555芯片内部原理及经典应用

合集下载

关于555集成电路原理及应用

关于555集成电路原理及应用

555集成电路及其应用一、555集成电路原理 (1)二、多用途水位控制器 (4)三、品名:JS-97A液位控制器 (5)四、555的应用 (7)一、555集成电路原理在数字系统中,为了使各部分在时间上协调动作,需要有一个统一的时间基准。

用来产生时间基准信号的电路称为时基电路。

时基集成电路555就是其中的一种。

它是一种由模拟电路与数字电路组合而成的多功能的中规模集成组件,只要配少量的外部器件,便可很方便的组成触发器、振荡器等多种功能电路。

因此其获得迅速发展和广泛应用。

555时基电路是一种将模拟功能与逻辑功能巧妙结合在同一硅片上的组合集成电路。

它设计新颖,构思奇巧,用途广泛,备受电子专业设计人员和电子爱好者的青睐,人们将其戏称为伟大的小IC。

1972年,美国西格尼蒂克斯公司(Signetics)研制出Tmer NE555双极型时基电路,设计原意是用来取代体积大,定时精度差的热延迟继电器等机械式延迟器。

但该器件投放市场后,人们发现这种电路的应用远远超出原设计的使用范围,用途之广几乎遍及电子应用的各个领域,需求量极大。

美国各大公司相继仿制这种电路1974年西格尼蒂克斯公司又在同一基片上将两个双极型555单元集成在一起,取名为NF556。

1978年美国英特锡尔公司(Intelsil)研制成功CMOS型时基电路ICM555 1CM556,后来又推出将四个时基电路集成在一个芯片上的四时基电路558 由于采用CMOS型工艺和高度集成,使时基电路的应用从民用扩展到火箭、导弹,卫星,航天等高科技领域。

在这期间,日本、西欧等各大公司和厂家也竞相仿制、生产。

尽管世界各大半导体或器件公司、厂家都在生产各自型号的555/556时基电路,但其内部电路大同小异,且都具有相同的引出功能端。

时基集成电路555工作原理如下:图a所示为555时基电路内部电路图。

管脚排列如图b所示。

整个电路包括分压器,比较器,基本RS触发器和放电开关四个部分。

555基本原理及典型应用

555基本原理及典型应用

555内部电原理图我们知道,555电路在应用和工作方式上一般可归纳为3类。

每类工作方式又有很多个不同的电路。

在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。

这样一来,电路变的更加复杂。

为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。

每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。

方便大家识别、分析555电路。

下面将分别介绍这3类电路。

单稳类电路单稳工作方式,它可分为3种。

见图示。

第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。

他们的输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。

第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。

他们的输入特点都是“RT -7.6-CT”,都是从2端输入。

1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。

第3种(图3)是压控振荡器。

单稳型压控振荡器电路有很多,都比较复杂。

为简单起见,我们只把它分为2个不同单元。

不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。

图中列出了2个常用电路。

双稳类电路这里我们将对555双稳电路工作方式进行总结、归纳。

555双稳电路可分成2种。

第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。

单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。

第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。

555芯片定时电路

555芯片定时电路

555芯片定时电路555芯片是一种广泛应用于定时电路的集成电路。

它具有可调节的稳定多谐振荡器和一个比较器,可以根据输入信号的频率和幅度来生成输出波形。

本文将介绍555芯片的工作原理、应用场景以及调节定时电路的方法。

一、555芯片的工作原理555芯片由电压比较器、RS触发器、RS锁存器、发生器和输出级组成。

当电源电压施加到芯片上时,发生器开始工作,产生一个方波信号。

根据输入引脚上的不同电平,比较器会判断方波信号的高低电平,从而改变输出引脚的电平状态。

通过调节外部电阻和电容,可以改变方波信号的频率和占空比,实现定时电路的功能。

二、555芯片的应用场景1. 脉冲发生器:555芯片可以产生各种各样的脉冲信号,如方波、正弦波、三角波等。

这些脉冲信号在实际应用中被广泛用于时钟信号、定时器、频率计等领域。

2. 延时器:通过调节外部电阻和电容,可以实现不同的延时功能。

这在需要控制设备启动或停止时间的场景中非常有用,如定时灯、定时开关等。

3. 调制解调器:555芯片可以实现调制解调器的功能,将模拟信号转换为数字信号,实现信息的传输和接收。

4. 脉冲宽度调制:通过调节电阻和电容的数值,可以改变输出方波信号的占空比,从而实现脉冲宽度的调制。

这在直流电机的速度控制、LED灯的亮度调节等方面有广泛的应用。

三、调节定时电路的方法1. 改变电阻值:通过改变电阻的数值,可以改变电荷和放电的速率,从而改变定时电路的周期和频率。

电阻值越大,周期越长,频率越低;电阻值越小,周期越短,频率越高。

2. 改变电容值:通过改变电容的数值,可以改变电荷和放电的时间常数,从而改变定时电路的周期和频率。

电容值越大,周期越长,频率越低;电容值越小,周期越短,频率越高。

3. 调节电源电压:改变电源电压的大小,可以改变芯片内部的电流流动速度,从而改变定时电路的周期和频率。

电压越高,周期越短,频率越高;电压越低,周期越长,频率越低。

总结:555芯片是一种功能强大的定时电路集成电路,具有广泛的应用场景。

sa555用法

sa555用法

sa555用法全文共四篇示例,供读者参考第一篇示例:SA555是一种常用的集成电路,通常用作定时器和脉冲发生器。

它是一个精密的计时器,具有多种应用。

SA555的使用非常广泛,可以在各种电子设备和电路中找到它的身影。

在本文中,我们将介绍SA555的用法以及一些常见的应用场景。

让我们了解一下SA555的基本结构和原理。

SA555是一种双电源、稳态或脉冲调制定时器,由著名的电子公司意法半导体(STMicroelectronics)生产。

它是555定时器的改进版本,具有更高的稳定性和可靠性。

SA555内部集成了比555更多的功能模块,可以实现更多不同的应用。

SA555的引脚布局与555基本一致,通常来说,一共有8个引脚。

引脚1是电源输入引脚VCC,引脚2是阴极输出引脚OUT,引脚3是复位引脚RESET,引脚4是控制电平引脚CTRL,引脚5是电压比较器的控制电平引脚THR,引脚6是电压比较器的控制电平引脚TRIG,引脚7是放大器的反馈引脚DISCH,引脚8是电源输入引脚GND。

SA555的工作原理主要是通过内部比较器、放大器和电流源实现的。

具体来说,当输入电压VCTRL超过VTHR时,输出引脚OUT输出高电平。

当输入电压VTRIG低于1/3的电源电压时,输出引脚OUT输出低电平。

当输入电压VTRIG高于2/3的电源电压时,输出引脚OUT输出高电平。

根据这些原理,我们可以设计各种不同的定时器和脉冲发生器电路。

SA555可以实现多种不同的功能,可以用作脉冲发生器、频率测量仪、闪光灯控制器等。

下面我们将介绍一些常见的应用场景。

SA555可以用作简单的脉冲发生器。

通过调整引脚CTRL的电压,可以控制脉冲的频率和占空比。

通过外部电阻和电容的组合,可以调整脉冲的周期和占空比。

脉冲发生器可以用于各种电子设备和测量仪器中,例如数字电路和信号发生器。

SA555还可以用作定时器。

通过设置外部电阻和电容的数值,可以实现不同的时间延迟效果。

555芯片特别容易短路

555芯片特别容易短路

555芯片特别容易短路1.引言1.1 概述引言部分是文章的开头,目的是为读者提供对文章主题的整体了解。

在概述部分,你可以简要介绍555芯片的基本概念和作用,以及引出后续的讨论。

以下是一个示例:概述:555芯片是一种非常常见且广泛应用的集成电路芯片。

它以其稳定可靠的性能和多功能的特点,被广泛应用于定时、脉冲和频率控制等电子电路中。

然而,与其它芯片相比,555芯片在使用过程中被发现特别容易短路。

本文旨在探讨555芯片容易短路的原因,并提供解决方法,以帮助读者更好地理解和使用555芯片。

本文将首先介绍555芯片的基本原理,包括其内部构造和工作原理。

然后,我们将详细探讨555芯片容易短路的原因,分析其中的各种可能因素,并讨论其对电路性能和稳定性的影响。

最后,我们将总结555芯片容易短路的重要性,并提供一些解决方法,帮助读者有效避免或解决这个问题。

通过阅读本文,读者将能够更全面地了解555芯片的特点和使用注意事项,从而更好地应用于自己的电子电路设计中。

接下来,我们将深入研究555芯片的基本原理。

1.2 文章结构文章结构分为引言、正文和结论三个部分。

引言部分主要概述了本文的主题和目的,介绍了555芯片的容易短路的问题,并提出了解决方法的重要性。

正文部分主要包括了555芯片的基本原理和容易短路的原因两个方面的内容。

首先,对555芯片的基本原理进行了详细介绍,包括其工作原理和主要应用场景。

然后,分析了555芯片容易短路的原因,可能涉及到电路设计不合理、元器件质量问题等方面的因素。

结论部分对整个文章进行了总结,并提出了解决555芯片短路问题的方法。

总结部分简洁明了地回顾了文章中讨论的内容,并强调了555芯片短路问题的严重性。

解决方法部分列举了一些可能的短路原因,并提供了相应的解决方案,例如合理设计电路布局、选择优质的元器件等。

提示读者在实际使用555芯片时应注意防范短路风险,提高产品的可靠性。

通过以上文章结构的安排,读者可以清晰地了解到555芯片容易短路的原因和解决方法,为解决该问题提供了参考和指导。

555芯片内部原理及经典应用

555芯片内部原理及经典应用

555芯片内部原理及经典应用首先,555芯片内部的电压比较器根据输入电压的大小决定输出信号的高低电平。

其次,双稳态多谐振荡器是555芯片的核心部件,它由两个电容器和三个电阻器组成。

其中,一个电容器负责充电,另一个负责放电,而电阻器则用于调节充、放电过程的时间。

当电容器充满电压时,输出信号为高电平;当电容器放电时,输出信号为低电平。

根据电容器的充放电时间及输出信号的高低电平,可以形成不同的波形。

这种双稳态多谐振荡器的特性使得555芯片可以用于多种应用中。

以下是其中几个经典的应用:1.时钟发生器:555芯片可通过调节电容器充放电的时间来产生稳定的方波信号,用作计时器或驱动时钟。

通过改变电阻器的数值,可以调节输出信号的频率,以满足不同应用的需要。

2.脉冲产生器:555芯片能够产生具有可调频率和占空比的脉冲信号。

通过调节电阻器和电容器的数值,可以控制输出脉冲的频率和持续时间。

3.延时器:555芯片能够以输入电平的上升沿或下降沿触发,产生一段可调的延时时间后,输出一个高电平或低电平信号。

这种特性可用于延时触发、时序控制等应用中。

4.频率测量器:在555芯片的稳定多谐振荡模式下,通过将待测信号输入到555芯片的电压比较器进行比较,然后测量输出脉冲的频率,可以实现对待测信号频率的测量。

5.环境亮度控制器:通过将555芯片与光敏电阻等光敏元件相连,测量环境亮度并调节输出信号的占空比,可以实现对环境亮度的自动控制。

除了以上应用外,555芯片还可以用于温度测量、声音闪光灯、警报器等其他领域。

总之,555芯片以其多功能、稳定性和易于调节的特点,在电子电路领域应用广泛。

不仅能够实现各种信号的产生、控制和测量,还能够适应不同的电气环境和需求。

555芯片的工作原理

555芯片的工作原理

555芯片的工作原理
555芯片是一种集成电路芯片,常用于定时和脉宽调制等应用。

它的工作原理如下:
1. 内部电路结构:555芯片由多个功能模块组成,包括比较器、RS触发器、RS锁存器、放电开关、电压分配器等。

2. 外部电容与电阻:外部连接一个电容和电阻组成的RC电路,通常通过通过改变电阻的阻值来调节芯片的工作频率和占空比。

3. 稳态工作原理:当电路刚开始通电时,电容开始充电。

当电容电压达到比较器的上阈值电压时(2/3 VCC),比较器的输
出由低电平变为高电平,将RS触发器推至Set状态(低电平),导致Output引脚输出高电平。

4. 放电阶段:当电容电压达到比较器的下阈值电压时(1/3 VCC),比较器的输出由高电平变为低电平,将RS触发器推
至Reset状态(高电平),导致Output引脚输出低电平。

此时电容开始放电。

5. 触发器状态切换:当电容放电至比较器下阈值电压以下时,比较器的输出由低电平变为高电平,触发器又回到Set状态,Output引脚输出高电平,电容再次开始充电,周而复始形成周期性矩形波。

总之,555芯片通过外部RC电路来控制充放电的时间,通过
比较器和触发器的状态切换来实现输出波形的控制,从而实现定时和脉宽调制等功能。

555定时器芯片工作原理

555定时器芯片工作原理

555定时器芯片工作原理555定时器芯片是一种非常常见的集成电路元件,广泛应用于电子电路中的计时、延时、脉冲调制、频率分割和脉冲发生等方面。

它由美国电子工程师汉克·贝克(Hans R. Camenzind)在1971年设计制造,并由Signetics 公司推出,后来被多家公司生产并改进。

本文将详细介绍555定时器芯片的工作原理。

555定时器芯片是一种运算放大器作为比较器工作的多种应用集成电路。

它的工作原理基于RC集成电路和开关原理。

内部主要包含一个SR触发器、两个比较器、RS触发器、电流源、电压分压网络、电压跟随器和输出缓冲器等核心组成部分。

555定时器芯片一共有8个引脚,分别是GND(地)、TRIG(触发)、THR(阈值)、RST(复位)、OUT(输出)、DIS(禁用)、VCC(正电源)和CTRL(控制电压)。

其中GND和VCC分别连接电路的地和正电源。

TRIG、THR、RST和CTRL引脚是外部控制引脚,用来控制定时器的计时、延时和触发等相关功能。

DIS引脚是使能引脚,用来开关定时器的运行。

OUT引脚是输出端,用来输出定时器的计时脉冲信号。

单稳态模式下,引脚TRIG和RST分别承担输入触发和复位功能。

当TRIG脚低电平上升至高电平时,输出OUT会从低电平上升至高电平,经过一个设定的时间后再自动恢复低电平。

这个时间间隔由外部连接的电阻和电容决定。

具体的工作原理如下:1.当TRIG脚从高电平变为低电平时,555芯片内部的比较器的输出会瞬间从低电平变为高电平。

2.RST脚是一个复位输入脚,连接电源正端的时候,外部电路通常会将该引脚与VCC相连,保持恒定的高电平传递给该引脚。

当TRIG脚由高电平变为低电平时,RST引脚会被拉低至一个低电平。

3.当TRIG脚由低电平变为高电平时,此时RST脚是一个低电平,即表示单稳态模式开始。

4.555芯片的连续可控电荷和电放电功能将起作用,电容开始充放电,计时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

555定时电路内部结构分析及应用1 绪言555定时器是电子工程领域中广泛使用的一种中规模集成电路,它将模拟与逻辑功能巧妙地组合在一起,具有结构简单、使用电压范围宽、工作速度快、定时精度高、驱动能力强等优点。

555定时器配以外部元件,可以构成多种实际应用电路。

广泛应用于产生多种波形的脉冲振荡器、检测电路、自动控制电路、家用电器以及通信产品等电子设备中。

2555定时器功能及结构分析2.1 555定时器的分类及管脚作用555定时器又称时基电路。

555定时器按照内部元件分有双极型(又称TTL 型)和单极型两种。

双极型内部采用的是晶体管;单极型内部采用的则是场效应管,常见的555时基集成电路为塑料双列直插式封装(见图2-1),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

2-1 555时基集成电路各管脚排布555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。

2.2 555定时器的电路组成图2-2为555芯片的内部等效电路U31kBJT_NPN_VIRTUAL2-2 555定时器电路组成5G555定时器内部电路如图所示, 一般由分压器、比较器、触发器和开关。

及输出等四部分组成,这里我们主要介绍RS 触发器和电压比较器。

2.2.1基本RS 触发器原理如图2-3是由两个“与非”门构成的基本R-S 触发器, RD 、SD 是两个输入端,Q 及是两个输出端。

QQRDSD2-3 RS 触发器正常工作时,触发器的Q 和应保持相反,因而触发器具有两个稳定状态:1)Q=1,=0。

通常将Q端作为触发器的状态。

若Q端处于高电平,就说触发器是1状态;2)Q=0,=1。

Q端处于低电平,就说触发器是0状态;Q端称为触发器的原端或1端,端称为触发器的非端或0端。

由图可看出,如果Q端的初始状态设为1,RD、SD端都作用于高电平(逻辑1),则一定为0。

如果RD、SD状态不变,则Q 及的状态也不会改变。

这是一个稳定状态;同理,若触发器的初始状态Q为0而为1,在RD、SD为1的情况下这种状态也不会改变。

这又是一个稳定状态。

可见,它具有两个稳定状态。

输入与输出之间的逻辑关系可以用真值表来描述。

首先对该RS触发器Q端状态仿真。

如图2-42-4 RS触发器Q端仿真电路图Q端状态变化规律如图2-52-5 Q端状态变化规律仿真此图中A即SD,B即RD.,再对该R—S触发器Q非端状态仿真,如图2-62-6 RS触发器Q非端仿真图Q非端状态变化规律如图2-72-7 Q非端状态变化规律此图中A即SD,B即RD.R-S触发器的逻辑功能,可以用输入、输出之间的逻辑关系构成一个真值表(或叫功能表)来描述,由仿真可得以下结论。

当RD =0,SD=1时,不论触发器的初始状态如何,一定为1,由于“与非”门的输入全是1,Q端应为0。

称触发器为0状态,RD为置0端。

当RD =1,SD=0时,不论触发器的初始状态如何,Q 一定为1,从而使为0。

称触发器为1状态,SD置1端。

当RD =1,SD =1时,如前所述,Q及的状态保持原状态不变。

当RD =0,SD =0时,不论触发器的初始状态如何,Q==1,若RD、SD同时由0变成1,在两个门的性能完全一致的情况下, Q及究竟哪一个为1,哪一个为0是不定的,在应用时不允许RD 和SD同时为0。

综合以上四种情况,可建立R-S触发器的真值表如表4—1。

应注意的是表中RD = SD =0的一行中Q及的状态是指RD、SD同时变为1后所处的状态是不定的,用Ф表示。

由于RD =0,SD =1时Q为0,RD端称为置0端或复位端。

相仿的原因,SD称置1端或置位端。

2.2.2简单电压比较器电压比较器简称比较器,它用来比较两个电压的大小,比较的结果通常由输出的高电贫乏UHO或低电平UOL来表示。

简单电压比较器的基本电路如图2-8所示U0R21.0k12 V 12 V2-8 简单电压比较器它的反相输入端和同相输入端分别接输入信号Ui和参考电压Uref,该电路属于反相输入电压比较器,显然电路中的运放工作在开环状态。

由于开环电压增益高,受电源电压的限制,这时,只要输入信号ui稍小于参考电压Uref,输出即为高电平u0=UOH(U0,MAX),输出级处于正饱和状态;反之,只要ui稍大于Uref,输出即为低电平u0=UOL(-U0,MAX),输出级处于负饱和状态;只有uI 在非常接近Uref 的极小范围内,运放才处于线性放大状态,此时,才有u0=A0d(Uref-uI). 通常把比较器的输出电压从一个电平变化到另一个电平时对应的临界输入电压称为阀值电压或门限电压,简称为阀值,用符号UTH 表示,对这里所讨论的简单比较器有UTH=Uref 。

我们知道了555定时电路的结构就可以在此基础之上制作出不同功能的电路,这里我们主要讨论平时常见的几种基于555芯片的功能电路如多谐振荡器,施密特触发器等。

3 多谐振荡器3.1电路组成及工作原理下面图3-1时基于555的多谐振荡器连接图1k1kN_VIRTUALC110nF6213-1 基于555芯片的多谐振荡器多谐振荡器是一种自激振荡电路。

因为没有稳定的工作状态,多谐振荡器也称为无稳态电路。

其工作原理时这样的:在刚接同电源时,由于电容C1两端的电压不能突变,使集成电路A 的2脚电压为0V ,这一低电压加到电压比较器D 的同相输入端,使电压比较器D 输出低电平,该低电平加到与非门B 的一个输入端,这样,输出端Q 输出高电平,即多谐振荡器输出电压U0为高电平,通电之后,直流电压+V 通过电阻R1和R2对电容C1充电,由于电容C1的充电要有一个过程,在C1两端的电压没有充到一定程度时,电路保持输出电压U0为高电平状态,这是一个暂稳态。

随着对电容C1充电的进行,(C1上的充电电压极性为上正下负),当C1上的电压达到一定程度时,集成电路A 的6脚电压为高电平,该高电平加到内电路中的电压比较器C 的反相输入端,使比器C 输出低电平,该低电平加到与非门A的一个输入端,使RS触发器翻转,即为Q端输出低电平,即U0为低电平,Q非为高电平,从图中所示波形中可看出,此时U0已从高电平翻转到低电平。

Q非为高电平后,该高电平经过电阻RS加到VT1基极,使VT1饱和导通,由于VT1导通后集电极和发射极之间的内阻减小,这样电容C1上充到的上正下负电压开始放电,其放电回路是:C1的上端——R2——集成电路A的7脚——VT1集电极——VT1发射极——地端——C1的下端,在这放电的过程中,多谐振荡器保持U0为低电平状态,随着C1的放电,C1上的电压在下降,当C1上的电压下降到一定程度时,使集成电路的2脚电平很低,即电压较器D的同相输入端电压很低,使比较器D输出低电压,该低电压加到与非门B的一个输入端,使RS触发器再次翻转,翻转到Q为高电平的暂稳态,即U0为高电平,由于Q为高电平,Q非为低电平,使VT1管的基极电压很小,VT1截止,电容C1停止放电,改变为+V通过电阻R1和R2对电容C1充电,这样电路进入第2个周期,如此反复达到振荡器的作用。

由仿真得该电路输出波形,如图3-2所示3-2 多谐振荡器输出波形仿真多谐振荡器一旦起振之后,电路没有稳态,只有两个暂稳态,它们做交替变化,输出连续的矩形脉冲信号,因此它又称作无稳态电路,常用来做脉冲信号源。

3.2多谐振荡器应用实例3.2.1 简易温控报警器下图3-4是利用多谐振荡器构成的简易温控报警电路,利用555构成可控音频振荡电路,用扬声器发声报警,可用于火警或热水温度报警,电路简单、调试方便。

图中晶体管T可选用锗管3AX31、3AX81或3AG类,也可选用3DU型光敏管。

3AX31等锗管在常温下,集电极和发射极之间的穿透电流I CEO一般在10~50μΑ,且随温度升高而增大较快。

当温度低于设定温度值时,晶体管T的穿透电流I CEO较小,555复位端R D(4脚)的电压较低,电路工作在复位状态,多谐振荡器停振,扬声器不发声。

当温度升高到设定温度值时,晶体管T的穿透电流I CEO较大,555复位端R D的电压升高到解除复位状态之电位,多谐振荡器开始振荡,扬声器发出报警声。

R30.01uF3-4 多谐振荡器用作简易温控报警电路需要指出的是,不同的晶体管,其I CEO值相差较大,故需改变R1的阻值来调节控温点。

方法是先把测温元件T置于要求报警的温度下,调节R1使电路刚发出报警声。

报警的音调取决于多谐振荡器的振荡频率,由元件R2、R3和C1决定,改变这些元件值,可改变音调,但要求R2大于1kΩ。

3.2.2 双音门铃下图3-5是用多谐振荡器构成的电子双音门铃电路。

当按钮开关AN 按下时,开关闭合,V CC 经D 2向C 3充电,P 点(4脚)电位迅速充至V CC ,复位解除;由于D 1将R 3旁路,V CC 经D 1、R 1、R 2向C 充电,充电时间常数为(R 1+R 2)C ,放电时间常数为R 2 C ,多谐振荡器产生高频振荡,喇叭发出高音。

当按钮开关AN 松开时,开关断开,由于电容C 3储存的电荷经R 4放电要维持一段时间,在P 点电位降至复位电平之前,电路将继续维持振荡;但此时V CC 经R 3、R 1、R 2向C 充电,充电时间常数增加为(R 3+R 1+R 2)C ,放电时间常数仍为R 2 C ,多谐振荡器产生低频振荡,喇叭发出低音。

当电容C 3持续放电,使P 点电位降至555的复位电平以下时,多谐振荡器停止振荡,喇叭停止发声。

调节相关参数,可以改变高、低音发声频率以及低音维持时间。

R1R2100k_VIRTUAL3-5 用多谐振荡器构成的双音门铃电路4施密特触发器施密特触发器——具有回差电压特性,能将边沿变化缓慢的电压波形整形为边沿陡峭的矩形脉冲。

4.1 电路组成及工作原理4-1 555定时器构成的施密特触发器其实,555内部电路就可以等效成一个施密特触发器,要清除其工作原理,我们必须再次研究其内部电路,如图4-2U2U331k14-2 施密特触发器主电路上图中,a点电压为8V即2/3VS,b点电压为4V即1/3VS,当输入电压UI小于b点电压时,C输出高电平,D输出低电平,输出端3脚输出为高电平,并保持不变,当输入电压UI继续上升满足4V<UI<8V时,D翻转为高电平,但是C输出仍为高电平,A输出仍为低电平,所以,B 输出仍为高电平不变,但是当UI 大于8V 时,C 输出翻转为低电平,A 翻转为高电平,此时B 翻转为低电平,接着UI 再下降,同理,如此反复。

相关文档
最新文档