列二元一次方程组解应用题方法指导

合集下载

列二元一次方程组解应用题的方法技巧

列二元一次方程组解应用题的方法技巧

列二元一次方程组解应用题的技巧一、列二元一次方程组解应用题的步骤①弄清题意和题目中的数量关系,用字母(如x、y)表示题目中的两个未知数;②找出能够表示应用题全部含意的两个相等关系;③根据两个相等关系列出代数式,从而列出两个方程并组成方程组;④解这个二元一次方程组,求出未知数的值;⑤检查所得结果的正确性及合理性;⑥写出答案.例1 甲、乙两人的收入之比为4∶3,支出之比为8∶5,一年间两人各储存了500元,求两人的年收入各是多少?思路与技巧解决本题要抓住未知量与已知量之间的关系:(1)甲收入数×=乙收入数,甲支出数×=乙支出数;(2)甲的年收入数-甲的年支出数=500,乙的年收入数-乙的年支出数=500.解法1 设甲的年收入为x元,乙的年收入为y元,根据题意,得解得:答:甲的年收入为1500元,乙的年收入为1125元.解法2 设甲的年收入为x元,年支出为y元,则乙的年收入为 x元,年支出为 y元,根据题意,得解得而 x=×1500=1125答:甲的年收入为1500元,乙的年收入为1125元.二、设未知数的几种常见方法(1)设直接未知数:即题目里要求的未知量是什么,就把它设做方程里的未知数,并且求几个设几个.例2 李红用甲、乙两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元.已知这两种储蓄的年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?公民应交利息所得税=利息金额×20%.思路与技巧本题要求两个未知量就需设两个未知数,关键是抓住两个相等关系:①甲种形式储蓄年利率+乙种形式储蓄年利率=3.24%;②(甲种形式储蓄所得利息+乙种形式储蓄所得利息)×(1-20%)=43.92.解:设甲、乙这两种形式储蓄的年利率分别为x%、y%,根据题意,得即解之得答:甲、乙两种储蓄的年利率分别为2.25%和0.99%.(2)设间接未知数:即设的不是所求量.有些应用题,若设直接未知数,则所列的方程比较复杂;若改设间接未知数,则能列出既简单又易解的方程.例3 、甲、乙两厂计划在上月共生产机床360台,结果甲厂完成了计划的112%,乙厂完成了计划的110%,两厂共生产了机床400台,问上月两厂各超额生产了机床多少台?思路与技巧本题若设直接未知数,即设上月甲厂超额生产了机床x台,乙厂超额生产了机床y台,则得方程组:此方程组列出来不太容易又难于解答,如若改设间接未知数就简单得多了.解设上月份甲厂计划生产机床x台,乙厂计划生产机床y台,根据题意,得解之得从而200×(112%-1)=24,160×(110%-1)=16答:上月份甲、乙两厂分别超额生产了机床24台和16台.(3)少设未知数:有些应用题,要求两个或更多个未知数,但根据各未知数之间的关系,只需设一个或少数几个未知数就可以求解.例4 怎样把45分成甲、乙、丙、丁四个数,使甲数加2,乙数减2,丙数加倍,丁数减半的结果相等?思路与技巧本题有四个未知数,如果用四元一次方程组来解,显然太繁.注意到“甲数加2,乙数减2”后正好相等,可知:乙数=甲数+4;又由“丙数加倍,丁数减半”后正好相等,可知:丁数=丙数×4.因此只需设甲数和丙数这两个未知数,就便于列出方程组了.解设甲数为x,丙数为y,则乙数为x+4,丁数为4y,根据题意,得解得从而x+4=12,4y=20答:甲数为8,乙数为12,丙数为5,丁数为20.(4)多设未知数:有些应用题,不仅要设直接未知数,而且要增设辅助未知数,但这些辅助未知数本身并不需要求出,它们的作用只是为了帮助列方程,同时为了求出真正的未知数.例5 甲车和乙车共坐了93人,乙车和丙车共坐了96人,丙车和丁车共坐了98人,问甲车和丁车共坐了多少人?思路与技巧本题只需求甲车和丁车乘坐的人数之和,但是若以这个量为未知数,列方程比较困难.因此,我们不妨设甲、乙、丙、丁各车乘坐的人数作为辅助未知数,列出方程组来求解.解设甲、乙、丙、丁各车乘坐的人数分别为x、y、z、u,根据题意,得①+③-②,得 x+u=95答:甲车和丁车共坐了95人.。

二元一次方程组在应用题(实际问题)中的应用

二元一次方程组在应用题(实际问题)中的应用

二元一次方程组在应用题(实际问题)中的应用二元一次方程组解实际问题的方法步骤:对于含有多个未知数的问题,利用列方程组来解,一般要比列一元一次方程解题容易,列方程组解应用题有以下几个步骤: 1. 选取定几个未知数;2. 依据已知条件列出与未知数的个数相等的独立方程,组成方程组; 3. 解方程组,得到方程组的解;4. 检验求得的未知数的值是否符合题意,符合题意即为应用题的解.\例题分析: 例:某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元根据题意,得48452x x -+= 解这个方程,得 x =92484928360x -=⨯-=答:该同学看中的随身听单价为360元,书包单价为92元。

解法二:设书包的单价为x 元,随身听的单价为y 元 根据题意,得x y y x +==-⎧⎨⎩45248解这个方程组,得x y ==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元。

(2)在超市A 购买随身听与书包各一件需花费现金: 45280%3616⨯=.(元) 因为3616400.<,所以可以选择超市A 购买。

在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金: 3602362+=(元)因为362400<,所以也可以选择在超市B 购买。

列二元一次方程组解应用题的步骤

列二元一次方程组解应用题的步骤

列二元一次方程组解应用题的步骤一、和差倍分问题。

1. 已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数。

- 设甲数为x,乙数为y。

- 根据题意可列方程组:x + y=42 3x = 4y- 由x + y=42可得x = 42 - y,将其代入3x = 4y中,得到3(42 - y)=4y。

- 展开式子得126 - 3y = 4y,移项得126=4y + 3y,即7y = 126,解得y = 18。

- 把y = 18代入x = 42 - y,得x = 42-18 = 24。

2. 两个数的差是5,积是84,求这两个数。

- 设较大的数为x,较小的数为y。

- 则方程组为x - y=5 xy = 84- 由x - y=5可得x = y + 5,将其代入xy = 84中,得到(y + 5)y = 84。

- 展开得y^2+5y - 84 = 0,因式分解得(y + 12)(y - 7)=0,解得y=- 12或y = 7。

- 当y=-12时,x=-12 + 5=-7;当y = 7时,x = 7+5 = 12。

二、行程问题。

3. 甲、乙两人相距30千米,甲速度为x千米/小时,乙速度为y千米/小时,若两人同时出发相向而行,3小时后相遇;若两人同时同向而行,甲6小时可追上乙,求甲、乙两人的速度。

- 根据路程 = 速度×时间。

- 对于相向而行:3x+3y = 30,化简得x + y = 10。

- 对于同向而行:6x-6y = 30,化简得x - y = 5。

- 所以方程组为x + y = 10 x - y = 5- 两式相加得2x = 15,解得x = 7.5。

- 把x = 7.5代入x + y = 10,得y = 10 - 7.5 = 2.5。

4. 一艘轮船顺流航行速度为每小时20千米,逆流航行速度为每小时16千米,求轮船在静水中的速度和水流速度。

- 设轮船在静水中的速度为x千米/小时,水流速度为y千米/小时。

二元一次方程组解应用题的一般步骤

二元一次方程组解应用题的一般步骤

二元一次方程组解应用题的一般步骤二元一次方程组解应用题,是初中数学中的一个重要考点。

在解决这类题目时,我们需要遵循一定的步骤,下面我将列出一般步骤,希望对同学们有所帮助。

一、读题理解首先,我们需要认真读题,理解题意,抓住问题的关键点。

在读题时,需要注意以下几点:1.明确未知量:选定两个未知量,为其赋值,并根据题目给出的条件列出一个方程组。

2.注意条件:注意题目中的条件限制,以便根据条件列出方程。

3.关注问题:弄清楚题目要求的问题是什么,需要寻找什么样的解答。

二、列方程在明确题意后,我们需要根据题目条件列出方程组。

要根据题目设定初中数学知识进行适当的转化,使得方程能更好地应用于问题的求解。

具体来说,需要注意以下几点:1.选定未知量:选定两个未知量,为其赋值,并根据题目给出的条件列出一个方程组。

2.设方程式:根据条件列出方程组,在列方程时可以采用消元的方法,把方程组简化为一元一次方程。

三、解方程得到方程组后,我们需要解方程。

解方程的过程中,可以采取多种方法,如代入法、加减法、消元法等。

在解方程的过程中,需要注意以下几点:1.选取合适的方法:解方程时需要根据具体情况,采取合适的方法,以得到正确的答案。

2.适当验证:解得方程组后,需要适当验证是否符合题目要求并且解释所形成的答案是否知道意义。

四、求解通过解得的方程组得到两个未知量,进一步根据问题求出题目所要求的解。

在此过程中,需要注意以下几点:1.约束条件:求解过程中,需要满足题目的约束条件,以便得到正确的结果。

2.转换与计算:求解时需要做一些数学上的转换与计算,以得到最终正确答案。

以上就是解二元一次方程组解应用题的一般步骤。

在解题过程中,我们需要注重理解题目并合理选取方法,避免哪些常见的解题误区。

同时,建议平时多做习题,积累经验,提高自己的解题能力。

二元一次方程组的应用——解应用题

二元一次方程组的应用——解应用题

二元一次方程组的应用——解应用题【学习目标】弄清列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.【重难点】找出能够表示题意两个相等关系【知识要点】各类应用题中三个量之间的关系。

【方法点拨】由各类应用题中三个量之间的关系列出方程组。

【基础过关】例1、打折前,买60件商品和30件商品用了1080元,买50件商品和10件商品用了840元,打折后,买50件商品和50件商品用了960元,比不打折少花多少钱?例2、甲、乙两人各有书若干本,如果甲从乙处拿来10本,那么甲拥有的书是乙所剩书的5倍;如果乙从甲处拿来10本,那么乙所有的书与甲所剩的书相等,问甲、乙两人原来各有几本书?例3、张老师去文具店给美术小组的30名学生买铅笔和橡皮,到了商店后发现,若给全组每人都买2支铅笔和1块橡皮,则要按零售价计算,共需付款30元;若给全组每人都买3支铅笔和2块橡皮,则可按批发价,共需付款40.5元.已知铅笔每支批发价比零售价低0.05元,橡皮每块批发价比零售价低0.1元,求这家文具店每支铅笔和每块橡皮的批发价是多少?例4、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生.⑴求平均每分钟一道正门和一道侧门各可以通过多少名学生?⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.例5、汽车在相距70km的甲、乙两地之间往返行驶,因为行程中有一坡度均匀的小山,该汽车从甲地到乙地需要2小时30分钟,而从乙地回到甲地需要2小时48分钟,已知汽车在平地每小时行30km,上坡路每小时行20km,下坡路每小时行40km,求从甲地到乙地的行程中,平路、上坡路、下坡路各是多少?【考点突破】1、学校书法兴趣小组准备到文具店购买A、B两种类型的毛笔,文具店的销售方法是:一次性购买型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买型毛笔不超过15支时,按零售价销售;超过15支时,超过部分每支比零售价低0.6元,其余部分仍按零售价销售.(1)如果全组共有20名同学,若每人各买1支型毛笔和2支型毛笔,共支付145元;若每人各买2支型毛笔和1支型毛笔,共支付129元.这家文具店的、两种类型毛笔的零售价各是多少?(2)为了促销,该文具店对型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少支,一律按原零售价(即(1)中所求得的型毛笔的零售价)的出售.现要购买型毛笔支(),在新的销售方法和原来的销售方法中,应选择哪种方法购买花钱较少?并说明理由.2、某市根据信息产业部调整“因特网”的资费要求,规定如下:上“因特网”的费用为电话费0.22元/3分钟。

列二元一次方程组解应用题的技巧

列二元一次方程组解应用题的技巧

列二元一次方程组解应用题的技巧列方程组解应用题的常见题型.(1)和差倍分问题:解这类问题的基本等量关系式是:较大量=较小量+多余量,总量=倍数×1倍量.例1第一个容器有49L 水,第二个容器有56L 水,如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是这个容器么第二个容器剩下的水是这个容器容量容量的 ;如果将第一个容器的水倒满第二个容器,如果将第一个容器的水倒满第二个容器,那么第一那么第一个容器剩下的水是这个容器容量的个容器剩下的水是这个容器容量的 ,求这两个容器的容量.,求这两个容器的容量.解 : 设第一个容器的容量为xL xL,第二个容器的容量为,第二个容器的容量为y L y L,那么第二个容器倒给第一个容器,那么第二个容器倒给第一个容器(x -4949))L ,剩下5656-(-(-(x x -4949))L 水,第一个容器倒给第二个容器(水,第一个容器倒给第二个容器(y y -5656))L ,剩下4949-(-(-(y y -5656))L 水,于是根据题意,得水,于是根据题意,得答:第一个容器的容量为63L 63L,第二个容器的容量为,第二个容器的容量为84L 84L..(2)产品配套问题:解这类问题的基本等量关系式是:加工总量成比例.例2某车间有28名工人参加生产某种特制的螺丝和螺母,已知平均每人每天只能生产螺丝12个或螺母18个,个,一个螺丝一个螺丝一个螺丝装配装配两个螺母,两个螺母,问应怎样安排生产螺丝和螺母的工人,问应怎样安排生产螺丝和螺母的工人,问应怎样安排生产螺丝和螺母的工人,才能使每天的才能使每天的产品正好配套?产品正好配套?解 设每天安排x 人生产螺丝,人生产螺丝,y y 人生产螺母,那么每天能生产螺丝12x 个,螺母18y 个,于是根据题意,得根据题意,得答:应安排12人生产螺丝,人生产螺丝,1616人生产螺母.人生产螺母.(3)速度问题: 解这类问题的基本关系式是:路程=速度×时间.一般又分为相遇问题、追及问题及环形道路问题,现列表归纳如下:例3 3 某人从甲地骑车出发,先以某人从甲地骑车出发,先以12km/h 的速度下山坡,后以9km 9km//h 的速度过公路到达乙地,共用55min 55min;返回时,按原路先以;返回时,按原路先以8km 8km//h 的速度过公路,后以4km 4km//h 的速度上山坡回到甲地,共用1h30min 1h30min,问甲地到乙地共多少千米?,问甲地到乙地共多少千米?,问甲地到乙地共多少千米?解 设甲地到乙地山坡路为x km x km,公路为,公路为y km y km.根据题意,得.根据题意,得.根据题意,得答:甲地到乙地共9km 9km..例4 4 一列快车长一列快车长70m 70m,一列慢车长,一列慢车长80m 80m,若两车同向而行,快车从追上慢车开始到离开慢车,,若两车同向而行,快车从追上慢车开始到离开慢车,需要1min 1min;若两车相向而行,快车从与慢车;若两车相向而行,快车从与慢车;若两车相向而行,快车从与慢车相遇相遇到离开慢车,只需要12s 12s,问快车和慢车的,问快车和慢车的,问快车和慢车的速速度各是多少?各是多少?解 设快车的速度是x m x m//s ,慢车的速度是y m y m//s ,根据题意,得,根据题意,得答:快车的速度是7.5m 7.5m//s ,慢车的速度是5m 5m//s .例5 5 甲、乙两人在甲、乙两人在200m 的环形跑道上练习竞走,乙的速度比甲快,当他们都从某地同时背向行走时,每隔30s 种相遇一次;同向行走时,每隔4分钟相遇一次,求甲、乙两人的竞走速度. 解 设甲的速度为xm xm//min min,乙的速度为,乙的速度为ym ym//min min,根据题意,得,根据题意,得,根据题意,得答:甲的速度为175m 175m//min min,乙的速度为,乙的速度为225m/min 225m/min..(4)航速问题:此类问题分水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速例6 6 甲轮从甲轮从A 码头顺流而下,乙轮从B 码头逆流而上,两轮同时相向而行,相遇于码头逆流而上,两轮同时相向而行,相遇于中点中点,而乙轮顺流航行的速度是甲轮逆水航行的速度的2倍,已知水流速度是4km 4km//h ,求两轮在静水中的速度.速度.解 设甲轮在静水中的速度为x km/h x km/h,乙轮在静水中的速度为,乙轮在静水中的速度为y km y km//h ,根据题意,得,根据题意,得答:甲轮在静水中的速度为20km 20km//h ,乙轮在静水中的速度为28km 28km//h .(5)工程问题:解这类问题的基本关系式是:工作量=工作效率×工作时间. 一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.例7 7 一批机器一批机器一批机器零件零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件? 解 设甲每天做x 个机器零件,乙每天做y 个机器零件,根据题意,得个机器零件,根据题意,得答:甲、乙两人每天做机器答:甲、乙两人每天做机器零件零件分别为50个、个、3030个.个.例8 .一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成,现在甲、乙两队先合做若干天,以后为加快天内完成,现在甲、乙两队先合做若干天,以后为加快速度速度,丙队也同时加入这项工作,这样比原定时间提前一天完成任务.问甲、乙两队合做了多少天?丙队加入后又做了多少天?队加入后又做了多少天?解 设甲、乙两队先合做了x 天,丙队加入后又做了y 天,根据题意,得天,根据题意,得答:甲、乙两队先合做了4天,丙队加入后又做了2天.天.(6)增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.例9 9 某学校办工厂今年总某学校办工厂今年总某学校办工厂今年总收入收入比总支出多30000元,计划明年总收入比总支出多69600元,已知计划明年总收入比今年增加2020%,总支出比今年减少%,总支出比今年减少8%,求今年的总收入和总支出.%,求今年的总收入和总支出. 解 设今年的总收入为x 元,总支出为y 元,根据题意,得元,根据题意,得答:今年的总收入为150000元,总支出为120000元.元.(7)盈亏问题:解这类问题关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量.例10为了迎接新学期开学,为了迎接新学期开学,某服装厂赶制一批校服,某服装厂赶制一批校服,某服装厂赶制一批校服,要求必须在规定时间内完成,要求必须在规定时间内完成,要求必须在规定时间内完成,在生产过程在生产过程中,如果每天生产50套,这将还差100套不能如期完成任务;如果每天生产56套,就可以超额完成80套,问原计划生产校服的套数及原计划规定多少天完成?解 设原计划生产x 套校服,原计划规定生产y 天,根据题意,得天,根据题意,得答:原计划生产1600套校服,原计划规定生产30天.天.(8)数字问题:解这类问题,首先要正确掌握自然数、奇数、偶数等有关数的概念、特征及其表示.如当n 为整数时,奇数可表示为2n +1(或2n -1),偶数可表示为2n 等.有关两位数的基本等量关系式为:两位数=十位数字×10+个位数字.例11 11 一个两位数的个位数字比十位数字大一个两位数的个位数字比十位数字大5,如果把个位数字与十位数字对换,如果把个位数字与十位数字对换,所得的新两位所得的新两位数与原两位数相加的和为143143,求这个两位数.,求这个两位数.,求这个两位数.解 设这个两位数的个位数字为x ,十位数字为y ,根据题意,得,根据题意,得答:这个两位数为4949..(9)几何问题:解这类问题的基本关系是有关几何图形的性质、周长、面积等计算公式.例12 12 有两个有两个有两个长方形长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm 112cm,第一个长方形的宽比第二个长方形的长,第一个长方形的宽比第二个长方形的长的2倍还大6cm 6cm,求这两个长方形的面积.,求这两个长方形的面积.,求这两个长方形的面积.解 设第一个长方形的长与宽分别为5xcm 和4xcm 4xcm,,第二个长方形的长与宽分别为3ycm 和2ycm 2ycm,,根据题意,得根据题意,得答:这两个长方形的答:这两个长方形的面积分面积分别为别为 .(10)年龄问题:解这类问题的关键是抓住两人年龄的增长数相等,两人的年龄差是永远不会变的.例13 13 师傅对徒弟说:师傅对徒弟说:“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的老人了”.问这位师傅与徒弟现在的年龄各是多少岁?解 设现在师傅x 岁,徒弟y 岁,根据题意,得岁,根据题意,得答:现在师傅36岁,徒弟20岁.岁.。

二元一次方程组应用题解题方法及归类总结(全面实用)

二元一次方程组应用题解题方法及归类总结(全面实用)

二元一次方程组应用题解题方法及归类总结(全面实用)【解题思路】列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x yy x x y+=++⎧⎨+=++⎩,得14xy=⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x 元,进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y)元,因此得方程0.9x-y=20%y ;打八折时的卖出价为0.8x 元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y y x y -=⎧⎨-=⎩,解得200150x y =⎧⎨=⎩, 因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数. 四、行程问题 例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.【跟踪练习】(含答案可直接删除)练习1(2012年南京市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x 辆,小型汽车有y 辆.由题意,得⎩⎨⎧=+=+.23046,50y x y x解得,⎩⎨⎧==.35,15y x 故中型汽车有15辆,小型汽车有35辆.练习2(2012年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?解:(1)全部直接销售获利为:100×140=14000(元);全部粗加工后销售获利为:250×140=35000(元);尽量精加工,剩余部分直接销售获利为:450×(6×18)+100×(140-6×18)=51800(元).(2)设应安排x 天进行精加工, y 天进行粗加工.由题意,得⎩⎨⎧=+=+.140166,15y x y x 解得,⎩⎨⎧==.5,10y x 故应安排10天进行精加工,5天进行粗加工.练习3为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元. 计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求:原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?答案:(1)原计划拆、建面积各是4800平方米、2400平方米;(2)可绿化面积为1488平方米.。

解二元一次方程组及二元一次方程组应用题的方法

解二元一次方程组及二元一次方程组应用题的方法

解二元一次方程组及二元一次方程组应用题的方法一、代入消元法解二元一次方程组:1、基本思路:未知数由多变少。

2、消元法的基本方法:将二元一次方程组转化为一元一次方程。

3、代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

4、代入法解二元一次方程组的一般步骤:①从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”。

②将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。

③解出这个一元一次方程,求出x的值,即“解”。

④把求得的x值代入y=ax+b中求出y的值,即“回代”。

⑤把x、y的值用,联立起来即“联”。

代入消元法例:解方程组x+y=5①6x+13y=79②解:由①得x=5-y③把③带入②,得6(5-y)+13y=79y=7把y=7带入③,x=5-7即x=-2∴x=-2y=7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法,简称代入法。

二、加减消元法解二元一次方程组1、两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

2、用加减消元法解二元一次方程组的步骤:①方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。

②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,即“加减”。

③解这个一元一次方程,求得一个未知数的值,即“解”。

④将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值即“回代”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列二元一次方程组解应用题方法指导
1、一名学生问老师:“您今年多大?”老师风趣地说:“我像您这样大时,您才出生;您到我这么大时,我已经37岁了。

”请问老师、学生今年多大年龄了呢?
2、已知梯形的高是7,面积是56cm2,又它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?
3、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?
4、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到车身过完桥共用1分钟,整列火
车完全在桥上的时间为40秒,求火车的速度及火车的长度。

5、现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子?
6、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?
7、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452
元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
8、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,
两道侧门大小相同,安全检查中,对4道门进行了测试:当同时开启正门和两道侧门时,2分钟可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟可以通过800名学生。

(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况下时因学生拥挤,出门的效率将降低20%,安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问通过的这4道门是否符合安全规定?请说明理由。

9、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:
元月份作小狗和小汽车的数目没有限制,从二月分开始,厂方从销售方面考虑逐月调整为:k月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k倍(k=2,3,4,……,12),假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为?。

相关文档
最新文档