江门市棠下中学2018-2019年11月高考数学模拟题
广东省江门市第二中学2018-2019学年高二数学11月月考试题 理

广东省江门市第二中学2018-2019学年高二数学11月月考试题 理注意事项:1、全卷共三大题,22小题。
满分共150分,测试时间120分钟。
2、答题前,务必将自己的班级、姓名、考号填写在答题卡规定的位置上。
3、答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如果改动,用橡皮擦擦干净后,再选择其它答案标号。
4、答非选择题时,用圆珠笔或黑色签字笔将答案书写在答题卡规定的位置上。
5、所有题目必须在规定的答题卡上作答,在试卷上作答无效。
一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若命题“p q ∧”为假,且“p ⌝”为假,则A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假2.有下列四个命题,①“若0x y += , 则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题; 其中真命题为 A .①②B .②③C .①③D .③④3.已知命题p :1x ∀>,210x -≤,那么p ⌝是A .1x ∀>,210x -> B .1≤∀x ,210x -> C .1x ∃>,210x -> D .1x ∃≤,210x -> 4.在中ABC ∆,“b a >”是“B A sin sin >”A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.在△ABC 中,若C B A 222sin sin sin <+,则△ABC 的形状是A .钝角三角形B .直角三角形C .锐角三角形D .不能确定 6.已知等差数列}{n a 满足41=a ,1053=+a a ,则7a 等于A .5B .6C .7D .87.设x ,y 为正数,则(x +y )⎝ ⎛⎭⎪⎫1x +4y 的最小值为A .8B .9C .12D .15 8.不等式4x +23x -1>0的解集是A.⎩⎨⎧⎭⎬⎫x |x >13或x <-12B.⎩⎨⎧⎭⎬⎫x |-12<x <13C.⎩⎨⎧⎭⎬⎫x |x >13 D.⎩⎨⎧⎭⎬⎫x |x <-12 9.数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为A.2n 2n +1 B.2n n +1 C.n +2n +1 D.n 2n +110.椭圆1422=+y m x 的焦距为2,则m 的值为 A .5 B .8 C .20 D .5或311.若双曲线12222=-by a x 的离心率为3,则其渐近线方程为A .y =±2xB .y =±2xC .y =±12xD .y =±22x12.设点F 为抛物线C :2y =3x 的焦点,过点F 且倾斜角为30°的直线交抛物线于A ,B 两点,则|AB |= A.303B .6C .12D .7 3二、填空题:本大题共4小题,每小题5分,满分20分。
广东省江门市普通高中2018届高考数学一轮复习模拟试题11

一轮复习数学模拟试题11第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合},3,1{m A =,},1{m B =,A B A = ,则=mA .0或3B .0或3C .1或3 D .1或3件中取2件调整到上层,若其他商品的相对顺序不变,则不同调整方法的种数是A .420B .560C .840D .20160 4.在极坐标系下,圆03sin 4:2=++θρρC 的圆心坐标为 A.)0,2( B.)2,2(πC.),2(πD. )2,2(π-5.已知双曲线)0,0(12222>>=-b a by a x 的离心率为2,一个焦点与抛物线x y 162=的焦点相同,则双曲线的渐近线方程为 A .x y 23±= B .x y 23±= C .x y 33±= D .x y 3±= 6.已知直线01)1(:1=+++y a ax l ,02:2=++ay x l ,则“2-=a ”是“21l l ⊥” A.充分不必要条件 B. 必要不充分条件 C.充分必要条件 D. 既不充分也不必要条件7.一四面体的三视图如图所示,则该四面体四个面中最大的面积是 A.2 B. 22 C.3 D. 328.已知函数)0(2)(23≠-+=a bx ax x f 有且仅有两个不同的零点1x ,2x ,则 A .当0<a 时,021<+x x ,021>x x B. 当0<a 时,021>+x x ,021<x x C. 当0>a 时,021<+x x ,021>x x D. 当0>a 时,021>+x x ,021<x x(7题图)第Ⅱ卷(非选择题)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知1||=a,2||=b ,向量a 与b 的夹角为 60,则=+||b a.10. 若复数i m m m z )1()2(2+++-=(为虚数单位)为纯虚数, 其中m R ∈,则=m .11. 执行如图的程序框图,如果输入6=p ,则输出的S = . 12.在ABC ∆中,c b a ,,依次是角C B A ,,的对边,且c b <. 若6,32,2π===A c a ,则角=C .13.如图所示,以直角三角形ABC 的直角边AC 为直径作⊙O , 交斜边AB 于点D ,过点D 作⊙O 的切线,交BC 边于点E . 则=BCBE. 14. 以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间]4,0[对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间]4,0[上(除两个端点外)的点,在第n 次操作完成后)1(≥n ,恰好被拉到与4重合的点所对应的坐标为)(n f ,则=)3(f ;=)(n f .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15. (本小题满分13分) 已知x x x f 2sin 22sin 3)(-=.(Ⅰ)求)(x f 的最小正周期和单调递增区间; (Ⅱ)若]6,0[π∈x ,求)(x f 的最小值及取得最小值时对应的x 的取值.(13题图)0 2 4 (14题16.(本小题满分14分)如图,四棱锥ABCD P -的底面ABCD 为菱形,2的正三角形,侧面PAB ⊥底面ABCD .(Ⅰ)设AB 的中点为Q ,求证:⊥PQ 平面ABCD ;(Ⅱ)求斜线PD 与平面ABCD 所成角的正弦值;(Ⅲ)在侧棱PC 上存在一点M ,使得二面角 C BD M --的大小为 60,求CPCM的值.17. (本小题满分13分)空气质量指数5.2PM (单位:3/g m μ)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:甲、乙两城市2013年2月份中的15天对空气质量指数5.2PM 进行监测,获得5.2PM 日均浓度指数数据如茎叶图所示: (Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内 哪个城市空气质量总体较好?(注:不需说明理由)(Ⅱ)在15天内任取1天,估计甲、乙两城市 空气质量类别均为优或良的概率;(Ⅲ) 在乙城市15个监测数据中任取2个,设X 为空气质量类别为优或良的天数, 求X 的分布列及数学期望.18. (本小题满分13分) 已知函数ax x x a x f ++-=2221ln 2)()(R a ∈. (Ⅰ) 讨论函数)(x f 的单调性;(Ⅱ)当0<a 时,求函数)(x f 在区间],1[e 的最小值.3 0 2 24 4 8 9 66 1 5 178 8 2 3 09 8 甲城市 3 2 0 45 56 47 6 9 78 8 0 7 9 1 8 0 9乙城市19. (本小题满分14分)已知动点),(y x P 与一定点)0,1(F 的距离和它到一定直线4:=x l 的距离之比为21. (Ⅰ) 求动点),(y x P 的轨迹C 的方程;(Ⅱ)已知直线:l '1+=my x 交轨迹C 于A 、B 两点,过点A 、B 分别作直线4:=x l 的垂线,垂足依次为点D 、E .连接AE 、BD ,试探索当m 变化时,直线AE 、BD 是否相交于一定点N ?若交于定点N ,请求出N 点的坐标,并给予证明;否则说明理由.20. (本小题满分13分)A 是由定义在]4,2[上且满足如下条件的函数)(x ϕ组成的集合:(1)对任意]2,1[∈x ,都有)2,1()2(∈x ϕ ;(2)存在常数)10(<<L L ,使得对任意的]2,1[,21∈x x ,都有-)2(|1x ϕ|)2(2x ϕ||21x x L -≤.(Ⅰ)设]4,2[,1)(3∈+=x x x ϕ,证明:A x ∈)(ϕ;(Ⅱ)设A x ∈)(ϕ,如果存在)2,1(0∈x ,使得)2(00x x ϕ=,那么这样的0x 是唯一的; (Ⅲ)设A x ∈)(ϕ,任取)2,1(∈n x ,令,,2,1),2(1⋅⋅⋅==+n x x n n ϕ证明:给定正整数k ,对任意的正整数p ,不等式||1||121x x LL x x k k p k --≤--+成立.答案一、选择题:)0485('=⨯'B BCD D A D B二、填空题:本大题共6小题,每小题5分,共30分. 9.7 10.2 11.3231 12. 120 13.21 14.27,25,23,21; 22-n j(这里j 为]2,1[n 中的所有奇数) 三、解答题:)0365('=⨯' 15. (本小题满分13分)解:(Ⅰ)12cos 2sin 3)(-+=x x x f 1)62sin(2-+=πx …………4分ππ==22T ,)(x f ∴最小正周期为π. …………5分 由πππππk x k 226222+≤+≤+-)(Z k ∈,得 …………6分ππππk x k 232232+≤≤+- …………7分 ππππk x k +≤≤+-63…………8分)(x f ∴单调递增区间为)](6,3[Z k k k ∈++-ππππ. …………9分(Ⅱ)当]6,0[π∈x 时,]2,6[62πππ∈+x , …………10分)(x f ∴在区间]6,0[π单调递增, …………11分0)0()]([min ==∴f x f ,对应的x 的取值为0. …………13分16.(本小题满分14分)(Ⅰ)证明:因为侧面PAB 是正三角形,AB 的中点为Q ,所以AB PQ ⊥, 因为侧面PAB ⊥底面ABCD ,侧面PAB 底面ABCD AB =,⊂PQ 侧面PAB , 所以⊥PQ 平面ABCD . ………3分(Ⅱ)连结AC ,设O BD AC = ,建立空间直角坐标系xyz O -,则)0,0,0(O ,)0,0,3(B ,)0,1,0(C ,)0,0,3(-D ,)3,21,23(-P ,………5分 )3,21,233(--=,平面ABCD 的法向量)1,0,0(=m, 设斜线PD 与平面ABCD 所成角的为α,则10303414273||||||,cos |sin =++==><=PD m mα. ………8分 (Ⅲ)设t =)3,23,23(t t t -=,则M )3,123,23(t t t +-, =)3,123,323(t t t +--,)0,0,1(32=, ………10分 设平面MBD 的法向量为),,(z y x n =,则00·=⇔=⇔⊥x n n,⇔=⇔⊥0·n n 03)123()323(=++-+-tz y t x t ,取3=z ,得)3,236,0(-=t t n,又平面ABCD 的法向量)1,0,0(=m………12分 所以|60cos ||,cos |||||·|=><=n m n m n m ,所以21)236(332=-+t t ,解得2=t (舍去)或52=t .所以,此时CP CM 52=. ………14分17. (本小题满分13分)解:(Ⅰ)甲城市空气质量总体较好.………2分(Ⅱ)甲城市在15天内空气质量类别为优或良的共有10天,任取1天,空气质量类别为优或良的概率为321510=,………4分乙城市在15天内空气质量类别为优或良的共有5天,任取1天,空气质量类别为优或良的概率为31155=, ………6分在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率为923132=⨯. ………8分(Ⅲ)X 的取值为2,1,0, ………9分73)0(21521005===C C C X P ,2110)1(21511015===C C C X P ,212)0(21501025===C C C X P X 的分布列为:X2P73 2110 212数学期望32212221101730=⨯+⨯+⨯=EX ………13分18. (本小题满分13分)解:函数)(x f 的定义域为),0(+∞,………1分(Ⅰ)xa x a x x a ax x x f ))(2(2)(22-+=-+=', ………4分 (1)当0=a 时,0)(>='x x f ,所以)(x f 在定义域为),0(+∞上单调递增; …5分 (2)当0>a 时,令0)(='x f ,得a x 21-=(舍去),a x =2, 当x 变化时,)(x f ',)(x f 的变化情况如下: 此时,)(x f 在区间),0(a 单调递减, 在区间),(+∞a 上单调递增;………7分(3)当0<a 时,令0)(='x f ,得a x 21-=,a x =2(舍去), 当x 变化时,)(x f ',)(x f 的变化情况如下: 此时,)(x f 在区间)2,0(a -单调递减, 在区间),2(+∞-a 上单调递增.………9分(Ⅱ)由(Ⅰ)知当0<a 时,)(x f 在区间)2,0(a -单调递减,在区间),2(+∞-a 上单调递增.………10分(1)当e a ≥-2,即2ea -≤时,)(x f 在区间],1[e 单调递减,所以,22min 212)()]([e ea a e f x f ++-==; ………11分 (2)当e a <-<21,即212-<<-a e 时,)(x f 在区间)2,1(a -单调递减, 在区间),2(e a -单调递增,所以)2ln(2)2()]([2min a a a f x f --=-=,………12分 (3)当12≤-a ,即021<≤-a 时,)(x f 在区间],1[e 单调递增, 所以21)1()]([min +==a f x f . ………13分19. (本小题满分14分)解:(Ⅰ)由题意得21|4|)1(22=-+-x y x ,化简并整理,得 13422=+y x .所以动点),(y x P 的轨迹C 的方程为椭圆13422=+y x . ………3分(Ⅱ)当0=m 时,)23,1(A 、)23,1(-B ,)23,4(D 、)23,4(-E直线AE 的方程为:0522=-+y x ,直线BD 的方程为:0522=--y x ,方程联立解得0,25==y x ,直线AE 、BD 相交于一点)0,25(. 假设直线AE 、BD 相交于一定点N )0,25(. ………5分证明:设),1(11y my A +,),1(22y my B +,则),4(1y D ,),4(2y E ,由⎪⎩⎪⎨⎧=++=134122y x my x 消去x 并整理得096)43(22=-++my y m ,显然0>∆,由韦达定理得436221+-=+m m y y ,439221+-=m y y . ………7分 因为),23(11y my -=,),23(2y =,所以23)23(121⨯-⨯-y y my )(232121y y y my +-=4392+-=m m 23-4362+-⨯m m0= ………11分 所以,//,所以A 、N 、E 三点共线, ………12分同理可证B 、N 、D 三点共线,所以直线AE 、BD 相交于一定点N )0,25(.14分20. (本小题满分13分)解:(Ⅰ)对任意]2,1[∈x ,]2,1[,21)2(3∈+=x x x ϕ,≤33)2(x ϕ35≤,253133<<<,所以)2,1()2(∈x ϕ.对任意的]2,1[,21∈x x ,()()()()23232132121211121212|||)2()2(|x x x x x x x x ++++++-=-ϕϕ,<3()()()()32321321112121x x x x ++++++,所以0<()()()()2323213211121212x x x x ++++++32<, 令()()()()2323213211121212x x x x ++++++=L ,10<<L ,|||)2()2(|2121x x L x x -≤-ϕϕ,所以A x ∈)(ϕ. ………5分 (Ⅱ)反证法:设存在两个0000),2,1(,x x x x '≠∈'使得)2(00x x ϕ=,)2(00x x '='ϕ则 由|||)2()2(|/00/00x x L x x -≤-ϕϕ,得||||/00/00x x L x x -≤-,所以1≥L ,矛盾,故结论成立.………8分(Ⅲ)121223)2()2(x x L x x x x -≤-=-ϕϕ,所以|2()2(|||11-+-=-n n n n x x x x ϕϕ||1--≤n n x x L ||212---≤n n x x L ……||121x x L n -≤-+-+-=--+-+-+++)()(|||211p k p k p k p k k p k x x x x x x ……|)(1k k x x -++kk p k p k p k p k x x x x x x -+-+-≤+-+-+-++1211 ≤123122x x L x x L p k p k -+--+-++…+121x x L k --||1)1(121x x L L L p k ---=-||1121x x LL k --≤-. ………13分。
2018年广东省江门市高考数学一模试卷

2018年广东省江门市高考数学一模试卷(理科)一、选择题1.设集合A={x|x>3},B={x|<0}则A∩B=()A.φB.(3,4)C.(﹣2,1)D.(4,+∞)2.若z为复数且z(2﹣i)=3+i,i为虚数单位,则|z|=()A.2 B.C.D.3.已知a,b,c,d为实数,且c>d.则“a>b”是“a﹣c>b﹣d”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.若双曲线﹣=1的渐近线方程为y=±x,则双曲线的离心率为()A.B.C.D.5.如图所示的框图,若输入的n的值为4,则输出的S=()A.3 B.4 C.﹣1 D.06.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种7.已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的侧面积为()A.cm2B.cm2C.cm2D.cm28.已知区域D:,则x2+y2的最小值是()A.5 B.4 C.D.29.设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称10.△ABC中,点D在边AB上,CD平分∠ACB,若=,=,||=1,||=2,则=()A.+B.+C.+D.+11.若抛物线y2=2px(p>0)的焦点为F,点A(3,2)在抛物线开口内,点P为抛物线上一点,当△APF的周长最小时,△APF的面积为1,则|PF|=()A.1 B.C.2 D.12.已知e为自然对数的底数,函数f(x)=,则方程f(x)=ax恰有两个不同的实数解时,实数a的取值范围是()A.(e,4]B.(4,+∞)C.(e,+∞)D.(,4)三、填空题:本题共4小题,每小题5分.13.偶函数f(x)在(0,+∞)单调递减,f(1)=0,不等式f(x)>0的解集为.14.正项数列{a n}满足a1=,a1+a2+…+a n=2a n a n,则通项a n =.+115.某个部件由3个型号相同的电子元件并联而成,3个电子元件中有一个正常工作,则改部件正常工作,已知这种电子元件的使用年限ξ(单位:年)服从正态分布,且使用年限少于3年的概率和多于9年的概率都是0.2.那么该部件能正常工作的时间超过9年的概率为.16.若向量、满足|+|=2,|﹣|=3,则||•||的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)△ABC的内角A、B、C所对的边分别是,a、b、c,△ABC的面积S=•.(Ⅰ)求A的大小;(Ⅱ)若b+c=5,a=,求△ABC的面积的大小.18.(12分)为了摸清整个江门大道的交通状况,工作人员随机选取20处路段,在给定的测试时间内记录到机动车的通行数量情况如下(单位:辆):147 161 170 180 163 172 178 167 191 182181 173 174 165 158 154 159 189 168 169(Ⅰ)完成如下频数分布表,并作频率分布直方图;通行数量[145,155)[155,165)[165,175)[175,185)[185,195)区间频数(Ⅱ)现用分层抽样的方法从通行数量区间为[165,175)、[175,185)及[185,195)的路段中取出7处加以优化,再从这7处中随机选2处安装智能交通信号灯,设所取出的7处中,通行数量区间为[165,175)路段安装智能交通信号灯的数量为随机变量X(单位:盏),试求随机变量X的分布列与数学期望E(X).19.(12分)如图,多面体EF﹣ABCD中,ABCD是正方形,AC、BD相交于O,EF∥AC,点E在AC上的射影恰好是线段AO的中点.(Ⅰ)求证:BD⊥平面ACF;(Ⅱ)若直线AE与平面ABCD所成的角为60°,求平面DEF与平面ABCD所成角的正弦值.20.(12分)设函数f(x)=e x﹣ax,a是常数.(Ⅰ)若a=1,且曲线y=f(x)的切线l经过坐标原点(0,0),求该切线的方程;(Ⅱ)讨论f(x)的零点的个数.21.(12分)椭圆E: +=1(a>b>0)的左右焦点分别为F1、F2,D为椭圆短轴上的一个顶点,DF1的延长线与椭圆相交于G.△DGF2的周长为8,|DF1|=3|GF1|.(Ⅰ)求椭圆E的方程;(Ⅱ)过椭圆E的左顶点A作椭圆E的两条互相垂直的弦AB、AC,试问直线BC是否恒过定点?若是,求出此定点的坐标;若不是,请说明理由.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分。
江门市2019年高考模拟考试数学(理科)

江门市2019年高考模拟考试数 学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高.一项是符合题目要求的.⒈已知ABCD 是复平面内一个平行四边形,AB 对应的复数为i +1,AD 对应的复数为i 23-,其中 i 为虚数单位.则AC 对应的复数为A.i 32-B.i 32+-C.i -4D.i +-4 ⒉已知集合{}是菱形或矩形x x A |=,{}是矩形x x B |=,则=B C AA.{}是菱形x x |B.{}形是内角都不是直角的菱x x |C.{}是正方形x x |D.{}是邻边都不相等的矩形x x |⒊已知)sin(ϕω+=x A y 的最大值为1,在区间]32, 6[ππ上, 函数值从1减小到1-,函数图象(如图1)与y 轴的交点P 坐标是A.)21 , 0(B.)22, 0( C.)23, 0( D.⒋经过25)2()1(22=++-y x 的圆心,且与向量)4 , 3(-=a 垂直的直线的方程是A.01143=--y xB.01143=+-y xC.0134=-+y xD.0234=++y x ⒌已知0>a ,0>b ,12=+b a ,则ba 11+的取值范围是 A.)6 , (-∞ B.) , 4[∞+ C.) , 6[∞+ D.) , 223[∞++ ⒍从一个三棱柱111C B A ABC -的六个顶点中任取四点,这四点不共面的概率是A.51 B.52 C.53 D.54 ⒎若)()21(2010201022102010R x x a x a x a a x ∈++++=- ,则=++++2102010*********a a a aACD EO图2B A.1- B.0 C.1 D.2010⒏用{}c b a , , m ax 表示a 、b 、c 三个数中的最大值,则{}243 , 12 , 3m ax )(xx x f x-+=在区间]2 , 0[上的最大值M 和最小值m 分别是A .9=M ,13-=mB .5=M ,13-=mC .9=M ,2=mD .5=M ,1=m二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. ㈠必做题(9~13题)⒐某高中高一、高二、高三在校学生人数分别为1200、1200、1100,现要从中抽取140名学生参加周末公益活动,若用分层抽样的方法,则高三年级应抽取 人. ⒑下列命题中,真命题是 (将真命题前面的编号填写在横线上). ①已知平面α、β和直线a 、b ,若a =βα ,α⊂b 且b a ⊥,则βα⊥.②已知平面α、β和两异面直线a 、b ,若α⊂a ,β⊂b 且β//a ,α//b ,则βα//. ③已知平面α、β、γ和直线l ,若γα⊥,γβ⊥且l =βα ,则γ⊥l . ④已知平面α、β和直线a ,若βα⊥且β⊥a ,则α⊂a 或α//a . ⒒由直线x y =与曲线2x y =所围图形的面积=S . ⒓函数)1(log 1|2|)(2---=x x x f 的定义域为 .⒔产量相同的机床Ⅰ、Ⅱ生产同一种零件,它们在一小时内生产出的次品数1X 、2X 的分布列分别如下:两台机床中,较好的是 ,这台机床较好的理由是 .㈡选做题(14~15题,考生只能从中选做两题)⒕(坐标系与参数方程选做题)在平面直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎨⎧+==my x θθsin cos (m 是常数,] , (ππθ-∈是参数),若曲线C 与x 轴相切,则=m . ⒖(几何证明选讲选选做题)如图2,ABC Rt ∆中,090=C ,30=A ,圆O 经过B 、C 且与AB 、AC 相交于D 、E . 若32==EC AE ,则=AD ,圆O 的半径=r .三、解答题:本大题共6小题,满分80分。
广东省江门市2018年普通高中高三第一次模拟测试(数学理)

广东省江门市2018年普通高中高三第一次模拟测试<数 学<理科)本试卷共4页,21题,满分150分,测试用时120分钟. 参考公式:1.锥体的体积公式,其中是锥体的底面积,是锥体的高.2.用最小二乘法求线性回归方程系数公式,.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.b5E2RGbCAP ⒈已知复数<是虚数单位),若使得,则A .B .C .D .⒉已知函数,且,则是A.奇函数且在上单调递增B.偶函数且在上单调递增C.奇函数且在上单调递减D.偶函数且在上单调递减⒊从一个五棱锥的顶点和底面各顶点<共6个点)中随机选取4个点,这4个点共面的概率等于 A .B .C .D . ⒋如图1,中,,,,是的中点,则A .B .C .D .绝密★启用前 试卷类型:B正视图侧视图图2⒌有人收集了春节期间平均气温与某取暖商品销售额的有关数据如下表:与平均气温之间线性回归方程的系数.则预测平均气温为℃时该商品销售额为p1EanqFDPw A .万元B .万元C .万元D .万元⒍下列命题中,真命题的个数是 A .B .C .D . ①不等式的解集是.②命题“任意素数都是奇数”的否定是“任意素数都不是奇数”.③平行于同一平面的两平面互相平行. ④抛物线的焦点坐标是.⒎如图2,某几何体的正视图和侧视图都是对角线长分别为4和3的菱形,俯视图是对角线长为3的正方形,则该几何体的体积为 A .B .C .D .输出图⒏定义,其中,,,,且互不相等.则的所有可能且互不相等的值之和等于A .B.C .D .以上都不对二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一>必做题<9~13题)⒐已知数列的前项和为,则.⒑在平面直角坐标系中,以点为圆心,且与直线相切的圆的方程是.⒒以初速度垂直向上抛一物体,时刻(单位:>的速度为(单位:>的最大高度是<提示:不要漏写单位). ⒓已知、满足,则的最大值是.⒔执行如图3所示的程序框图,输出的.(二>选做题<14、15题,考生只能从中选做一题) ⒕<几何证明选讲选做题)如图4,是的高, 是外接圆的直径。
2018年广东省江门市高考一模数学试卷(文科)【解析版】

2018年广东省江门市高考数学一模试卷(文科)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合M={x|x2≤9},N={x|2﹣x<0},则M∪N=()A.[﹣3,+∞)B.(﹣∞,3]C.[﹣3,2)D.(2,3]2.(5分)i为虚数单位,复数z的共轭复数为,若z+2=3+4i,则z=()A.1﹣2i B.1+2i C.1﹣4i D.1+4i3.(5分)已知向量=(﹣1,2),=(1,λ),若⊥,则+2与的夹角为()A.B.C.D.4.(5分)若实数x,y满足不等式组,则z=2x+y的最小值为()A.0B.2C.4D.85.(5分)某校高二年级N名学生参加数学调研测试成绩(满分120分)分布直方图如图.已知分数在100~110的学生有21人,则N=()A.48B.60C.72D.806.(5分)过原点且倾斜角为30°的直线被圆x2+(y﹣2)2=4所截得的弦长为()A.1B.C.D.27.(5分)若a,b都是正整数,则a+b>ab成立的充要条件是()A.a=b=1B.a,b至少有一个为1C.a=b=2D.a>1且b>18.(5分)将函数f(x)=sin(πx+)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位,得到函数g(x)的图象,则函数g(x)的单调递减区间是()A.[2k﹣1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)9.(5分)某几何体的三视图如图所示,则该几何体的体积V=()A.B.C.3D.10.(5分)F是抛物线y2=2x的焦点,点P在抛物线上,点Q在抛物线的准线上,若=2,则|PQ|=()A.B.4C.D.311.(5分)已知函数f(x)=(2x﹣2﹣x)•x3,若实数a满足f(log2a)+f(log0.5a)≤2f(1),则实数a的取值范围为()A.(﹣∞,)∪(2,+∞)B.(,2)C.[,2]D.(,4]12.(5分)已知平面四边形ABCD中,AB=AD=2,BC=CD,∠BCD=90°,则四边形ABCD面积的最大值为()A.6B.2+3C.2+2D.4二、填空题:本题共4小题,每小题5分.13.(5分)记数列{a n}的前n项和为S n,若∀n∈N+,2S n=a n+1,则a2018=.14.(5分)设[x]表示不超过x的最大整数,如[π]=3,[﹣3.2]=﹣4,则[lg1]+[lg2]+[lg3]+…+[lg100]=.15.(5分)已知A={(x,y)|(x﹣1)2+y2=1},B={(x,y)|x+y+m≥0},若A⊆B,则实数m的取值范围是.16.(5分)两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两位教师批改成绩之差的绝对值不超过2 的概率为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,A=,3sin B=5sin C.(Ⅰ)求tan B;(Ⅱ)△ABC的面积S=,求△ABC的边BC的长?18.(12分)如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.19.(12分)为探索课堂教学改革,江门某中学数学老师用传统教学和“导学案”两种教学方式,在甲、乙两个平行班进行教学实验.为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如图茎叶图.记成绩不低于70分者为“成绩优良”.(Ⅰ)请大致判断哪种教学方式的教学效果更佳,并说明理由;(Ⅱ)构造一个教学方式与成绩优良列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?(附:K2=,其中n=a+b+c+d是样本容量)独立性检验临界值表:20.(12分)在平面直角坐标系xOy中,已知点A(﹣2,0),B(2,0),动点P 不在x轴上,直线AP、BP的斜率之积k AP k BP=﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设C是轨迹上任意一点,AC的垂直平分线与x轴相交于点D,求点D横坐标的取值范围.21.(12分)已知函数f(x)=lnx﹣,a∈R是常数.(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程,并证明对任意a∈R,切线经过定点;(Ⅱ)证明:a>0时,f(x)有两个零点x1、x2,且x1+x2>2.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C1的极坐标方程是ρ=4sinθ,以极点为原点,极轴为x 轴正方向建立平面直角坐标系,曲线C2的参数方程是(t为参数).(Ⅰ)将曲线C2的参数方程化为普通方程;(Ⅱ)求曲线C1与曲线C2交点的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|x﹣3|,g(x)=|x﹣1|+2.(Ⅰ)解不等式g(x)≤5;(Ⅱ)若对∀x1∈R,都存在x2∈R,使得f(x1)=g(x2),求实数a的取值范围.2018年广东省江门市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合M={x|x2≤9},N={x|2﹣x<0},则M∪N=()A.[﹣3,+∞)B.(﹣∞,3]C.[﹣3,2)D.(2,3]【解答】解:∵集合M={x|x2≤9}={x|﹣3≤x≤3},N={x|2﹣x<0}={x|x>2},∴M∪N=[﹣3,+∞).故选:A.2.(5分)i为虚数单位,复数z的共轭复数为,若z+2=3+4i,则z=()A.1﹣2i B.1+2i C.1﹣4i D.1+4i【解答】解:设z=a+bi(a,b∈R),则由z+2=3+4i,得a+bi+2(a﹣bi)=3a﹣bi=3+4i,∴,得a=1,b=﹣4.∴z=1﹣4i.故选:C.3.(5分)已知向量=(﹣1,2),=(1,λ),若⊥,则+2与的夹角为()A.B.C.D.【解答】解:根据题意,设+2与的夹角为θ,向量=(﹣1,2),=(1,λ),若⊥,则有•=(﹣1)×1+2λ=0,解可得λ=,则=(1,),则+2=(1,3),则有|+2|=,||=,且(+2)•=(﹣1)×1+2×3=5,则有cosθ===,则θ=;故选:D.4.(5分)若实数x,y满足不等式组,则z=2x+y的最小值为()A.0B.2C.4D.8【解答】解:由约束条件作出可行域,联立,解得A(﹣1,2),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过点A时,直线在y轴上的截距直线,z有最小值为0.故选:A.5.(5分)某校高二年级N名学生参加数学调研测试成绩(满分120分)分布直方图如图.已知分数在100~110的学生有21人,则N=()A.48B.60C.72D.80【解答】解:由测试成绩(满分120分)分布直方图得:分数在100~110的频率为:(0.04+0.03)×5=0.35.∵分数在100~110的学生有21人,∴N==60.故选:B.6.(5分)过原点且倾斜角为30°的直线被圆x2+(y﹣2)2=4所截得的弦长为()A.1B.C.D.2【解答】解:过原点且倾斜角为30°的直线方程为y=x,圆x2+(y﹣2)2=4的圆心为(0,2),半径r=2,圆心到直线的距离为d==,则截得的弦长为2=2=2,故选:D.7.(5分)若a,b都是正整数,则a+b>ab成立的充要条件是()A.a=b=1B.a,b至少有一个为1C.a=b=2D.a>1且b>1【解答】解:∵a+b>ab,∴(a﹣1)(b﹣1)<1.∵a,b∈N*,∴(a﹣1)(b﹣1)∈N*,∴(a﹣1)(b﹣1)=0,故a=1或b=1,故选:B.8.(5分)将函数f(x)=sin(πx+)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位,得到函数g(x)的图象,则函数g(x)的单调递减区间是()A.[2k﹣1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)【解答】解:将函数f(x)=sin(+πx)=cosπx的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=cos(πx)图象;再把图象上所有的点向右平移1个单位,得到函数g(x)=cos[π(x﹣1)]═cos(πx﹣)=sin(πx)的图象.令2kπ+≤x≤2kπ+,求得4k+1≤x≤4k+3,k∈Z,可得函数g(x)的单调递减区间是[4k+1,4k+3](k∈Z,故选:C.9.(5分)某几何体的三视图如图所示,则该几何体的体积V=()A.B.C.3D.【解答】解:根据题意,原几何体为三棱柱ABC﹣DEF中去除三棱锥G﹣DEF 之外的部分,三棱柱ABC﹣DEF的体积V1=×2×2×2=4,三棱锥G﹣DEF的体积V2=××2×2×1=,则该几何体的体积V=V1﹣V2=4﹣=;故选:B.10.(5分)F是抛物线y2=2x的焦点,点P在抛物线上,点Q在抛物线的准线上,若=2,则|PQ|=()A.B.4C.D.3【解答】解:F(,0),准线方程为x=﹣.设抛物线的准线与x轴交于N点,过P作准线的垂线,垂足为M,则PM∥FN,∵=2,∴==,又FN=1,∴PM=PF=3,∴FQ=,∴PQ=3+=.故选:A.11.(5分)已知函数f(x)=(2x﹣2﹣x)•x3,若实数a满足f(log2a)+f(log0.5a)≤2f(1),则实数a的取值范围为()A.(﹣∞,)∪(2,+∞)B.(,2)C.[,2]D.(,4]【解答】解:根据题意,函数f(x)=(2x﹣2﹣x)•x3,其定义域为R,且有f(﹣x)=(2﹣x﹣2x)•(﹣x)3=(2x﹣2﹣x)•x3=f(x),即函数f(x)为偶函数,∵log0.5a=﹣log2a,∴f(log2a)+f(log0.5a)≤2f(1)等价于f(log2a)≤f(1),又当x>0时,2x﹣2﹣x>0,x3>0,且y=2x﹣2﹣x和y=x3均为增函数,∴f(x)在(0,+∞)上单调递增,由f(log2a)≤f(1)可得﹣1≤log2a≤1,∴≤a≤2.故选:C.12.(5分)已知平面四边形ABCD中,AB=AD=2,BC=CD,∠BCD=90°,则四边形ABCD面积的最大值为()A.6B.2+3C.2+2D.4【解答】解:连接BD,在三角形ABD中,由余弦定理可得BD2=AB2+AD2﹣2AB•AD•cos A=4+4﹣2×2×2cos A=8﹣8cos A,在三角形DBC中,BD2=CB2+DC2=2CB2,可得CB2=4﹣4cos A,+S△BCD则四边形ABCD的面积为S=S△ABD=CB2+AB•AD•sin A=2﹣2cos A+2sin A=2+2(sin A﹣cos A)=2+2sin(A﹣45°),当A﹣45°=90°,即A=135°时,sin(A﹣45°)取得最大值1,四边形ABCD的面积取得最大值为2+2.故选:C.二、填空题:本题共4小题,每小题5分.13.(5分)记数列{a n}的前n项和为S n,若∀n∈N+,2S n=a n+1,则a2018=﹣1.【解答】解:∵2S n=a n+1,=a n+1﹣(a n﹣1+1),∴n≥2时,2a n=2S n﹣2S n﹣1,化为:a n=﹣a n﹣1n=1时,2a1=a1+1,解得a1=1.则a2018=a2=﹣a1=﹣1.故答案为:﹣1.14.(5分)设[x]表示不超过x的最大整数,如[π]=3,[﹣3.2]=﹣4,则[lg1]+[lg2]+[lg3]+…+[lg100]=92.【解答】解:∵[lg1]=[lg2]=[lg3]=…[lg9]=0,[lg10]=[lg11]=…+[lg99]=1,[lg100]=2.∴[lg1]+[lg2]+[lg3]+…+[lg100]=90×1+2=92.故答案为:92.15.(5分)已知A={(x,y)|(x﹣1)2+y2=1},B={(x,y)|x+y+m≥0},若A⊆B,则实数m的取值范围是(﹣∞,﹣﹣1].【解答】解:集合A对应的平面区域为以(1,0)为圆心,半径为1的圆及圆的内部.集合B表示在直x+y+m=0的左下方,∴要使A⊆B恒成立,则满足直线与圆的距离d≥2且(1,0)在x+y+m≤0对应的平面内即d=且1+m≤0,∴|1+m|≥,且m≤﹣1,∴1+m≤﹣,解得m≤﹣﹣1.故答案为:(﹣∞,﹣﹣1].16.(5分)两位教师对一篇初评为“优秀”的作文复评,若批改成绩都是两位正整数,且十位数字都是5,则两位教师批改成绩之差的绝对值不超过2 的概率为0.44.【解答】解:解:设甲的成绩为x,乙的成绩为y,x,y∈{50,51,52,•,59}则(x,y)对应如图所示的正方形ABCD及其内部的整数点,共有10×10=100,其中满足|x﹣y|≤2的(x,y)对应的点如图阴影部分(含边界)的整数点,共有100﹣7×8=44,故所求概率为P=.故答案为:0.44.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,A=,3sin B=5sin C.(Ⅰ)求tan B;(Ⅱ)△ABC的面积S=,求△ABC的边BC的长?【解答】解:(Ⅰ)根据题意,由A=可得B+C=,又由3sin B=5sin C,则3sin B=5sin C=5sin(﹣B)=5sin cos B﹣5cos sin B,变形可得sin B=cos B,则tan B=5,(Ⅱ)设角A、B、C所对边的长分别为a、b、c,若3sin B=5sin C,则3b=5c,又由S=,则有bc sin A=,变形可得bc=15,又由3b=5c,则有b=5,c=3;由余弦定理得,a===.18.(12分)如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.==(a+2a)×a×a=a3,∴V B﹣CDPQV B﹣ADP===.+V B﹣ADP=.∴多面体ABCDPQ的体积为V B﹣CDPQ(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.19.(12分)为探索课堂教学改革,江门某中学数学老师用传统教学和“导学案”两种教学方式,在甲、乙两个平行班进行教学实验.为了解教学效果,期末考试后,分别从两个班级各随机抽取20名学生的成绩进行统计,得到如图茎叶图.记成绩不低于70分者为“成绩优良”.(Ⅰ)请大致判断哪种教学方式的教学效果更佳,并说明理由;(Ⅱ)构造一个教学方式与成绩优良列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?(附:K2=,其中n=a+b+c+d是样本容量)独立性检验临界值表:【解答】解:(Ⅰ)乙班(“导学案”教学方式)教学效果更佳,理由1、乙班大多在70以上,甲班70分以下的明显更多;理由2、甲班样本数学成绩的平均分为:70.2;乙班样本数学成绩前十的平均分为:79.05,高10%以上.理由3、甲班样本数学成绩的中位数为:=70,乙班样本成绩的中位数=77.5,高10%以上.(Ⅱ)列联表如下:k2的观测值:k==≈3.956>3.841.答:能在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.20.(12分)在平面直角坐标系xOy中,已知点A(﹣2,0),B(2,0),动点P 不在x轴上,直线AP、BP的斜率之积k AP k BP=﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设C是轨迹上任意一点,AC的垂直平分线与x轴相交于点D,求点D横坐标的取值范围.【解答】解:(Ⅰ)设P(x,y),(y≠0),则,,……(2分)由k AP•k BP=﹣,得•=﹣,……(4分)化简整理得,动点P的轨迹方程为=1(y≠0).……(5分)(Ⅱ)设C(x,y),D(x0,0),依题意|AD|=|CD|,即|x0+2|=+y2,……(7分)平方并移项整理得,2(x+2)x0=x2+y2﹣4,……(8分)X(x,y)在椭圆上,∴=1(y≠0),即,且x≠±2.……(9分)所以2(x+2)x0=﹣1,,……(11分)因为﹣2<x<2,所以﹣,即点D横坐标x0的取值范围为(﹣,0).当c与b重合横坐标为0,故点D横坐标x0的取值范围为(﹣,0].……(12分)21.(12分)已知函数f(x)=lnx﹣,a∈R是常数.(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程,并证明对任意a∈R,切线经过定点;(Ⅱ)证明:a>0时,f(x)有两个零点x1、x2,且x1+x2>2.【解答】解:(Ⅰ)f′(x)=+,f′(2)=+a,所求切线方程为y=f(2)=f′(2)(x﹣2),y﹣(ln2﹣a)=(+a)(x﹣2)即y=(+a)(x﹣2)+(ln2﹣a)=(+a)x+ln2﹣3a﹣1,切线方程等价于y=a(x﹣3)+(x+ln2﹣1),当x=3时,恒有y=+ln2,即切线过定点(3,+ln2).(Ⅱ)证明:令f(x)=0,得lnx=,画出函数y=lnx和y=的草图,如图示:结合图象函数y=lnx和y=有2个交点,令x1<x2,显然0<x1<1,x2>1,①x2≥2时,显然x1+x2>2成立,②1<x2<2时,0<2﹣x2<1,而f(x)在(0,1)递增,要证明x1+x2>2,只需x1>2﹣x2,即f(x1)>f(2﹣x2),而f(x2)=f(x1),问题转化为f(x2)﹣f(2﹣x2)>0在(1,2)恒成立即可,由a=(x2﹣1)lnx2,得f(x2)﹣f(2﹣x2)=﹣ln(2﹣x2)﹣lnx2,令g(x)=﹣ln(2﹣x)﹣lnx,x∈(1,2),则g′(x)=﹣=>0,故g(x)在(1,2)递增,而x→1时,g(x)→0,故g(x)>0在(1,2)恒成立,故x1+x2>2.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C1的极坐标方程是ρ=4sinθ,以极点为原点,极轴为x轴正方向建立平面直角坐标系,曲线C2的参数方程是(t为参数).(Ⅰ)将曲线C2的参数方程化为普通方程;(Ⅱ)求曲线C1与曲线C2交点的极坐标.【解答】解:(Ⅰ)曲线C2的参数方程是(t为参数).由曲线的参数方程得:①,则:②.所以:①•②得:,即:所求的普通方程为:.(Ⅱ)曲线C1的极坐标方程是ρ=4sinθ,转换为直角坐标方程为:x2+y2=4y,所以:,解得:或,转换为极坐标为:A(2,),B(2,).[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|x﹣3|,g(x)=|x﹣1|+2.(Ⅰ)解不等式g(x)≤5;(Ⅱ)若对∀x1∈R,都存在x2∈R,使得f(x1)=g(x2),求实数a的取值范围.【解答】解:(Ⅰ)依题意,|x﹣1|+2≤5,得|x﹣1|≤3……(1分),得﹣3≤x﹣1≤3,即﹣2≤x≤4……(3分)(Ⅱ)函数g(x)的值域为N=[2,+∞),设函数f(x)的值域为M,依题意,M⊆N……(4分)当a=6时,f(x)=3|x﹣3|,此时M=[0,+∞),不合题意……(5分)当a>6时,f(x)=,此时M=[﹣3,+∞),解,得a≥10……(7分)当a<6时,f(x)=,此时M=[3﹣,+∞),解,得a≤2……(9分)综上所述,实数a的取值范围为(﹣∞,2]∪[10,+∞)……(10分)第21页(共21页)。
广东省江门市棠下中学2018-2019学年高三数学文月考试卷含解析

广东省江门市棠下中学2018-2019学年高三数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数是上的奇函数,满足,当∈(0,3)时,则当∈(,)时,等于A. B. C. D .参考答案:D2. 函数y=e|ln x|﹣|x﹣1|的图象大致是()A B C D参考答案:Dy=e|lnx|-|x-1|=当x≥1时,y=1,排除C,当x=时,y=,排除A,B,故选D.3. 在直角三角形ABC中,AB=4,AC=2,M是斜边BC的中点,则向量在向量方向上的投影是A.1 B.-1 C. D.-参考答案:D4. 给出如下四个命题:①若“p∧q”为假命题,则p,q均为假命题;②命题“若,则”的否命题为“若,则”;③命题“任意”的否定是“存在”;④在△ABC中,“”是“”的充要条件.其中不正确命题的个数是(A)4 (B)3 (C)2 (D)1参考答案:5. 设不等式组,所表示的区域面积为.若,则()A.B. C. D.参考答案:A6. 在平面直角坐标系xOy中,点在抛物线上,抛物线C上异于点A的两点P,Q满足,直线OP与QA交于点R,和的面积满足,则点P的横坐标为()A.-4 B.-2 C. 2 D.4参考答案:B7. 若函数,则关于的不等式的解集为()A.B.C.D.参考答案:D8. 若A、B、C为三个集合,,则一定有()A. B. C. D.参考答案:A9. 函数f(x)的部分图像如图所示,则f(x)的解析式可以是()参考答案:C10. 如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,已知直角边长为2,则这个几何体的体积为()A. B.C.4 D.8参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 已知幂函数f(x)的图象过,则f(4)= .参考答案:【考点】幂函数的概念、解析式、定义域、值域.【专题】计算题.【分析】设幂函数f(x)=x a,由幂函数f(x)的图象过,知,解得a=﹣,由此能求出f(4).【解答】解:设幂函数f(x)=x a,∵幂函数f(x)的图象过,∴,解得a=﹣,∴,故f(4)==.故答案为:.【点评】本题考查幂函数的性质和应用,是基础题.解题时要认真审题,仔细解答.12. 平面上两定点A,B之间距离为4,动点P满足,则点P到AB中点的距离的最小值为▲ .参考答案:113. 把正整数排列成如图甲的三角形数阵,然后擦去第偶数行中的奇数和第奇数行的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若则n= 。
高三数学-2018年普通高等学校招生江门市第一次模拟考

试卷类型:A2018年普通高等学校招生江门市第一次模拟考试数 学本试卷分选择题和非选择题两部分,共4页,满分150分。
考试用时120分钟。
注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上。
用2B 铅笔将答题卡上试卷类型(A )涂黑。
在答题卡右上角“试室号”栏填写本科目试室号,在“座位号列表”内填写座位号,并用2B 铅笔将相应的信息点涂黑。
2. 选择题每小题选出后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 非选择题必须用黑色的铅笔或签字笔作答,答案必须写在答题卡特各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 考生必须保持答题卡的整洁,考试结束后,将试卷的答题卡一并交回。
参考公式:三角函数的积化和差公式 函数求导公式2cos2sin2sin sin φθφθφθ-+=+ '''()u v u v ±=±2sin 2cos 2sin sin φθφθφθ-+=- ()uv u v uv '''=+2cos 2cos 2cos cos φθφθφθ-+=+ 2(0)u u v uv v v v '''-⎛⎫=≠ ⎪⎝⎭ 2sin 2sin 2cos cos φθφθφθ-+=- []()()()f x f u x ϕϕ'''= 其中()u x ϕ=锥体体积公式 13V S h = 球的体积公式:其中S 表示底面积,h 表示高 24R V π=球面 其中R 表示球的半径第一部分(选择题 共50分)一、选择题:(本大题共10小题,每小题5分,共计50分,在每小题列出的四个选项中,只有一项是符合题目要求的)1. 设全集{}{}{}是那么=集合N M .,,,,M ,,,,I C d c b N b a d c b a I ⋂== A φ B {}a C {}d D {}b a , 2. 不等式022≤-+x x 的解集是A {}2|>x xB {}2|≤x xC {}22|≤≤-x xD {}22|<≤-x x3.112482lim2n nx -→∞+++++的值等于A 0B 1C -1D 不存在4.若0<a<1,在区间(-1,0)上函数()log (1)a f x x =+是A 增函数且f(x) >0B 增函数且f(x) <0C 减函数且f(x) >0D 减函数且f(x) >0. 5.函数()f x =A 2πB π C2π D 4π6.若集合A ={}2,3,4,B ={}2,5,6,7,从这两个集合中各取一个元素作为平面直角坐标系中点的坐标,能够确定的不同点的个数为A 11B 12C 23D 247.已知x 、y 满足约束条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则24z x y =+的最小值是A 5B -6C 10D -108.若0<a<1、0<b<1,且a b ≠,则下列各式中值最大的是A 22a b +B C 2ab D a b +9.已知E 、F 分别是正方形ABCD 的边AB 和CD 中的中点,沿EF 把正方形拆成一个直二面角(如图),则异面直线BF 、ED 所成角的余弦值为A45 B 35 C 12D 210.某港口水深度y 是时间t 的函数(0≤t ≤24,单位:小时)的函数,记作y =f (t),其曲线可以近似的看成函数y =Asin ωt +b 的图象(如图),一般情况下船舶航行是,船底离海底的距离为5m 或5m 以上时认为是安全的(船舶停靠时,船底只须不碰海底即可),某船的吃水深度(船底离水面的距离)为6.5m ,如果该船必须在同一天内(24小时)安全进出港,则它能在港口内停留最长的时间为(进出港所需时间忽略不计) A 14小时 B 15小时 C 16小时 D 17小时FD t第二部分(非选择题 共100分)二、填空题:(本题共4小题,每小题5分,共20分) 11.复数2(i -的虚部是 .12.若21()nx x-展开式的第6项是x 的一次项,那么n = .13.曲线C :1cos (sin x y θθθ=-+⎧⎨=⎩为参数)的普通方程是 ,如果曲线C 与直线x +m =0有公共点,那么实数m 的取值范围是 .14.如图是某企业近几年来关于生产销售的一张统计图表,则针对该企业近几年的销售情况,有以下几种说法:①这几年该企业的利润逐年提高;(注:利润=销售额-总成本)②2001年至2002年是该企业销售额增长最快的一年; ③2002年至2018年是该企业销售额增长最慢的一年;④2018年至2018年是该企业销售额增长最慢,但是由于总成本有所下降,因而2018年该企业的利润比上一年仍有所增长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江门市棠下中学2018-2019年11月高考数学模拟题班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共10小题,每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. “”是“圆关于直线成轴对称图形”的( )3<-b a 056222=++-+a y x y x b x y 2+=A .充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.2. 已知实数,,则点落在区域 内的概率为( )[1,1]x ∈-[0,2]y ∈(,)P x y 20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩………A.B.C.D.34381418【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.3. 已知集合A={x ∈Z|(x+1)(x ﹣2)≤0},B={x|﹣2<x <2},则A ∩B=( )A .{x|﹣1≤x <2}B .{﹣1,0,1}C .{0,1,2}D .{﹣1,1}4. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y=f (x )的图象大致为()5.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是m n +()A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.6. 复数的值是( )i i -+3)1(2A . B .C .D .i 4341+-i 4341-i 5351+-i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.7. 函数f (x )=sin (ωx +φ)(ω>0,-≤φ≤)的部分图象如图所示,则的值为()π2π2φωA.B .1814C. D .1128. 已知全集,集合,集合,则集合为R U ={|||1,}A x x x R =≤∈{|21,}xB x x R =≤∈U AC B ( ) A.B.C.D.]1,1[-]1,0[]1,0()0,1[-【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.9. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( )A .36πB .48πC .60πD .72π10.-2sin 80°的值为( )sin 15°sin 5°A .1 B .-1C .2D .-2二、填空题(本大题共5小题,每小题5分,共25分.把答案填写在横线上)11.自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到C 22(3)(4)4x y -++=(,)P x y Q P 原点的长,则的最小值为( )O PQ A .B .3C .4D .13102110【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.12.阅读如图所示的程序框图,则输出结果的值为.S【命题意图】本题考查程序框图功能的识别,并且与数列的前项和相互联系,突出对逻辑判断及基本运算能n 力的综合考查,难度中等.13.函数()满足,且在上的导函数满足,则不等式)(x f R x ∈2)1(=f )(x f R )('x f 3)('>x f 的解集为.123)2(-⋅<x x f 【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.14.在正方形中,,分别是边上的动点,当时,则ABCD 2==AD AB N M ,CD BC ,4AM AN⋅=MN的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.15.已知函数,则的值是_______,的最小正周期是______.22tan ()1tan xf x x=-()3f π()f x 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.三、解答题(本大共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
)16.(本小题满分12分)如图,四棱锥中,平面,∥,,,A BCDE -CD ⊥ABC BE CD AB =BC CD =AB BC ⊥ 为上一点,平面.M AD EM ⊥ACD (Ⅰ)求证:平面平面;EBA ^BCDE (Ⅱ)若,求点到平面的距离.22CD BE ==D EMC ME DCBA17.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐x l 标方程为,曲线的极坐标方程为.cos sin 2ρθρθ-=C 2sin 2cos (0)p p ρθθ=>(1)设为参数,若,求直线的参数方程;t 2x =-+l (2)已知直线与曲线交于,设,且,求实数的值.l C ,P Q (2,4)M --2||||||PQ MP MQ =⋅p18.(本题满分12分)设向量,,,记函数))cos (sin 23,(sin x x x -=)cos sin ,(cos x x x +=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在锐角中,角的对边分别为.若,,求面积的最大值.ABC ∆C B A ,,c b a ,,21)(=A f 2=a ABC ∆19.(本题满分15分)已知抛物线的方程为,点在抛物线上.C 22(0)y px p =>(1,2)R C(1)求抛物线的方程;C (2)过点作直线交抛物线于不同于的两点,,若直线,分别交直线于(1,1)Q C R A B AR BR :22l y x =+,两点,求最小时直线的方程.M N MN AB 【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.20.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1.(1)求数列{a n }的通项公式;(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .21.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为方程为x C r =(),直线的参数方程为(为参数).],0[πθ∈l 2t cos 2sin x y t aaì=+ïí=+ïît (I )点在曲线上,且曲线在点处的切线与直线垂直,求点的直角坐标和曲线CD C C D +2=0x y +D 的参数方程;(II )设直线与曲线有两个不同的交点,求直线的斜率的取值范围.l C l江门市棠下中学2018-2019年11月高考数学模拟题(参考答案)一、选择题(本大题共10小题,每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的.)1.【答案】A【解析】2.【答案】B【解析】3.【答案】B解析:解:由A中不等式解得:﹣1≤x≤2,x∈Z,即A={﹣1,0,1,2},∵B={x|﹣2<x<2},∴A∩B={﹣1,0,1},4.【答案】【解析】选B.取AP的中点M,则PA=2AM=2OA sin∠AOM=2sin ,x 2PB =2OM =2OA ·cos ∠AOM =2cos ,x 2∴y =f (x )=PA +PB =2sin +2cos =2sin (+),x ∈[0,π],根据解析式可知,只有B 选项符合要求,x 2x 22x 2π4故选B.5. 【答案】C【解析】由题意,得甲组中,解得.乙组中,78888486929095887m +++++++=3m =888992<<所以,所以,故选C .9n =12m n +=6. 【答案】C【解析】.i i i i i i i i i i 53511062)3)(3()3(2323)1(2+-=+-=+-+=-=-+7. 【答案】【解析】解析:选B.由图象知函数的周期T =2,∴ω==π,2π2即f (x )=sin (πx +φ),由f (-)=0得14-+φ=k π,k ∈Z ,即φ=k π+.π4π4又-≤φ≤,∴当k =0时,φ=,π2π2π4则=,故选B.φω148. 【答案】C.【解析】由题意得,,,∴,故选C.[11]A =-,(,0]B =-∞(0,1]U AC B = 9. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b ,则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =S 矩形ABCD ·PO13=abR ≤R 3.1323∴R 3=18,则R =3,23∴球O 的表面积为S =4πR 2=36π,选A.10.【答案】【解析】解析:选A.-2 sin 80°sin 15°sin 5°=-2cos 10°=sin (10°+5°)sin 5°sin 10°cos 5°+cos 10°sin 5°-2 cos 10°sin 5°sin 5°===1,选A.sin 10°cos 5°-cos 10°sin 5°sin5 °sin (10°-5°)sin 5°二、填空题(本大题共5小题,每小题5分,共25分.把答案填写在横线上)11.【答案】D 【解析】12.【答案】20172016【解析】根据程序框图可知,其功能是求数列的前1008项的和,即})12)(12(2{+-n n+⨯+⨯=532312S .=-++-+-=⨯+)2017120151(5131()311(201720152 2017201613.【答案】)0,(-∞【解析】构造函数,则,说明在上是增函数,且x x f x F 3)()(-=03)(')('>-=x f x F )(x F R .又不等式可化为,即,∴,13)1()1(-=-=f F 123)2(-⋅<x x f (2)321x xf -⋅<-)1()2(F F x <12<x 解得.∴不等式的解集为.0<x 123)2(-⋅<xxf )0,(-∞14.【答案】2](,)上的点到定点,最大值为,故的取值02x ££02y ££(,)x y (2,2)2MN范围为.2]x15.【答案】,.π三、解答题(本大共6小题,共75分。