IRLU7807Z中文资料

合集下载

LP78070小风扇驱动芯片

LP78070小风扇驱动芯片

78070芯片介绍(ESOP-8)是一颗专用于便携式锂电池小风扇的驱动芯片,芯片集成锂电池充电管理、DC-DC 升压、手电筒照明、风量显示及低电提醒、按键换挡、过流保护、短路保护等功能。

标示信息78070F: 无铅封装类型 SP: ESOP-8应用范围✧ 便携式锂电池风扇特点◆ 800mA 锂电池充电,充电电流自适应 ◆ 高效率DC-DC 升压 ◆ 输出电压外部电阻可调◆ 3挡风量可调,3段式风量指示,2颗LED 充电指示 ◆ 内置手电筒驱动,全部内置电阻 ◆ 低待机功耗<15uA ◆ 支持双按键控制 ◆ 外围简单◆ 具有过流保护,短路保护,过温保护 ◆ 封装形式:ESOP-8丝印及包装信息引脚信息应用原理图V OUT=[1+(R1/R2)]×V FB三挡对应V FB为:0.6V,0.9V,1.2V极限参数✧VIN、BAT至GND ----------------------------------------------------------------------- -0.3V~+7V ✧SW至GND ----------------------------------------------------------------------------- -0.3V~+12V ✧FB至GND ------------------------------------------------------------------------------- -0.3V~+7V ✧DR至GND ----------------------------------------------------------------------------- -0.3V~+12V ✧最高结温 --------------------------------------------------------------------------------------- 125°C ✧最大焊接温度(引线处,10秒)---------------------------------------------------------------- 260°C ✧存储温度 ------------------------------------------------------------------------------- -55℃~150°CESD 系数✧人体模型(HBM) ------------------------------------------------------------------------------------------------------ 2KV ✧机械模型(MM) ------------------------------------------------------------------------------------------------------- 200V电气参数LED显示状态充电部分(STAT/FULL)挡位及手电部分(LED1/LED2/LED3/WLED)应用说明自适应充电控制78070内部集成了充电电流自适应功能,当适配器输出电流能力小于800mA或者输入线材内阻较大时,芯片通过检测输入电压,自动调整充电电流。

Illuminometer MP780118 用户手册说明书

Illuminometer MP780118 用户手册说明书

Illuminometer Model No. MP780118Read all instructions before using the appliance and retain for future reference.• Please follow all safety operation instructions.• Children should be supervised to ensure that they do not play with the product.• Do not use the monitor if the casing is damaged or there is any anomaly that may impair it’s function.• Do not use the product for any purpose other than that for which it is designed.• Do not operate the product around explosive gas, vapour, or dust.• Do not operate or store in an environment of high humidity or where moisture may enter the product.• Turn the meter off when not in use to save the battery.• Remove the battery if the monitor is not to be used for long periods.• Replace the battery as soon as the low battery warning appears on the display to avoid possible incorrect readings.•For indoor use only.PRODUCT OVERVIEWWHAT’S INCLUDED • Digital light meter • Instruction manual •BatteriesIMPORTANT SAFETY INFORMATION1. Maximum value2. Minimum value3. Data hold4. Low battery warning5. FC (foot/candle)6. LUX7. Reading x10 or x1008. Temperature value 9.Auto power off1. Display unit2. LCD screen3. Mode buttons4. Illumination sensor5. Protection cover6. Measuring probe7. Extendable cable• Clean the casing using a moist cloth and mild detergent. Do not use any form of solvents.• There are no user serviceable parts inside.•When the low battery symbol displays on the LCD, replace the three AAA batteries in the back of the meter to avoid any inaccuracies in readings taken.OPERATIONMAINTENANCE Power button• Press and hold the power button to turn the meter on.• Short press the power button to turn the meter off.• Press and hold the power button to enable or disable auto power off function.LUX/FC button• Short press to switch between units.Mode button• Short press to switch between max, min and normal value recorded. HOLD button• Short press to enable or disable the data hold function.• Press and hold to turn on or off the LCD backlight feature.Function DescriptionDisplay 4 digit LCD max display 9999Max/Min MAX or MIN is displayed Data hold HOLD symbol is displayed Overload alarm Over 199900 Lux - OL is displayed Backlight LCD Backlight on/off functionAuto power off The meter will turn the power off if not operated for approx 5 minutesSampling range Once per 0.5 second Drop test 1mAccuracy 0-9999 Lux ±(4%rdg+8dgts)>9999 Lux ±(5%rdg+10dgts) @ ambient temp 23o C ±3o C <80%RH Battery 1.5V 3 x AAAEnvironment Indoor 0o C~40o C (<90%RH)Storage Indoor -20o C~60o C (<75%RH)Altitude 2000m Pollution grade 2INFORMATION ON WASTE DISPOSAL FOR CONSUMERS OF ELECTRICAL & ELECTRONIC EQUIPMENT.These symbols indicate that separate collection of Waste Electrical and Electronic Equipment (WEEE) or waste batteries is required. Do not dispose of these items with general household waste. Separate for the treatment, recovery and recycling of the materials used. Waste batteries can be returned to any waste battery recycling point which are provided by most battery retailers. Contact your local authority for details of the battery and WEEE recycling schemes available inyour area.Made in China. LS12 2QQMan Rev 1.0SPECIFICATION Range Resolution Accuracy Note0~199,900Lux0~9999Lux 1 Lux ±(4%rdg+8dgts)Auto range switch >10,000Lux 10Lux ±(5%rdg+10dgts)>1000,000Lux100Lux±(5%rdg+10dgts)。

ir780结构式

ir780结构式

IR780结构式IR780是一种近红外(NIR)染料,具有广泛的应用潜力。

它的结构式如下所示:IR780的化学性质IR780属于吲哚类染料,其化学名为1,1’-二甲基-4,4’-聚(吲哚烷基)氧化物。

它是一种有机分子,由多个吲哚环组成,其中还含有甲基和氧原子。

IR780具有许多优异的化学性质。

首先,它具有很高的光稳定性,能够在强光照射下保持其染色性能。

其次,它在水中溶解度较低,但在非极性溶剂中溶解度较高。

这使得IR780可以在不同体系中应用,并且具有良好的稳定性。

IR780的光学特性由于其分子结构中含有共轭体系,使得IR780具有良好的光吸收和荧光发射特性。

它对近红外区域(700-900 nm)的光具有较高的吸收率,并且能够发射出可见光的荧光信号。

IR780的吸收峰位于780 nm附近,这使得它在近红外区域有很好的应用前景。

在医学领域,IR780可以作为光热治疗的荧光探针,用于肿瘤治疗。

它可以被激光器激发产生热能,从而杀死肿瘤细胞。

此外,IR780还可以作为近红外成像剂,用于肿瘤诊断和显像。

IR780在生物医学中的应用IR780在生物医学领域具有广泛的应用前景。

首先,由于其良好的光吸收特性和荧光发射特性,它可以作为近红外探针用于活体成像。

通过将IR780标记在分子或纳米粒子上,并通过靶向策略将其导向到特定组织或器官,可以实现对该组织或器官进行高分辨率的成像。

其次,由于其光热转换特性,IR780还可以用于肿瘤治疗。

当IR780被激光器激发时,会产生大量的热能,在肿瘤细胞中引起热损伤,从而达到治疗的效果。

这种光热治疗方法具有无创、可控和高效的特点,被广泛用于肿瘤治疗。

此外,IR780还可以用于药物递送系统。

通过将药物包裹在IR780修饰的纳米粒子中,并通过靶向策略将其导向到肿瘤组织,可以实现对肿瘤的精确治疗。

这种纳米粒子药物递送系统具有高效性和低毒性的特点,可以提高药物的生物利用度并减少副作用。

IR780在其他领域中的应用除了在生物医学领域中的应用之外,IR780还具有许多其他领域的应用潜力。

ir780的激发波长和发射波长

ir780的激发波长和发射波长

ir780的激发波长和发射波长下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!了解IR780的激发波长和发射波长随着生物医学领域的不断发展,纳米技术和分子成像技术的兴起为医学诊断和治疗提供了新的可能性。

IND780使用操作手册

IND780使用操作手册
警告!
请专业人员调试,检测和维修本设备。
目录
第1章
概述............................................................................... 6
IND780 简介................................................................................................................6 工作环境 ...................................................................................................................... 7
XK3140 IND780 称重显示控制器 技术/操作手册
© METTLER TOLEDO 2007 METTLER TOLEDO 版权所有。未经书面许可不得翻印、修改或引用。 METTLER TOLEDO® 是梅特勒-托利多(常州)称中设备系统有限公司的 注册商标。
本产品执行标准:GB/T 7724-1999 《称重显示控制器》 本产品已申请专利。部分专利号:US Pat. No. 6,576,849;US Pat. No. 5,669,522
温度与湿度 ..................................................................................................... 7 防护等级 ......................................................................................................... 7 防爆................................................................................................................. 7 开箱检查 ...................................................................................................................... 8 型号代码 ...................................................................................................................... 8 结构尺寸 ...................................................................................................................... 9 规格参数 ...................................................................................................................... 9 主板............................................................................................................................ 11 秤接口板 .................................................................................................................... 11 模拟式秤台 ................................................................................................... 11

IRF7807

IRF7807

ParameterSymbol IRF7807IRF7807AUnits Drain-Source Voltage V DS 30VGate-Source Voltage V GS ±12Continuous Drain or Source 25°C I D8.38.3ACurrent (V GS ≥ 4.5V)70°C6.6 6.6Pulsed Drain Current I DM 6666Power Dissipation25°C P D 2.5W 70°C1.6Junction & Storage T emperature Range T J , T STG–55 to 150°C Continuous Source Current (Body Diode) I S 2.5 2.5APulsed source CurrentI SM6666•N Channel Application Specific MOSFETs •Ideal for Mobile DC-DC Converters •Low Conduction Losses •Low Switching LossesDescriptionThese new devices employ advanced HEXFET Power MOSFET technology to achieve an unprecedented balance of on-resistance and gate charge. The reduced conduction and switching losses make them ideal for high efficiency DC-DC Converters that power the latest generation of mobile microprocessors.A pair of IRF7807 devices provides the best cost/performance solution for system voltages, such as 3.3V and 5V .HEXFET ® Chip-Set for DC-DC ConvertersAbsolute Maximum Ratings ParameterMax.Units Maximum Junction-to-AmbientR θJA50°C/WThermal ResistanceIRF7807/IRF7807A 110/10/00IRF7807 IRF7807AVds 30V 30V Rds(on) 25m Ω 25m ΩQg 17nC 17nC Qsw 5.2nC Qoss 16.8nC 16.8nCDevice Features PD – 91747C2IRF7807/IRF7807AParameter MinTyp MaxMin Typ Max UnitsConditionsDiode Forward V SD 1.2 1.2V I S = 7A , V GS = 0V Voltage*Reverse Recovery Q rr 8080nCdi/dt = 700A/µsChargeV DS = 16V, V GS = 0V, I S = 7A Reverse Recovery Q rr(s)5050Charge (with Parallel Schotkky)ParameterMin Typ Max Min Typ Max Units ConditionsDrain-to-Source V (BR)DSS 30––30––V V GS = 0V , I D = 250µA Breakdown Voltage*Static Drain-Source R DS (on)17251725m ΩV GS = 4.5V , I D = 7A on Resistance*Gate Threshold Voltage*V GS (th) 1.01.0V V DS = V GS , I D = 250µA Drain-Source Leakage I DSS3030µAV DS = 24V , V GS = 0150150V DS = 24V , V GS = 0,Tj = 100°C Gate-Source Leakage I GSS ±100±100nAV GS = ±12V Current*T otal Gate Charge*Q g 12171217V GS = 5V, I D = 7A Pre-VthQ gs1 2.1 2.1V DS = 16V, I D = 7AGate-Source Charge Post-VthQ gs20.760.76nCGate-Source Charge Gate to Drain Charge Q gd 2.9 2.9Switch Charge*Q SW 3.66 5.2 3.66(Q gs2 + Q gd )Output Charge*Q oss 1416.81416.8V DS = 16V , V GS = 0Gate Resistance R g 1.2 1.2ΩT urn-on Delay Time t d (on)1212V DD = 16V Rise Timet r 1717nsI D = 7A T urn-off Delay Time t d (off)2525R g = 2ΩFall Timet f66V GS = 4.5V Resistive LoadElectrical Characteristics Source-Drain Rating & Characteristics Notes:Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 300 µs; duty cycle ≤ 2%.When mounted on 1 inch square copper board, t < 10 sec. Typ = measured - Q oss*Devices are 100% tested to these parameters.IRF7807IRF7807ACurrent*di/dt = 700A/µs (with 10BQ040)V DS = 16V , V GS = 0V, I S = 7A 3IRF7807/IRF7807AControl FETSpecial attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2.Power losses in the high side switch Q1, also called the Control FET , are impacted by the R ds(on) of the MOSFET ,but these conduction losses are only about one half of the total losses.Power losses in the control switch Q1 are given by;P loss = P conduction + P switching + P drive + P outputThis can be expanded and approximated by;P loss =I rms 2×R ds(on)() +I ×Q gdi g ×V in ×f +I ×Q gs2i g ×V in ×f+Q g ×V g ×f () +Q oss2×V in ×fThis simplified loss equation includes the terms Q gs2and Q oss which are new to Power MOSFET data sheets.Q gs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The impor-tance of splitting this gate-source charge into two sub elements, Q gs1 and Q gs2, can be seen from Fig 1.Q gs2 indicates the charge that must be supplied by the gate driver between the time that the threshold volt-age has been reached (t1) and the time the drain cur-rent rises to I dmax (t2) at which time the drain voltage begins to change. Minimizing Q gs2 is a critical factor in reducing switching losses in Q1.Q oss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure 2 shows how Q oss is formed by the paral-lel combination of the voltage dependant (non-linear)capacitance’s C ds and C dg when multiplied by the power supply input buss voltage.Synchronous FETThe power loss equation for Q2 is approximated by;P loss =P conduction +P drive +P output*P loss =I rms 2×R ds(on)()+Q g ×V g ×f ()+Q oss 2×V in ×f+Q rr ×V in ×f ()*dissipated primarily in Q1.Power MOSFET Selection for DC/DC ConvertersIRF7807/IRF7807ATypical Mobile PC ApplicationFigure 2: Q oss CharacteristicFor the synchronous MOSFET Q2, R ds(on) is an im-portant characteristic; however, once again the impor-tance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the con-trol IC so the gate drive losses become much more significant. Secondly, the output charge Q oss and re-verse recovery charge Q rr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on.The drain of Q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and V in . As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is ca-pacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current .The ratio of Q gd /Q gs1 must be minimized to reduce the potential for Cdv/dt turn on.Spice model for IRF7807 can be downloaded in ma-chine readable format at .IRF7807/IRF7807AIRF7807/IRF7807A6IRF7807/IRF7807A Package OutlineSO-8 Outline78IRF7807/IRF7807ATape & Reel InformationSO-8Dimensions are shown in millimeters (inches)330.00(12.992) M AX.14.40 ( .566 )12.40 ( .488 )N O TE S :1. C O N TR O LLIN G D IM EN SIO N : M ILLIM ETER.2. O UTLIN E C O N FO RM S TO EIA -481 & EIA-541.FEED D IRE C TIO NTER M IN AL N U M BE R 112.3 ( .484 )11.7 ( .461 )8.1 ( .318 )7.9 ( .312 )N O TE S :1. C O N T R O L LIN G D IM E N S IO N : M ILL IM E T E R.2. A LL D IM E N S IO N S A RE S H O W N IN M ILL IM E T E R S (INC H E S ).3. O UT L IN EC O N F O R M S T O E IA -481 & E IA -541.IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936Data and specifications subject to change without notice. 10/00。

ir780的分子量

ir780的分子量

IR780的分子量1. 什么是IR780?IR780是一种应用于生物医学领域的红外吸收染料,属于一种非常重要的小分子化合物。

它具有较高的光吸收能力和荧光发射特性,因此在肿瘤治疗、光动力疗法和生物成像等方面具有广泛的应用前景。

2. 分子式和结构IR780的分子式为C43H53N4O2S2,其结构如下所示:从结构上可以看出,IR780是一种有机化合物,主要由碳、氢、氮、氧和硫元素组成。

它具有多个芳香环,并且在分子中含有两个硫原子。

3. 分子量计算分子量是指一个化合物中所有原子相对原子质量之和。

对于IR780来说,我们可以通过计算每个原子的相对原子质量,并将它们相加得到其分子量。

根据元素周期表上相关数据,我们可以得到以下信息:•碳(C)的相对原子质量为12.01•氢(H)的相对原子质量为1.008•氮(N)的相对原子质量为14.01•氧(O)的相对原子质量为16.00•硫(S)的相对原子质量为32.07通过计算,我们可以得到IR780的分子量如下:(12.01 * 43) + (1.008 * 53) + (14.01 * 4) + (16.00 * 2) + (32.07 * 2) = 780.09 g/mol因此,IR780的分子量为780.09克/摩尔。

4. IR780的应用由于IR780具有较高的吸收和发射红外光能力,它在生物医学领域有着广泛的应用。

以下是一些IR780的主要应用领域:a. 肿瘤治疗IR780可以作为一种光敏剂,被用于肿瘤治疗中的光动力疗法。

在该疗法中,IR780会被注射到患者体内,并且会在肿瘤组织中积累。

随后,通过使用激光等外部能源来激活IR780,它会产生一种能够杀死癌细胞的活性氧物质。

这种方法可以有效地治疗肿瘤,并且对周围正常组织的损伤较小。

b. 生物成像IR780还可以用于生物成像,特别是近红外成像。

由于其在近红外光谱区域的吸收和发射特性,IR780可以用作一种荧光探针来标记生物分子或细胞。

HDSP-7807中文资料

HDSP-7807中文资料

7.6 mm (0.3 inch) Micro Bright Seven Segment Displays Technical DataFeatures• Available with Colon for Clock Display • Compact Package 0.300 x 0.500 inchesLeads on 2.54 mm (0.1 inch)Centers• Choice of Colors AlGaAs Red, HighEfficiency Red, Yellow, Green,Orange• Excellent Appearance Evenly Lighted Segments Mitered Corners on Segments Surface Color Gives Optimum Contrast±50° Viewing Angle • Design FlexibilityCommon Anode or Common CathodeRight Hand Decimal Point ±1. Overflow Character • Categorized for Luminous IntensityYellow and Green Categorized for ColorUse of Like Categories Yields a Uniform Display • High Light Output • High Peak Current• Excellent for Long Digit String Multiplexing • Intensity and Color Selection Available See Intensity and ColorSelected Displays Data Sheet • Sunlight Viewable AlGaAsDescriptionThe 7.6 mm (0.3 inch) LED seven segment displays are designed for viewing distances up to 3 metres (10 feet). These devices use an industry standard size package and pinout. Both the numeric andDevicesOrange AlGaAs [1]HER [1]Yellow [1]Green [1]Package HDSP-HDSP-HDSP-HDSP-HDSP- DescriptionDrawingA401A151750174017801Common Anode Right A Hand Decimal750274027802Common Anode Right Hand B Decimal, Colon A403A153750374037803Common Cathode Right C Hand Decimal750474047804Common Cathode Right Hand D Decimal, ColonA157750774077807Common Anode ±1. Overflow E A158750874087808Common Cathode ±1. OverflowFNote:1. These displays are recommended for high ambient light operation. Please refer to the HDSP-A10X AlGaAs, HDSP-335X HER, HDSP-A80X Yellow, and HDSP-A90X Green data sheet for low current operation.HDSP-740x Series HDSP-750x Series HDSP-780x Series HDSP-A15x Series HDSP-A40x Series±1. overflow devices feature a right hand decimal point. All devices are available as either common anode or common cathode.These displays are ideal for most applications. Pin for pin equiv-alent displays are also available in a low current design. The low current displays are ideal forportable applications. For additional information see the Low Current Seven Segment Displays.Part Numbering SystemNotes:1. For codes not listed in the figure above, please refer to the respective datasheet or contact your nearest Agilent representative for details.2. Bin options refer to shippable bins for a part number. Color and Intensity Bins are typically restricted to 1bin per tube (exceptions may apply). Please refer to respective datasheet for specific bin limit information.5082 -X X X X-X X X X X HDSP-X X X X-X X X X XMechanical Options [1]00: No Mechanical OptionColor Bin Options [1,2]0: No Color Bin Limitation3: Color Bins 3- and 3+ only (applicable for Yellow devices only)Z: Color Bins 2- and 3+ only (applicable for Yellow devices only)Maximum Intensity Bin [1,2]0: No Maximum Intensity Bin Limitation Minimum Intensity Bin [1,2]0: No Minimum Intensity Bin Limitation Device Configuration/Color [1]1: Common Anode 2: Common Anode 3: Common Cathode 4: Common CathodeDevice Specific Configuration [1]Refer to Respective DatasheetPackage [1]A: 7.6 mm (0.3 inch) Single Digit Seven Segment DisplayInternal Circuit DiagramA B C D EFPackage DimensionsNOTES:1. ALL DIMENSIONS IN MILLIMETRES (INCHES).2. MAXIMUM.3. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.4. REDUNDANT ANODES.5. REDUNDANT CATHODES.6. FOR HDSP-7400/-7800 SERIES PRODUCT ONLY.Device Series HDSP-ParameterSymbol Min.Typ.Max.Units Test Conditions Luminous Intensity/Segment [1,2,5]I V6.914.0mcd I F = 20 mA (Digit Average)1.8VI F = 20 mAForward Voltage/Segment or DPV F2.03.0V I F = 100 mAA15xPeak Wavelength λPEAK 645nm Dominant Wavelength [3]λd 637nm Reverse Voltage/Segment or DP [4]V R 3.015.0V I R = 100 µA Temperature Coefficient of ∆V F /°C -2mV/°C V F /Segment or DPThermal Resistance LED Junction-R θJ-PIN255°C/W/Segto-PinAlGaAs RedElectrical/Optical Characteristics at T A = 25°C Absolute Maximum RatingsAlGaAs Red HER/Orange Yellow GreenHDSP-A150HDSP-7500/-A40X HDSP-7400HDSP-7800DescriptionSeriesSeries SeriesSeriesUnits Average Power per Segment or DP 9610580105mW Peak Forward Current per 160[1]90[3]60[5]90[7]mA Segment or DPDC Forward Current per 40[2]30[4]20[6]30[8]mASegment or DPOperating Temperature Range –20 to +100[9]–40 to +100°CStorage Temperature Range –55 to +100°C Reverse Voltage per Segment or DP 3.0V Lead Solder Temperature for 3Seconds (1.59 mm [0.063 in.] 260°Cbelow seating plane)Notes:1. See Figure 1 to establish pulsed conditions.2. Derate above 46°C at 0.54 mA/°C.3. See Figure 6 to establish pulsed conditions.4. Derate above 53°C at 0.45 mA/°C.5. See Figure 7 to establish pulsed conditions.6. Derate above 81°C at 0.52 mA/°C.7. See Figure 8 to establish pulsed conditions.8. Derate above 39°C at 0.37 mA/°C.9. For operation below –20°C, contact your local Agilent components sales office or an authorized distributor.High Efficiency RedDeviceSeriesHDSP-Parameter Symbol Min.Typ.Max.Units Test Conditions Luminous Intensity/Segment[1,2,6]360980I F = 5 mA(Digit Average)I Vµcd5390I F = 20 mA Forward Voltage/Segment or DP V F 2.0 2.5V I F = 20 mA 750x Peak WavelengthλPEAK635nmDominant Wavelength[3]λd626nmReverse Voltage/Segment or DP[4]V R 3.030V I R = 100 µATemperature Coefficient of∆V F/°C-2mV/°CV F/Segment or DPThermal Resistance LED Junction-RθJ-PIN200°C/W/Segto-PinOrangeDeviceSeriesHDSP-Parameter Symbol Min.Typ.Max.Units Test Conditions Luminous Intensity/Segment[1,2,6]I V0.70mcd I F = 5 mA(Digit Average)Forward Voltage/Segment or DP V F 2.0 2.5V I F = 20 mA A40x Peak WavelengthλPEAK600nmDominant Wavelength[3]λd603nmReverse Voltage/Segment or DP[4]V R 3.030V I R = 100 µATemperature Coefficient of∆V F/°C-2mV/°CV F/Segment or DPThermal Resistance LED Junction-RθJ-PIN200°C/W/Segto-PinYellowDeviceSeriesHDSP-Parameter Symbol Min.Typ.Max.Units Test Conditions Luminous Intensity/Segment[1,2,7]225480I F = 5 mA(Digit Average)I Vµcd2740I F = 20 mA Forward Voltage/Segment or DP V F 2.2 2.5V I F = 20 mA 740x Peak WavelengthλPEAK583nmDominant Wavelength[3,9]λd581.5586592.5nmReverse Voltage/Segment or DP[4]V R 3.050.0V I R = 100 µATemperature Coefficient of∆V F/°C-2mV/°CV F/Segment or DPThermal Resistance LED Junction-RθJ-PIN200°C/W/Segto-PinHigh Performance GreenDeviceSeriesHDSP-Parameter Symbol Min.Typ.Max.Units Test Conditions Luminous Intensity/Segment[1,2,8]8603000I F = 10 mA(Digit Average)I Vµcd6800I F = 20 mA Forward Voltage/Segment or DP V F 2.1 2.5V I F = 10 mA 780x Peak WavelengthλPEAK566nmDominant Wavelength[3,9]λd571577nmReverse Voltage/Segment or DP[4]V R 3.050.0V I R = 100 µATemperature Coefficient of∆V F/°C-2mV/°CV F/Segment or DPThermal Resistance LED Junction-RθJ-PIN200°C/W/Segto-PinNotes:1. Case temperature of device immediately prior to the intensity measurement is 25°C.2. The digits are categorized for luminous intensity. The intensity category is designated by a letter on the side of the package.3. The dominant wavelength, λd, is derived from the CIE chromaticity diagram and is that single wavelength which defines the color ofthe device.4. Typical specification for reference only. Do not exceed absolute maximum ratings.5. For low current operation the AlGaAs HDSP-A101 series displays are recommended.6. For low current operation the HER HDSP-7511 series displays are recommended.7. For low current operation the Yellow HDSP-A801 series displays are recommended.8. For low current operation the Green HDSP-A901 series displays are recommended.9. The yellow (HDSP-7400) and Green (HDSP-7800) displays are categorized for dominant wavelength. The category is designated by anumber adjacent to the luminous intensity category letter.AlGaAs Redt – PULSE DURATION – µs P101100R A T I O O F M A X I M U M O P E R A T I N G P E A K C U R R E N T T O T E M P E R A T U R E D E R A T E D M A X I M U M D C C U R R E N TI P E A K F I M A X DC Figure 4. Relative Luminous Intensity vs. DC Forward Current.Figure 2. Maximum Allowable DC Current per Segment as a Function of Ambient Temperature.Figure 1. Maximum Allowed Peak Current vs.Pulse Duration – AlGaAs Red.Figure 5. Relative Efficiency (LuminousIntensity per Unit Current) vs. Peak Current.Figure 3. Forward Current vs.Forward Voltage.T A – AMBIENT TEMPERATURE – °C I D C M A X . – M A X I M U M D C C U R R E N T P E R S E G M E N T– m AV F – FORWARD CURRENT – VI F – F O R W A R D C U R R E N T P E R S E G M E N T – m AI PEAK – PEAK FORWARD CURRENT PER SEGMENT – mAηP E A K – N O R M A L I Z E D R E L A T I V E E F F I C I E N C YI F – FORWARD CURRENT PER SEGMENT – mA R E L A T I V E L U M I N O U S I N T E N S I T Y (N O R M A L I Z E D T O 1 A T 20 m A )Figure 12. Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak Current.ηP E A K – R E L A T I V E E F F I C I E N C Y (N O R M A L I Z E D T O 1 A T 5 m A F O R H E R ,O R A N G E A N D Y E L L O W , A N D 10 m A F O R G R E E N )I PEAK – PEAK FORWARD CURRENTPER SEGMENT – mAHER, Yellow, Green, OrangeFigure 6. Maximum Tolerable Peak Current vs.Pulse Duration – HER, Orange.Figure 7. Maximum Tolerable Peak Current vs. Pulse Duration – Yellow.Figure 10. Forward Current vs.Forward Voltage Characteristics.Figure 11. Relative LuminousIntensity vs. DC Forward Current.Figure 8. Allowable Peak Current vs.Pulse Duration – Green.Figure 9. Maximum Allowable DC Current per Segment as a Function of Ambient Temperature.R A T I O O F M A X I M U M O P E R A T I N G P E A K C U R R E N T T O T E M P E R A T U R E D E R A T E D D C C U R R E N TI P E A K F I M A X D C t – PULSE DURATION – µs P 101100DCR A T I O O F M A X I M U M O P E R A T I N G P E A K C U R R E N T T O T E M P E R A T U R E D E R A T E D D C C U R R E N TI P E A K FI M A X D C t – PULSE DURATION – µs P101100R A T I O O F M A X I M U M O P E R A T I N G P E A K C U R R E N T T O T E M P E R A T U R E D E R A T E D D C C U R R E N TI P E A K FI M A X D C t – PULSE DURATION – µs P10110040051015202530352010090807060504030T – AMBIENT TEMPERATURE – °C AI M A X –M A X I M U M D C C U R R E N T P E R S E G M E N T – m AD C120110504510080604020I – F O R W A R D C U R R E N T P E R S E G M E N T – m A FV – FORWARD VOLTAGE – V F R E L A T I V E L U M I N O U S I N T E N S I T Y (N O R M A L I Z E D T O 1 A T 5 m A F O R H E R A N D )t (Y E L L O W A N D T O1 A T 10 m A F O R G R E E N )1510205301025I – FORWARD CURRENT PER SEGMENT – mA FHDSP-A15x IV Bin Category Min.Max.M 7.0713.00N 10.6019.40O 15.9029.20P 23.9043.80Q 35.8065.60Intensity Bin Limits (mcd)AlGaAs RedHDSP-750x IV Bin Category Min.Max.B 0.3420.630C 0.5160.946D 0.774 1.418E 1.160 2.127F 1.740 3.190G 2.610 4.785H 3.9157.177HERHDSP-740x IV Bin Category Min.Max.B 0.2290.387C 0.3170.582D 0.4760.872E 0.714 1.311F 1.073 1.967G 1.609 2.950H 2.4134.425YellowHDSP-780x IV Bin Category Min.Max.H 0.86 1.58I 1.29 2.37J 1.94 3.55K 2.90 5.33L 4.378.01GreenOrangeHDSP-A40XIV Bin Category Min.Max.A 0.2840.433B 0.3540.541C 0.4430.677D 0.5540.846E 0.692 1.057F 0.856 1.322G 1.082 1.652H 1.352 2.066I 1.692 2.581J 2.114 3.227K 2.641 4.034L 3.300 5.042M 4.127 6.303N 5.1577.878Color CategoriesNote:All categories are established for classification of products. Products may not be available in all categories. Please contact your Agilent representatives for further clarification/information.Contrast EnhancementFor information on contrastenhancement, please seeApplication Note 1015.Soldering/CleaningCleaning agents from the ketonefamily (acetone, methyl ethylketone, etc.) and from thechlorinated hydrocarbon family(methylene chloride, trichloro-ethylene, carbon tetrachloride,etc.) are not recommended forcleaning LED parts. All of thesevarious solvents attack or dissolvethe encapsulating epoxies used toform the package of plastic LEDparts.For further information onsoldering LEDs, please refer toApplication Note 1027.元器件交易网/semiconductorsFor product information and a complete list ofdistributors, please go to our web site.For technical assistance call:Americas/Canada: +1 (800) 235-0312 or(408) 654-8675Europe: +49 (0) 6441 92460China: 10800 650 0017Hong Kong: (+65) 271 2451India, Australia, New Zealand: (+65) 271 2394Japan: (+81 3) 3335-8152(Domestic/Interna-tional), or 0120-61-1280(Domestic Only)Korea: (+65) 271 2194Malaysia, Singapore: (+65) 271 2054Taiwan: (+65) 271 2654Data subject to change.Copyright © 2002 Agilent Technologies, Inc.Obsoletes 5988-0382ENFebruary 11, 20025988-4434EN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2

元器件交易网
IRLR/U7807Z
1000
TOP
VGS

VGS
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
100
10
100µsec
1.0 T J = 25°C VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 VSD, Source-toDrain Voltage (V)
1 Tc = 25°C Tj = 175°C Single Pulse 0.1 0.1 1.0 10.0
Conditions
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 15A 13.8 18.2 2.25 ––– 1.0 150 100 -100 ––– 11 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– pF VGS = 0V VDS = 15V ƒ = 1.0MHz ns nC VDS = 15V, VGS = 0V VDD = 15V, VGS = 4.5V ID = 12A Clamped Inductive Load nC VDS = 15V VGS = 4.5V ID = 12A See Fig. 16 S nA V mV/°C µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 15V, ID = 12A VGS = 4.5V, ID = 12A VDS = VGS, ID = 250µA
Diode Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
1000.0
1000
OPERATION IN THIS AREA LIMITED BY R DS(on)
ISD, Reverse Drain Current (A)
100.0 T J = 175°C 10.0
C, Capacitance (pF)
1000
Ciss
8
Coss
100
6
Crss
4
2
10 1 10 100
0 0 4 8 12 16
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
100.0
1.5
10.0
1.0
1.0
VDS = 10V 20µs PULSE WIDTH
0.1 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
VGS, Gate-to-Source Voltage (V)
Parameter
BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss td(on) tr td(off) tf Ciss Coss Crss Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
IRLR/U7807Z
10000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds C rss = C gd C oss = C ds + C gd SHORTED
12 ID= 12A
VGS, Gate-to-Source Voltage (V)
10
VDS= 24V VDS= 15V
ID, Drain-to-Source Current (A)
100
10
10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V BOTTOM 2.25V
100
10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V BOTTOM 2.25V
TOP
1
10
0.1
2.5V
0.01
1
2.5V 20µs PULSE WIDTH Tj = 175°C
Avalanche Characteristics
EAS IAR EAR Parameter Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. ––– ––– ––– Max. 28 12 4.0 Units mJ A mJ
IRLR/U7807Z
50 LIMITED BY PACKAGE 40
ID , Drain Current (A)
20µs PULSE WIDTH Tj = 25°C
0.001 0.1 1 10
0.1 0.1 1 10
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Min. Typ. Max. Units
––– ––– ––– ––– ––– ––– ––– ––– 23 14 43 A 170 1.0 35 21 V ns nC
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V TJ = 25°C, IF = 12A, VDD = 15V di/dt = 100A/µs
Max.
30 ± 20 43 30 170 40 20 0.27 -55 to + 175
Units
V
A W
W/°C °C
Thermal Resistance
Parameter
RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB Mount) Junction-to-Ambient
1msec
10msec
100.0
1000.0
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4

元器件交易网
HEXFET® Power MOSFET
VDSS RDS(on) max Qg (typ.)
30V 13.8mΩ 7.0nC
D-Pak IRLR7807Z
I-Pak IRLU7807Z
Absolute Maximum Ratings
Parameter
VDS VGS ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C PD @TC = 100°C TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Maximum Power Dissipation Maximum Power Dissipation Linear Derating Factor Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case)
相关文档
最新文档