超声波电机
超声波电机探测器原理

超声波探测器的原理是,它发出的声波可以穿透物体,并且可以被物体反射回来。
当物体反射的声波被探测器接收到时,它可以根据反射的声波来推断物体的位置和形状。
此外,它还可以根据反射的声波的强度和频率来推断物体的特性,例如硬度、密度、温度等。
超声波探测器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波在空气中的传播速度为340m/s,根据计时器记录的时间t,就可以计算出发射点距障碍物的距离(s),即:s=340t/2。
这就是所谓的时间差测距法。
因此,超声波探测器是一种非接触式测量仪器,广泛应用于测量长度、距离、方向、速度等方面。
超声波电机

电机学超声波电机2012年11月20日简介超声波电机(Ultrasonic Motor,简称USM)是20世纪80年代中期发展起来的一种全新概念的新型驱动装置。
超声波电机是利用压电陶瓷的逆压电效应——在交变电场作用下,陶瓷会产生伸缩的现象——直接将电能转变成机械能,这种电机的工作频率一般在20kHz以上,故称为压电超声波电机。
超声波电动机的不同命名:如振动电动机(Vibration Motor)、压电电动机(Piezoelectric Motor)、表面波电动机(Surface Wave Motor)、压电超声波电动机(Piezoelectric Ultrasonic Motor)、超声波压电驱动器/执行器(Ultrasonic piezoelectric actuator)等等。
超声波电机实物图如下:一.发展1.探索阶段(1948年——20世纪70年代末)1)超声波电动机的概念出现于1948年,英国的Williams和Brown 申请了“压电电动机(Piezoelectric Motor)”的专利,提出了将振动能作为驱动力的设想,然而由于当时理论与技术的局限,有效的驱动装置未能得以实现。
2)1961年,Bulova Watch Ltd.公司首次利用弹性体振动来驱动钟表齿轮,工作频率为360Hz,这种钟表走时准确,每月的误差只有一分钟,打破了那个时代的纪录,引起了轰动。
3)前苏联学者V. V. Lavrinenko 于1964年设计了第一台压电旋转电机,此后前苏联在超声波电机研究领域一度处于世界领先水平,如设计了用于微型机器人的有2 或3 个自由度的超声波电机、人工超声肌肉及超声步进电机等。
不过,由于语言等方面的原因, 前苏联的一些重要研究成果并未被西方科学界所充分了解。
4)1969 年,英国Salfod 大学的两名教授介绍了一种伺服压电电机,这种电机采用二片式压电体结构,其速度、运动形式和方向都可以任意变化,响应速度也是传统结构电机所不能及的。
超声波电动机

微特电机课程论文超声波电动机学院:专业班级:学号:姓名:指导教师:日期:摘要超声波电机是一个机电耦合系统,涉及到振动学、摩擦学、材料学、电力电子技术、自动控制技术和实验技术等。
超声波电动机利用压电材料的逆压电特性,激发电机定子的机械振动,通过定转子之间的摩擦力,将电能转换为机械能输出,驱动转子的定向运动。
与传统电机相比,它具有体积小、低速大转矩、反应速度快、不受磁场影响、保持力矩大等优点,是一项跨学科的高新技术。
近几年来超声波电动机已成为国内外在微型电机方面的研究热点。
关键字:超声波电机、逆压电效应、机械振动、高新技术。
一、超声波电动机简介超声波电动机(Ultrasonic Motor缩写USM)是以超声频域的机械振动为驱动源的驱动器。
由于激振元件为压电陶瓷,所以也称为压电马达。
80年代中期发展起来的超声波电机(Ultrasonic motor,USM)是基于功能陶瓷的超声波频率的振动实现驱动的新型驱动器。
超声电机是一个典型的机电一体化产品,由电机本体和控制驱动电路两部分组成。
产品涉及到振动学、波动学、材料学、摩擦学、电子科学、计算技术和实验技术等多个领域。
超声波电动机打破了由电磁效应获得转速和转矩的传统电机的概念,它利用压电材料的逆压电效应,使振动体在超声频段内产生振动,通过定子与动子间的摩擦输出能量。
二、超声波电动机的分类1. 环状或盘式行波型超声波电动机由底部粘接着压电陶瓷元件的环状定子和环状转子构成。
对极化后的压电陶瓷元件施加—定的高频交变电压,在定子弹性体中形成沿圆周方向的弯曲行波。
对定、转子施加一定的预压力,转子受到与行波传播方向相反的摩擦力作用而连续转动,定子上的齿槽用于改善电机的工作性能。
2. 直线式行波型超声波电动机(1)双Langevin振子型:利用两个Langevin压电换能器,分别作为激振器和吸振器,当吸振器能很好地吸收激振器端传来的振动波时,有限长直梁似乎变成了—根半无限长梁,这时,在直梁中形成单向行波,驱动滑块作直线运动。
超声波电动机

人耳能感知的声音频率,约为50Hz ~20kHz之范围,因此超声波为20kHz 以上频率之音波或机械振动。超声波电 动机与传统的电磁式电动机不同,它是 利用压电陶瓷的逆压电效应,将超声振 动作为动力源的一种新型电动机,其外 形如图所示。
利用电压源驱动,发生向右方向传播的进行波 (顺转)。 B相利用电压 源进行波方向为向左传播的进行波(逆转)。下图为单压电芯片型超声波 电动机等效电路图。
二、超声波电动机的特点及应用
1. 超声波电动机的特点
(1)低速大转矩、效率高。 (2)控制性能好、反应速度快。 (3)形式灵活,设计自由度大。 (4)不会产生电磁干扰。 (5)结构简单。 (6)震动小、噪音低。
2. 超声波电动机工作原理 超声波电动机的工作是在极化的压电晶体上施加超声波频率的交
流电,压电晶体随着高频电压的幅值变化而膨胀或收缩,从而在定子 弹性体内激发出超声波振动,这种振动传递给与定子紧密接触的摩擦 材料以驱动转子旋转。
2. 超声波电动机工作原理 当使用振动材质为压电陶瓷,两个电压源以适当的间隔配置。A相
一、超声波电动机的结构和工作原理
1.超声波电动机的结构 超声波电动机一般由定子(振动部分)和
转子(移动部分)两部分组成,如图所示。该 电动机中既没有线圈也没有永磁体,其定子是 由压电晶体、弹性体(或热运动器件)、电极构 成的;转子为一个金属板,转子均带有压紧用 部件,加压于压电晶体上,定子和转子在压力 作用下紧密接触。为了减少定子、转子之间相 对运动产生的磨损,通常在两者之间(在转子 上)加一层摩擦材料。
2. 超声波电动机的应用
由于超声波电动机具有电磁电动机所不具备的许多特点,尽管 它的发明与发展仅有二十多年的历史,但超声波电动机已在照相机 的自动变焦镜头、微型飞行器、电子束发生器、智能机器人、焊接 机、轿车电气控制设备、航空航天工程、医疗理分析 2. 超声波电动机的特点和应用
超声电机原理

超声电机原理
超声电机是一种利用超声波产生的机械振动来实现运动的电机。
它具有体积小、效率高、响应速度快、噪音小等优点,因此在各种
领域得到了广泛的应用。
超声电机的工作原理主要包括超声波的产生、传播和转换成机械振动三个方面。
首先,超声电机的工作原理涉及到超声波的产生。
超声波是指
频率高于20kHz的声波,它可以通过压电效应或磁致伸缩效应来产生。
在超声电机中,常用的是压电效应。
当施加电压到压电陶瓷上时,会产生压电效应,使其产生机械振动,从而产生超声波。
这种
超声波具有高频率、短波长的特点,可以实现精细的机械控制。
其次,超声电机的工作原理还涉及到超声波的传播。
超声波在
传播过程中会受到介质的影响,不同介质对超声波的传播速度和衰
减程度都有影响。
因此,在超声电机中需要考虑介质的选择以及超
声波的传播路径,以确保超声波能够准确地传播到需要的位置。
最后,超声电机的工作原理还包括超声波的转换成机械振动。
当超声波传播到需要的位置时,可以通过压电陶瓷或磁致伸缩材料
将超声波转换成机械振动。
这种机械振动可以驱动机械装置实现运
动,如旋转、线性运动等。
由于超声波具有高频率和短波长的特点,因此可以实现微小的机械振动,从而实现精密的位置控制。
总的来说,超声电机的工作原理是通过产生、传播和转换超声
波来实现机械振动,从而实现运动控制。
它具有许多优点,如体积小、效率高、响应速度快、噪音小等,因此在精密仪器、医疗设备、光学设备等领域得到了广泛的应用。
随着科技的不断发展,相信超
声电机在未来会有更广阔的应用前景。
行波型超声波电机及其研究

行波型超声波电机及其研究超声波电机是一种新型的电机,它利用超声波的振动来驱动机械运动,具有高效率、高精度、低噪声等优点,成为了近年来研究的热点之一。
行波型超声波电机是其中的一种,其特点是具有较大的运动范围和较高的速度,而且可以实现线性和旋转运动,因此在机器人、精密加工、医疗设备等领域有广泛的应用前景。
一、行波型超声波电机的工作原理行波型超声波电机由振荡器、行波器和负载组成。
振荡器产生高频的电信号,通过行波器将电信号转换成超声波,超声波作用于负载上,使其产生机械运动。
行波器是行波型超声波电机的核心部件,它将电信号转换成超声波,并将超声波传递到负载上,其结构如图1所示。
图1 行波器的结构行波器由压电陶瓷片和金属板组成,压电陶瓷片是电能和机械能转换的元件,当施加电场时,压电陶瓷片会发生形变,产生超声波。
金属板是行波器的传导部分,它将超声波从压电陶瓷片传递到负载上。
行波器的工作原理是利用压电效应和声波在介质中的传播特性,将电信号转换成超声波,并将超声波传递到负载上,从而实现机械运动。
二、行波型超声波电机的优点1. 高效率行波型超声波电机的效率比传统电机高,因为它不需要机械传动,直接利用超声波的振动来驱动机械运动。
在高速运动时,行波型超声波电机的效率更高,可以达到90%以上。
2. 高精度行波型超声波电机的精度很高,因为它可以实现微小的运动,且不会受到机械传动误差的影响。
在精密加工、医疗设备等领域有广泛的应用。
3. 低噪声行波型超声波电机的噪声很低,因为它不需要机械传动,避免了机械传动带来的噪声。
在医疗设备、音响设备等领域有广泛的应用。
4. 大运动范围行波型超声波电机的运动范围可以很大,可以实现线性和旋转运动,且速度较快。
在机器人等领域有广泛的应用。
三、行波型超声波电机的应用1. 机器人行波型超声波电机可以实现线性和旋转运动,且速度较快,因此在机器人的关节上有广泛的应用。
行波型超声波电机还可以用于机器人的手臂、爪子等部件,实现精密的抓取和放置。
超声波电机

超声波电动机简介
6. 超声波电机独特的驱动机理适应 了多种多样结构形式设计的需要,比如 同一种驱动原理的超声波电机,为了应 用于不同的安装环境,其外形可以根据 需要改变。
超声波电动机简介
超声波电动机的应用
超声波电动机的简介
超声波电机具有很多独特的优点,如结构简单、体积 小、响应速度快、低速大转矩、定位精度高、无电磁 干扰等,因而它的应用范围很广,下面主要介绍了超 声波电机在实际生活中的一些应用。
超声波电动机简介
4. 超声波电机依靠定子的超声振动来驱 动转子运动,超声振动的振幅一般在微米数量 级,在直接反馈系统中,位置分辨率高,容易 实现较高的定位控制精度。
超声波电动机简介
5. 超声波电机的振动体的机械振动 是人耳听不到的超声振动,而且它不需 要减速机构,因此也不存在减速机构的 噪声,运行非常安静。
超声波电动机的简介
超声波电动机的发展趋势
超声波电动机的简介
超声波电机存在的问题
控制困难 : 由于压电材料的特殊性、摩擦发热和环境 变化等问题,驱动转子的摩擦力将产生严重的非线性 变化。这种变化使控制电机匀速转动的难度大大增加。 此外,由于压电材料的特殊性,使得每一台超声波电 动机所需要的驱动电源都不相同,这样,电机和电源 必须一一配套,不利于大规模生产。 寿命较短 : 超声波电机的寿命大约 2000 小时,与传统 电机相比,长时间工作的耐久性不尽人意。 运行效率较低 : 由于超声波电机的理论和计算方法及 其结构设计方法还不成熟,电机运行效 率较低,只有 10%~40%,而传统的电磁电机可达80% 以上。
超声波电动机的简介
日本精工公司每年生 产二十万台用于手表 振动报时的超声波电 机,如图所示。
超声波电机工作原理

超声波电机工作原理
超声波电机是一种利用超声波振动产生机械运动的电机,其工作原理基于超声波的压电效应和谐振效应。
以下是超声波电机的基本工作原理:
1. 压电效应:超声波电机的关键部件是由压电陶瓷构成的振动片。
压电陶瓷具有压电效应,即当施加电场时,陶瓷发生机械变形,而当施加机械应力时,陶瓷产生电场。
2. 超声波振动产生:通过在压电陶瓷上施加高频交变电压,可以使陶瓷片振动,产生超声波。
这种超声波通常在20 kHz以上,远远超出人耳可听范围。
3. 谐振效应:超声波电机采用谐振效应,即在特定的频率下,振动片的振动幅度达到最大值。
通过调整施加在压电陶瓷上的电压频率,使其与振动片的谐振频率匹配,可以提高振动效率。
4. 工作部件:超声波电机中通常包含振动片、导向块和负载。
振动片振动时,通过导向块将振动传递到负载上,从而实现机械运动。
5. 无刷结构:由于超声波电机是通过振动产生机械运动,通常不需要传统电机中的刷子和换向器。
因此,超声波电机具有无刷结构,减少了摩擦和磨损。
超声波电机的优点包括高效率、精密控制、低噪音、无电磁干扰等特点。
它在一些需要高精度、低噪音、快速响应的应用领域得到广泛应用,如光学设备、精密仪器、医疗器械等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回 上一节 下一节 上一页 下一页
第6章 超声波电动机
1.2 USM的工作原理
A. 行波的形成
1) 高频电压驻波 将极化方向相反的压电陶瓷依 次粘贴于弹性体上,当在压电 陶瓷上施加交变电压时,压电 陶瓷会产生交替伸缩变形,在 一定的频率和电压条件下,弹 性体上会产生图示的驻波,用 方程表示为
第6章 超声波电动机
超声波电动机及其发展概况
1 超声波电动机的基本原理 2 超声波电动机的发展 3 超声波电动机的优点及其应用
4 超声波电动机的常见结构与分类
5 行波型超声波电动机的驱动控制 6 超声波电机存在的问题及研究重点
特种电机及其控制
返回主页 教学基本要求 分析与思考 练习题
第6章 超声波电动机
特种电机及其控制
返回
上一节
下一节
上一页
下一页
第6章 超声波电动机
工作原理:对极化后的压电陶瓷元件施加—定的高频交变电压, 压电陶瓷随着高频电压的幅值变化而膨胀或收缩,从而在定子 弹性体内激发出超声波振动,这种振动传递给与定子紧密接触 的摩擦材料以驱动转子旋转。
特种电机及其控制
返回 上一节 下一节 上一页 下一页
y 0 cos
2
返回
x cos 0 t
上一节 下一节 上一页 下一页
特种电机及其控制
第6章 超声波电动机
A.行波的形成 2) 两驻波行波
设A、B两个驻波的振幅同为0,二者在时间和空间上分别相 差90,方程分别为
y A 0 sin
2
x sin 0 t
y B 0 cos
返回 上一节 下一节 上一页
下一页
第6章 超声波电动机
B.弹性体表面的椭圆运动
设弹性体厚度为h。若弹性 体表面任一点P在弹性体未 挠曲时的位置为P0,则从 P0到P在y方向的位移为
2 h y 0 sin x 0t (1 cos ) 2
由于行波的振幅比行波的波长小得多,弹性体弯曲的角度 很小,故y方向 的位移近似为
第6章 超声波电动机
当对粘接在金属弹性体上的两片压电陶瓷施加相位差为90电角度的高频电压 时,在弹性体内产生两组驻波(Standing Wave),这两组驻波合成一个沿定 子弹性体圆周方向行进的行波(Progressive Wave/Travelling Wave),使 得定子表面的质点形成一定运动轨迹(通常为椭圆轨迹)的超声波微观振动, 其振幅一般为数微米,这种微观振动通过定子(振动体)和转子(移动体)之间的 摩擦作用使转子(移动体)沿某一方向(逆行波传播方向)做连续宏观运动。
2
x cos 0 t
在弹性体中,这两个驻波的合成为一行波
2 y y A y B 0 cos x 0t
特种电机及其控制
返回
上一节机
A.行波的形成 3) 在USM中形成行波
USM的定子由环形弹性体和环形 压电陶瓷构成,压电陶瓷按图示 的规律极化,即可产生两个在时 间和空间上都相差90的驻波。 极化规律: 将一片压电陶瓷环极化为 A 、 B 两相区,两相区之 间有 /4的区域未极化,用作控制电源反馈信号的传感器,另 有3/4波长的区域作为两相区的公共区。极化时,每隔1/2波长 反向极化,极化方向为厚度方向。图中“+”“”代表压电片 的极化方向相反,两组压电片空间相差/4,相当于90,分别 通以同频、等幅、相位相差为 90 的超声频域的交流信号,这 样两相区的两组压电体就在时间与空间上获得 90相位差的激 振。 特种电机及其控制
特种电机及其控制
返 回 上一节 下一节 上一页 下一页
第6章 超声波电动机
1.1 超声波电动机的结构
特种电机及其控制
返 回
上一节
下一节
上一页
下一页
第6章 超声波电动机
超声波电动机由定子(振动体)和转子(移动体)两部分组成 但电机中既没有线圈也没有永磁体,其定子由弹性体 (Elastic body)和压电陶瓷(Piezoelectric ceramic)构成 转子为一个金属板。定子和转子在压力作用下紧密接触,为 了减少定、转子之间相对运动产生的磨损,通常在二者之间 (在转子上)加一层摩擦材料。
2 y 0 sin x 0t
特种电机及其控制
返回
上一节
下一节
上一页
下一页
第6章 超声波电动机
B.弹性体表面的椭圆运动
从P0到P在x方向的位移为 又
h h x sin 2 2
dy 2 2 0 cos x 0t dx
超声波电动机的不同命名:如振动电动机(Vibration Motor)、 压电电动机(Piezoelectric Motor)、表面波电动机(Surface Wave Motor)、压电超声波电动机(Piezoelectric Ultrasonic Motor)、超声波压电驱动器/执行器(Ultrasonic piezoelectric actuator)等等。
所以
2 x 0 cos x 0t h
特种电机及其控制
返回
上一节
下一节
上一页
下一页
第6章 超声波电动机
B.弹性体表面的椭圆运动
y x 1 0 0 h
弹性体表面上任意一点P按照椭圆轨迹运动,这种运动使弹性 体表面质点对移动体产生一种驱动力,且移动体的运动方向与 行波方向相反。
1 超声波电动机的基本原理 超声波电动机(Ultrasonic Motor,简称USM)
是近年来发展起来的一种全新概念的驱动装置,它 利用压电材料的逆压电效应(即电致伸缩效应),把电 能转换为弹性体的超声振动,并通过摩擦传动的方 式转换成运动体的回转或直线运动。这种新型电机 一般工作于20kHz以上的频率,故称为超声波电动 机。
特种电机及其控制
返回 上一节 下一节 上一页 下一页
2
2
第6章 超声波电动机
M的调速方法
弹性体表面质点的横向运动速度为