morphology;pyrogenation第27卷第5期2011年5月Vol .27No .51008-1014无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRY第5期宋兴福等:玫瑰花状多孔碱式碳酸镁微球的合成0IntroductionThe properties of particles are often closely cor-related to their shapes[1~4].Functional inorganic mate-rials with diverse morphologies are utilized in many fields[5~8].There have been increasing interests in de-signing and fabricating desirable micro-and meso-in-organic materials[9~12].Hydromagnesite or basic magnesium carbonate 4MgCO3·Mg(OH)2·4H2O,as one of the most important minerals in geology and planetlogy[13],can be used as fire retardant as well as the carrier and precursor for other magnesium-based chemicals.Moreover,it is widely used in the area of food,pharmaceutical,pig-ments and daily necessities[14].As a monoclinic crystal, 4MgCO3·Mg(OH)2·4H2O exhibits hexagonal plate-shaped characteristics.However,due to its self-as-sembly properties,plate-like microcrystal will gather together.The form of spherical,rose-like,nest-like, tubular particles and other forms are the results of self-assembled hydromagnesite nano-sheets.Hydromagnesite morphology is varies with syn-thesis ways.Du et al.[15]used Mg(NO3)2with pH value of7.5and Na2CO3as raw materials to react at353.2 K to obtain4MgCO3·Mg(OH)2·4H2O micro-rods with a surface of“house of cards”structure.Mitsuhashi and co-workers[16]synthesized needle-like MgCO3·3H2O at 318K,and obtained tubular4MgCO3·Mg(OH)2·4H2O crystals with a“house of cards”structure by con-trolling the operation conditions.They also prepared petaloid hydromagnesite microspheres under ultrasonic irradiation[17].Zhang et al.[18]prepared basic magnesium carbonate by double carbonation under atmospheric pressure and studied the influences of different pyro-genation temperatures and different additives on the crystal morphology.Cheng et al.and Li et al.[19-20]e-valuated the effects of supersaturation and temperature on the preparation of magnesium carbonate hydrates. Recently,the synthesis of spherical or nest-like4Mg-CO3·Mg(OH)2·4H2O is mainly conducted through the reaction crystallization method[21]or hydrothermal method[22~24]by mixing soluble magnesium salt and carbonate salt under certain conditions.Direct precipitation method will result in a close packing“stack”structure constructed by nanosheets. While porous“house of cards”structure can only be obtained through rod-like nesquehonite transformation and high purity hydromagnesite will be obtained with pre-washed rods as the precursor.Among the factors affecting the morphology of hydromagnesite,the pre-cursors size is particularly rger particles can provide enough supersaturation and growth mate-rial to form a complete spherical shape.If the precur-sor particles are very small,only aggregates consisted of few flakes can be obtained.We report here a facile pathway to synthesize4MgCO3·Mg(OH)2·4H2O by py-rogenation process as well as a method to prepare suitable nesquehonite precursor.1ExperimentalAll chemicals used were analytical grade(Shang-hai Lingfeng Chemical Reagent Co.,Ltd.)and used without further purification.Water used was deionized water.The MgCO3·3H2O precursor was prepared by mixing MgCl2with Na2CO3solution at293.2K and then taken as the reagent.MgCl2solution(0.50mol·L-1,160mL)was placed in a glass jacket crystalliza-tion reactor at293.2K.Subsequently,Na2CO3solution (0.50mol·L-1,160mL)was rapidly added into the vigorously stirred crystallization reactor within3~4s. The mixture was further stirred for15min with con-stant mechanical stirring rate and the temperature was maintained at293.2K for6h under static conditions. The white precipitate was collected and filtered off, washed with ethanol for several times and then placed in an oven at333.2~353.2K for about5h to give the nesquehonite precursor.The spherical hydromagnesite was obtained from nesquehonite via pyrogenation pro-cess.At this stage,100mL deionized water was heat-ed to353.2K.Then1.0g MgCO3·3H2O synthesized was added into the deionized water under stirring. Soon afterwards,the agitation was stopped rapidly. The sample dispersed at the bottom of the reactor and the temperature was maintained at353.2K for3h. After that,the precipitate was collected and filtered off,washed with ethanol for several times and then1009第27卷无机化学学报dried in an oven at 353.2K overnight to obtain the target product hydromagnesite.XRD patterns were recorded on a D/MAX 2550VB/PC,using Cu K αradiation ,λ=0.15418nm,oper -ating at 40kV,100mA and scanning rate at 12°·min -1from 5°to 75°.The fourier transform infrared spectra (FTIR)were recoded on Nicolet 6700(KBr Pellets method).The morphology and particle size of the as -synthesized samples were examined by a scan -ning electron microscopy (SEM,JEOL -JSM -6700F,15kV.).Particle size was obtained from counting 100particles observed in SEM images.2Results and discussionThe XRD pattern of synthesized rod -like hydrat -ed magnesium carbonate at 293.2K is shown in Fig.1(a).All the peaks can be indexed to the monocliniccrystalline phase of MgCO 3·3H 2O,which is in good a -greement with reference data(PDF 20-0669).The reaction followed by mixing MgCl 2andNa 2CO 3is a complex reactive crystallization process.The precipitation takes place and generates a large amount of primary nanoparticles initially.With the continuous stirring and the increase of reaction time up to about 14min,a small number of micrometer -sized rod -like crystals or aggregates appear in the slurry serving as MgCO 3·3H 2O seeds.Under continu -ous stirring,there is no flocculation observed under microscope after 34min,and it can be considered that it has been completely transferred into rod -like crys -tals.If the stirring ceases after 15min,the system will no longer produce new seeds.A large quantity of pri -mary nanoparticles exist in the system,which are gradually transferred into crystalline MgCO 3·3H 2O in the later aging time,grow onto the existing crystal particles to complete the ordering process and eventu -ally grow into larger size rod -like MgCO 3·3H 2O.The detail of the synthesis method was described in ref.[26].Fig.2(a)shows the SEM images of synthesized MgCO 3·3H 2O.It is obvious that the microrods are well crys -tallized with a length of 60~150μm (the average length is 115μm)and aspect ratio of 8.3~11.7(the average aspect ratio is 10.4).The stability of nesquehonite is between that of amorphous magnesium carbonate and hydromagnesite.Nesquehonite will transfer into hydromagnesite in aqueous solutions.The XRD pattern of the final spherical product is shown in Fig.1(d).All the peaks in this Figure can be indexed to the monoclinic crys -talline phase of 4MgCO 3·Mg(OH)2·4H 2O in agreementwith reference data(PDF 25-0513).As shown in Fig.2(h),the final product is porous rosette -like,and most of them are composed of several spherical crystals growing together.If sunken parts and some incomplete growth areas appear on the sur -face,a “nest -like ”shape will be presented.The actual morphology of hydromagnesite polycrystal is assem -bled by numberless two -dimensional slightly curly nano -sheets to make up of a structure as “house of cards ”.In order to reduce the surface energy,they gather into a ball.100particles in the SEM images are randomly selected to measure the spherical diam -eter D .The result shows that the spherical diameter is in the range of 30~60μm and the average is 40μm.In order to explore the evolution from nesquhonite microrods to hydromagnesite microspheres with rosette -like morphology,time -evolution experiments were carried out.SEM photos of particles at different stages of the pyrogenation process are shown in Fig.2(b~h).According to the work by Dong et al.[27],the dis -solved nesquehonite can reach about 7.632mmol ·L -1in 2min when it is put into the water at 80℃and(a)nesquehonite precursors;(b)20min;(c)40min;(d)final productFig.1XRD patterns of the products at different reactiontimes during pyrogenationprocess1010第5期宋兴福等:玫瑰花状多孔碱式碳酸镁微球的合成(a)the as-synthesized rod-like MgCO3·3H2O;(b,c)at20min during pyrogenation process;(d,e,f,g)at40min during pyrogenation process;(h) hydromagnesite obtained by pyrogenation.The inset image is a typical hydromagnesite microsphereFig.2SEM images of magnesium carbonate at different synthesis stagesthe solubility of hydromagnesite is only about0.9374mmol·L-1[28].The supersaturation ratio is about1.82.Since the pyrogenation process is under static condition,the part close to the rod-like particle has relatively high local supersaturation due to the disso-lution of MgCO3·3H2O.Fig.2(b,c)shows the SEM im-ages of nesquhonite undergoing the pyrogenation pro-cess for20min.In the panoramic image,some spher-ical or nest-like grains cling onto MgCO3·3H2O micro-rods sparsely.These grains“grow”on the rod side faces or tips,which is similar to mushrooms growing on tree pared to the spherical shape,the particles are irregular,slightly flattened and sunken on many particles back(away from the rod).From the close-up image of an individual attachment,it is obvi-ous that MgCO3·3H2O surfaces is rough as the same as chapped skin,which exhibits an interlocking net-work.These results are in good agreement with Dheillys[29].The appendiculate grain has a typical sur-face of“house of cards”structure composed of 4MgCO3·Mg(OH)2·4H2O nano-sheets.It is interesting that the grain is divided into two hemispheres by a clear suture in the back.The hollow and the suture on the grains back mentioned above,to some extent,im-ply that the seed crystals of the basic magnesium car-bonate are hatched from the rod-like particles.Once the spherical particles begin to grow,the growth speed is fast near the rod.Diffusion becomes an important factor in the growth dynamics.With the extension of reaction time up to40min (Fig.2(d~g)),the“nutrient”(growth material)of the “tree trunk”(the nesquehonite microrod)is gradually absorbed by growing“mushrooms”(hydromagnesite growing on the microrod).The increase in the size of 4MgCO3·Mg(OH)2·4H2O microspheres is extremely obvious.Relatively,the MgCO3·3H2O micro-rods be-come shorter and thinner and both tips become nee-dle-shaped due to dissolution while the surface ex-hibits rough peeling layer and grooves.There′s no ex-istence of hollows on the back of spherical particles at this stage,which may be owing to their gradual growth in the pyrogenation process and their complete disap-pearance eventually.There are also some spherical particles growing together.One possibility is that local supersaturation makes the growth happen on both sides of the hemisphere,forming the aggregation of two spherical particles.Another one may be that sev-eral nuclei nucleate and grow at the binding site on nesquehonite microrods.By carefully looking into the surface structure of the hydromagnesite particles at different pyrogenation stages,it is worth noting that the leaf-like crystallites become more compactly arranged on the particles sur-face when pyrogenation takes less time,in other words,there is larger amount of flakes per area unit. On the contrary,as the pyrogenation continues,the 1011第27卷无机化学学报(a)nesquehonite precursors;(b)20min;(c)40min;(d)final productFig.3FTIR spectra of products at different reaction time during pyrogenation processarrangement becomes much looser.Moreover,the binding site of microspheres and microrods is a layer of substance,which is different from the main body of sphere and the body of nesquehonite micro -rods rep -resenting “batholith ”(Fig.2(g)).Therefore,it can be concluded that the growth of hydromagnesite starts from the binding site and grows outward.The leaf -like hydromagnesite accumulation pushes out the primal surface,which makes the structure of “house of cards ”become loose gradually and ultimately “burst ”into rosette -like hydromagnesite.The growth mode can be used to interpret many interesting phenomena in the pyrogenation process,such as the hollow on the back of sphere appearing at the 20th min and disap -pearing at the 40th min (it may have happened before this moment),which results from the growth of bottom crystallites.The sunken parts and incomplete growth areas show the growth traces of 4MgCO 3·Mg(OH)2·4H 2O.If the particle grows on the side face of the rod,the binding sites of the attachments and the substance nesquehonite rod will be arc -shaped and concave tothe interior of spherical 4MgCO 3·Mg(OH)2·4H 2O(Fig.2(e)).As a result,a “nest ”will come into being after the completion of growth to retain this trail.The sec -tion plane of the nest is oval -shaped.Similarly,the binding sites of the particles growing on the tip ofMgCO 3·3H 2O microrod are small that a mini slit will be left on 4MgCO 3·Mg(OH)2·4H 2O when MgCO 3·3H 2O dissolves into a needle -like one.The slit is small and easy to be filled up in the following growth forming intact spherical particles.As shown in Fig.2(f),some floccules can be observed.According to the research by Dong et al.[27],nesquehonite in aqueous solution will transfer into amorphous phase at high temperature.This is not reflected in the XRD pat -terns.This is due to the diffraction peaks of crys -talline phase cover up the existence of amorphous.The characteristics of the system are that magnesium carbonate crystals are crystallized from amorphous nanoparticles.It is multi -step dynamic process and once local supersaturation is formed,amorphous phase forms firstly.Fig.1shows the XRD patterns of the product at different periods of time during the pyrogenation pro -cess.It is obvious that MgCO 3·3H 2O is graduallytransformed into 4MgCO 3·Mg(OH)2·4H 2O as time goesby.As the diffraction peak intensity of 4MgCO 3·Mg(OH)2·4H 2O is much weaker than that of MgCO 3·3H 2O,the diffraction peaks of 4MgCO 3·Mg(OH)2·4H 2O are concealed at the 20min.Increasing the re -action time up to 40min,a large amount of 4MgCO 3·Mg (OH)2·4H 2O appears to demonstrate its strong diffraction intensity that can clearly be identified.Fig.3shows the typical FTIR spectra of the par -ticles obtained from different reaction times.It can be observed that the spectra change significantly with the increase of reaction time.For the precursor,the IR spectra are very similar to those of MgCO 3·3H 2O,which are confirmed by the presence of 850cm -1(ν2mode),1105cm -1(ν1mode),1485and 1420cm -1(ν3mode)CO 32-adsorption bands.Different amounts of crystallization water give the broad bands in the range of 3600~3000cm -1and a faint band at about 1645cm -1is associated with O -H bending mode.All these results indicate that the rod -like particles obtainedbelow 293.2K have a formula of MgCO 3·x H 2O,whichis in good agreement with the results reported in the previous work [30,31].With the increase of reaction time up to 3h (the reaction should be completed before this time),a great change takes place on the IR spec -tra.In contrast to the precursor,O -H bond appears in the crystalline water molecules and there is asharp1012第5期宋兴福等:玫瑰花状多孔碱式碳酸镁微球的合成Fig.4Schematics of the hydromagnesite microspheressynthesis and growth processband around 3650cm -1corresponding to the free O -H vibration.Moreover,the bands between 3600and 3400cm -1also become narrower.As 4MgCO 3·Mg (OH)2·4H 2O consisting of more CO 32-groups,the carbonate bending vibrations split into three absorp -tion bands at 800(the strongest),850,and 880cm -1.All of the features are suggested as the characteristic adsorption of 4MgCO 3·Mg(OH)2·4H 2O,which is con -sistent with the XRD results.A challenge in materials engineering is to make the controlled assembly of purposely designed molecules or ensembles of molecules into different scales with special properties and functions.Due to restrictions of the crystal habit,it is tremendously dif -ficult to achieve the desired architectures.However,there is a dramatic change of morphology on the raw materials and desired products in our experiments.Fig.4shows the schematics of the hydromagnesite microspheres growth process.Crystallization is a mul -ti -step dynamic process,rather than a one -step ther -modynamic process.Amorphous precursor particles are favored to form as the first species at high super -saturations according to the Ostwald rule of stage.When the precipitation begins,amorphous nanoparti -cles initially form from the mixture solution (Fig.4a),and then they tend to quickly aggregate together to form larger,more thermodynamically stable particles,which affect the size and shape of final samples.With the extension of reaction time,the morphology of the synthesized samples varies from particles to microrods (Fig.4b).Finally,all particles are changed into micro -rods with uniform diameter distribution (Fig.4c).At353.2K,the dissolution of MgCO 3·3H 2O forms local supersaturation which again leads to the generation of amorphous precursor particles.According to the view of C 觟lfen et al.[32],the formation of amorphous precur -sors and crystallization of inorganic salt belong to the non -classical crystallization process.Driven by ther -modynamics,by oriented attachment and fusion,these nanoparticles shape nano -leaf MgCO 3·Mg(OH)2·4H 2O crystallites growing on the surface of MgCO 3·3H 2O microrods (Fig.4d).The microrods disappear and mi -crospheres form at last (Fig.4e).The balance between the dissolution rate of nesquehonite and the deposition rate of hydromagnesite is considered to be a dynamic factor in the process of microspheres formation.The involved processes and mechanism during pyrogena -tion may be as follows:(MgCO 3·3H 2O)dissolution -amorphous particles formation -(4MgCO 3·Mg (OH)2·4H 2O)crystallization.3ConclusionsIn this work,a multi -step chemical conversion strategy to achieve the indirectly synthesis of desired architectures was developed.Porous rosette -like 4MgCO 3·Mg (OH)2·4H 2O was obtained by the pyro -genation of MgCO 3·3H 2O.Because of the mild reac -tion condition without introducing additives,products with high purity can be prepared.The transformationfrom MgCO 3·3H 2O microrods to the 4MgCO 3·Mg(OH)2·4H 2O microspheres can be moused out from the tran -sition state in the process.During the pyrogenation process,MgCO 3·3H 2O crystals dissolve and 4MgCO 3·Mg(OH)2·4H 2O crystals grow.Amorphous substancemay form firstly due to local supersaturation.The nanoparticles crystallize into hydromagnesite micro -crystals forming rosette -like morphology finally.Some phenomenon such as the formation of nest -like parti -cles can be explai ned according to the mechanism mentioned above.References :[1]Yan C,Xue D,Zou L,et al.J.Cryst.Growth ,2005,282(3/4):448-4541013第27卷无机化学学报[2]Rasenack N,Müller B W.Int.J.Pharm.,2002,244(1/2):45-57[3]YANG Juan-Yu(杨娟玉),LU Shi-Gang(卢世刚),KAN Su-Rong(阚素荣),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2009,25(4):756-760[4]WANG Feng(王峰),WANG Qiu-Shi(王秋实),CUI Qi-Liang(崔启良),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao), 2009,25(6):1026-1030[5]Mann S.Angew.Chem.Int.Ed.,2000,39(19):3392-3406[6]Fang X S,Yoshio B,Liao M Y,et al.Adv.Mater.,2009,21(20):2034-2039[7]Fang X S,Bando Yoshio,Gautam U K,et al.J.Mater.Chem.,2008,18(5):509-522[8]Fang X S,Xiong S L,Zhai T Y,et al.Adv.Mater.,2009,21(48):5016-5021[9]Clfen H,Qi L,Mastai Y,et al.Cryst.Growth Des.,2002,2(3):191-196[10]Wang T,C觟lfen ngmuir,2006,22(21):8975-8985[11]Mitsuhashi K,Tagami N,Tanabe K,et al.J.Photochem.Photobiol.A,2007,185(2/3):133-139[12]Zhang Z,Zheng Y,Zhang J,et al.J.Chromatogr.A,2007,1165(1/2):116-121[13]Russell M J,Ingham J K,et al.J.Geol.Soc.,1999,156(5):869-888[14]Zhang Z,Zheng Y,Chen J,et al.Adv.Funct.Mater.,2007,17(14):2447-2454[15]Hao Z,Pan J,Du F.Mater.Lett.,2009,63(12):985-988[16]Mitsuhashi K,Tagami N,Tanabe K,et ngmuir,2005,21(8):3659-3663[17]Ohkubo T,Suzuki S,Mitsuhashi K,et ngmuir,2007,23(11):5872-5874[18]ZHANG Li-Li(张黎黎),LIU Jia-Xiang(刘家祥),LI Min(李敏).J.Chin.Chem.Soc.(Guisuanyan Xuebao),2008,36(9):1310-1314[19]Cheng W T,Li Z B,George P D.Chin.J.Chem.Eng.,2009,17(4):661-666[20]Cheng W T,Li Z B.Ind.Eng.Chem.Res.2010,49(4):1964-1974[21]Zhang Z,Zheng Y,Zhang J,et al.Cryst.Growth Des.,2007,7(2):337-342[22]Yan C,Xue D.J.Phys.Chem.B,2005,109(25):12358-12361[23]Li Q,Ding Y,Yu G,et al.Solid State Commun.,2003,125(2):117-120[24]Liu F,Sun C,Yan C,et al.J.Mater.Sci.Technol.,2008,24(4):641-648[25]H覿nchen M,Prigiobbe V,et al.Chem.Eng.Sci.,2008,63(4):1012-1028[26]SONG Xing-Fu(宋兴福),YANG Chen(杨晨),et Patent,101830488A,2010.[27]Dong M,Cheng W,et al.J.Chem.Eng.Data,2008,53(11):2586-2593[28]Cheng W T,Li Z B.Ind.Eng.Chem.Res.,2010,49(4):1964-1974[29]Dheilly R M,Bouguerra A,Beaudoin B,et al.Mater.Sci.Eng.A,1999,268(1/2):127-131[30]Botha A,Strydom C A.J.Therm.Anal.Calorim.,2003,71(3):987-995[31]Zhang Z,Zheng Y,Ni Y,et al.J.Phys.Chem.B,2006,110(26):12969-12973[32]C觟lfen H.Mesocrystals and Nonclassical Crystallization.England:John Wiley&Sons,Inc.,2008:75-781014。

一种热解重镁水制取碱式碳酸镁系统[实用新型专利]

一种热解重镁水制取碱式碳酸镁系统[实用新型专利]

专利名称:一种热解重镁水制取碱式碳酸镁系统专利类型:实用新型专利
发明人:颜文斌,高峰,银永忠,王兆兵,华骏
申请号:CN201520449200.5
申请日:20150626
公开号:CN204873869U
公开日:
20151216
专利内容由知识产权出版社提供
摘要:本实用新型公开了一种热解重镁水制取碱式碳酸镁系统,主要包括燃烧机、热风炉、热解罐、文丘里雾化器、旋风分离器、预热盘管,热风炉与文丘里一级雾发器相连接,所述文丘里一级雾发器与热解罐相连接,所述热解罐顶部与旋风分离器靠近顶部处相连接,所述预热盘管一端通过重镁水输送泵与重镁水贮槽相连接,所述预热盘管另一端与文丘里二级雾化器通过管道相连接,所述文丘里二级雾化器一端通过管道与旋风分离器顶部相连接,所述文丘里二级雾化器另一端与预热液缓冲罐相连接,所述预热液缓冲罐通过泵与文丘里一级雾化器相连接。

本实用新型设备简单,固定投入低,运行费用低,热解温度低,能耗少,热能利用率高,不易结垢堵塞,产品品质好。

申请人:吉首大学
地址:416000 湖南省湘西土家族苗族自治州吉首市人民南路120号
国籍:CN
代理机构:深圳市兴科达知识产权代理有限公司
代理人:王翀
更多信息请下载全文后查看。

二氧化碳、十二烷基硫酸钠生产方法和应用

二氧化碳、十二烷基硫酸钠生产方法和应用

1.别号:碳酐,,碳酐,碳酸气,(固态)外观:常温下是一种无色无味气体英文名:ca r bon d i oxi d e熔点:-78.5℃(升华)分子式:CO2沸点:-56.6(0.52M Pa)结构式:O=C=O密度:1.977g/cm3 (0℃)相对分子质量:44.0095落解性:能溶于水,与水反应生成碳酸质量标准应用性能:气体主要用作制纯碱、化肥(、尿素)及合成和无机盐工业的原料,亦用于钢铸件淬火和铅白创造,还用于创造干冰等。

液体用于焊接、发酵工业、冷却和清凉饮料、制糖工业、医用局部麻醉,还用作大型铸钢防泡剂、植物成长促进剂、防氧化剂及灭火剂等。

固体用于生产,鱼类、奶油、冰淇淋等食品储藏及低温运送等方面。

平安性:低毒,不燃;可能烫伤;大量吸入窒息生产办法:(1)工业办法是煅烧石灰石制取石灰或发酵过程的副产品,也是生产氨、汽油和其他化工产品的烃类-蒸气转化炉的副产物,从烟道气(主要由氮气和组成)中可回收得到,还可挺直从富含的自然气井中获得。

(2)发酵气回收法生产发酵过程中产生的气体,经水洗、除杂、压缩,制得气。

(3)副产气体回收法氨、氢气、合成氨生产过程中往往有脱碳(即脱除气体混合物中)过程,使混合气体中经加压汲取、减压加热解吸可获得高纯度的气。

2.十二烷基硫酸钠其他名称:发泡粉。

十二醇硫酸钠,十二烷基硫酸酯钠盐;月桂醇硫酸钠,月桂基硫酸钠;SD S;十二烷基硫酸氢钠;月桂醇硫酸酯钠英文名:so d i um d o d ecyl sul f at e外观:白至微黄色粉末,徽有特别气味分子式:C12H25SO4N a烙点:204~207℃结构式:密度:1.03g/m L相对分子质量:288.38溶解性:微溶于醇,不溶于、醚,易溶于水质量标准:应用性能:具有优异的去污、乳化和发泡力,可用作洗涤剂和纺织助剂,也用作阴离子型表面活化剂、牙膏发泡剂,矿井灭火剂、灭火器的发泡剂,乳液聚合乳化剂,医药用乳化簇拥剂,洗发剂等化妆制品,羊毛净洗剂,丝毛类精品织物的洗涤剂。

实验十二烷基硫酸钠的合成Word版

实验十二烷基硫酸钠的合成Word版

实验十二烷基硫酸钠的合成一、实验目的①掌握高级醇硫酸酯盐型阴离子表面活性剂的合成原理和合成方法。

②了解高级醇硫酸酯盐型阴离子表面活性剂的主要性质和用途。

③学习泡沫性能的测定方法。

二、实验原理1.主要性质和用途十二烷基硫酸钠(Sodium dodecyl benzo sulfate,代号AS)是重要的脂肪醇硫酸配盐型阴离子表面活性剂。

脂肪醇硫酸钠是白色至淡黄色固体,易溶于水。

泡沫丰富,去污力和乳化性都比较好,有较好的生物降解性,耐硬水,适于低温洗涤,易漂洗,对皮肤刺激性小。

十二烷基硫酸钠是硫酸酯盐型阴离子表面活性剂的典型代表。

熔点180-185℃,185℃分解。

易溶于水,有特殊气味,无毒。

它的泡沫性能、去污力、乳化力都比较好.能被生物降解.耐碱、耐硬水,但在强酸性溶液中易发生水解,稳定性较磺酸盐差。

可做矿井灭火剂、牙膏起泡刑、洗涤剂、高分子合成用乳化剂、纺织助剂及其他工业助剂。

2.合成原理由月桂醇与氯磺酸或氨基磺酸作用后经中和而制得c其反应原理如—用氯磺酸硫酸化三、主要仪器和药品电动搅拌器、电热套、研钵、托盘天平、氯化氢吸收装置、罗氏泡沫仪、四口烧瓶(250mL)、滴液漏斗(60 mL)、烧杯(50 mL、250 mL、500 m1)、温度计(0—100℃、0—150℃)、量简(10 mL、100 mL)。

桂醇、氢氧化钠、尿素、氯磺酸、氨基磺酸、氢氧化钠溶液(质量分数5%、30%)、氯仿、甲醇、硫酸硅胶G、广泛PH试纸。

四、实验内容1.氯磺酸硫酸化在装有氯化氢吸收装置、温度计和电动搅拌器和滴液漏斗的250 mL四口烧瓶中加入62g 月桂醇,控温25℃,在充分搅拌下用滴液漏斗于30min内缓慢滴加24mL氯磺酸,滴加时温度不要超过30℃,注意起泡沫,勿使物料溢出。

加完氯磺酸后,于(30+2)℃反应2h,反应中产生的氯化氢气体用质量分数5%氢氧化钠溶液吸收。

硫酸化结束后,将硫酸化物缓慢地倒人盛有100g冰和水的混合物的250 mL烧杯中(冰:水=2:1),同时充分搅拌,外面用冰水浴冷却。

十二烷基硫酸钠的临界胶束浓度的测定及影响分析_舒梦

十二烷基硫酸钠的临界胶束浓度的测定及影响分析_舒梦

( CMC ) of the surfactant sodium dodecyl sulfate was determined by conductance method. The impact of temperature , sodium chloride and ethanol were discussed. With the temperature rised ,CMC increased. When amount of sodium chloride increased ,CMC of sodium dodecyl sulfate increased at low concentration. The amount of sodium chloride increased,CMC of sodium dodecyl sulfate decreased from 0. 2 to 0. 8mmol / L. With the addition of ethanol volume ratio increases from 0% ~ 2. 5% ,CMC increased. The cause of change in CMC of sodium dodecyl sulfate was analyzed. Keywords Sodium Dodecyl Sulfate critical micelle concentration metal ion Ethanol
十二烷基硫酸钠 ( SDS ) : CP, 上海青析化工科技 AR, 有限公司; 乙醇, 西陇化工股份有限公司; 氯化钠 AR, 西陇化工股份有限公司; 实验用水均为去离子 水。电导率仪( DDS - 307 ) , 上海雷磁仪器厂; 玻璃恒 温槽( SYP - 15 ) , 南京桑力电子设备厂。 1 . 2 实验方法 ( 1 ) 配制 C0 ( SDS) = 0. 02 mol / L 的浓溶液, 其他 4. 0 × 10 、 6. 0 × 10 、 7. 0 浓度的溶液( 2. 0 × 10 、 -3 -3 -3 -3 × 10 、 8. 0 × 10 、 8. 3 × 10 、 9. 0 × 10 、 10. 0 × 10 - 3 、 12. 0 × 10 - 3 、 14. 0 × 10 - 3 、 16. 0 × 10 - 3 mol / L) 均 在 100 mL 容量瓶中稀释得到。 ( 2) 分别测定各种浓度溶液的电导率 K, 作K -C 曲 线, 曲线拐点处的浓度即为临界胶束浓度 CMC 值。 ( 3) 考察温度对 SDS 的 CMC 的影响, 即在不同温 298、 308、 318 及 328 K 下测定各浓度溶液的电导 度: 289、 — 2 —
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十二烷基硫酸钠辅助下低温合成碱式碳酸镁微球
在SDS辅助下,利用氯化镁和碳酸钠溶液在较低温度下(<55℃)反应结晶直接合成碱式碳酸镁微球。

利用XRD、FTIR,SEM等技术研究了SDS加入量,反应温度,反应物浓度以及NaCl浓度等合成条件对产物的影响。

结果表明:在反应温度低于55℃时,控制反应物浓度小于0.20 mol.L-1,加入一定量的SDS,可以有效抑制无定形颗粒向MgCO3.3H2O生长,促使无定形纳米颗粒通过相转移与自组装直接向碱式碳酸镁4MgCO3.Mg(OH)2.4H2O转变。

SDS加入量,反应温度,反应物浓度以及NaCl浓度对碱式碳酸镁微球尺寸和微观形貌均起到调节作用。

相关文档
最新文档