高考数学冲刺押题:立体几何(上)

合集下载

立体几何 解答题专项训练-2022届高三数学三轮冲刺复习

立体几何 解答题专项训练-2022届高三数学三轮冲刺复习
(1)求证:EF⊥平面BCF;
(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大?并求此时锐二面角的余弦值。
16、在四棱锥P﹣ABCD中,侧面PAB为等边三角形,底面ABCD为直角梯形,AB∥CD,∠DAB=90°,PB=PC=2,CD=AD=1,E为线段AB的中点,过直线CE的平面与线段PA,PD分别交于点M,N.
(1)求证:MN⊥PB;
(2)若直线PC与平面CEMN所成的角的余弦值为 ,求 的值.
17、如图所示,正方形 所在平面与梯形 所在平面垂直, , , , .
(1)求证:EF∥平面SAD.
(2)若G为线段AB上一动点,求平面EFG与平面ABCD间最小锐二面角的余弦值.
15、如图1所示,在矩形 中, , , 为 中点,将 沿 折起,使点 到点 处,且平面 平面 ,如图2所示.
(1)求证: ;
(2)在棱 上取点 ,使平面 平面 ,求直线 与平面 所成角的正弦值.
立体几何解答题专项训练
1、在如图所示的几何体中,四边形 是正方形,四边形 是梯形, , ,平面 平面 ,且 .
(1)求证: 平面 ;
(2)求平面 与平面 所成角的大小;
(3)已知点 在棱 上,且异面直线 与 所成角的余弦值为 ,求点 到平面 的距离.
2、如图,在梯形ABCD中,AB∥CD,∠BCD= ,四边形ACFE为矩形,且CF⊥平面ABCD,AB=CD=BC=CF=1。
(1)证明:平面 平面 .
(2)若 ,求二面角 的余弦值.
11、如图1,已知 为等边三角形,四边形 为平行四边形, ,把 沿 向上折起,使点E到达点P位置,如图2所示;且平面 平面 .
(1)证明: ;
(2)在(1)的条件下求二面角 的余弦值.

2023年高考数学总复习《立体几何》附答案解析

2023年高考数学总复习《立体几何》附答案解析

所以 z1=0,
,故可取
, ,,
于是 < , >

设所成锐二面角为θ,所以 sinθ

所以平面 PAD 和平面 PBE 所成锐二面角的正弦值为 .
第3页共3页
第1页共3页
∴CF CC1 AA1 , ∵∠BAC=90°,
∴CD

在 Rt△FCD 中,tan∠FDC 맨

故直线 DF 与平面 ABC 所成角的正切值为 .
2.如图所示,四棱锥 P﹣ABCD 的底面 ABCD 是边长为 1 的菱形,∠BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2. (1)证明:平面 PBE⊥平面 PAB; (2)求平面 PAD 和平面 PBE 所成二面角(锐角)的正弦值.
【解答】(1)证明:如图所示,连接 BD,由 ABCD 是菱形且∠BCD=60°, 知△ABC 是等边三角形. ∵E 是 CD 的中点, ∴BE⊥CD,又 AB∥CD, ∴AB⊥BE,∴BE⊥平面 PAB, 又 BE⊂平面 PBE, ∴平面 PBE⊥平面 PAB. (2)解:在平面 ABCD 内,过点 A 作 AB 的垂线,如图所示,以 A 为原点建立空间直角
【解答】(1)证明:连接 DG、FG, 由直三棱柱的性质知,BB1∥CC1,且 BB1=CC1, ∵B1E=2EB,C1F=2FC, ∴EB∥FC,且 EB=FC, ∴四边形 BCFE 为平行四边形, ∴EF∥BC,EF=BC, ∵BD=2DA,CG=2GA, ∴GD∥BC,且 GD BC, ∴EF∥GD,且 GD EF, ∴四边形 DEFG 为梯形,即 D、E、F、G 四点共面, ∴点 G 在平面 EFD 内. (2)解:由直三棱柱的性质知,CC1⊥平面 ABC, ∵F 为 CC1 上一点, ∴点 F 在平面 ABC 上的投影为点 C, 连接 CD,则∠FDC 即为直线 DF 与平面 ABC 所成角. ∵点 D 在棱 AB 上,且 BD=2DA, ∴AD AB , ∵C1F=2FC,

江苏省高考数学立体几何最后押题

江苏省高考数学立体几何最后押题

2022年江苏省高考数学立体几何最后押题1.直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB =2CD ,AA 1=AD =CD =1. 求:〔1〕AD 与BD 1所成的角; 〔2〕AB 与面BB 1D 1D 所成的角:〔3〕求面A 1DD 1与面BCD 1所成锐二面角的大小.2.如图,四棱柱ABCD -A 1B 1C 1D 1中,平面B 1AC 与底面ABCD 垂直,B 1A 、B 1B 、B 1C 与底面ABCD 所成的角均为45°,AD//BC,且AB=BC=2AD.〔1〕求证:四边形ABCD 是直角梯形;〔2〕求异面直线AA 1与CD 所成角的大小;〔3〕求AC 与平面AB 1B 所成角的大小.D 1AB C D A 1B 1C1C 13.如图,四棱柱ABCD-A1B1C1D1,BD1⊥AD,AA1=AD=2,∠ADD1=60°,底面ABCD为菱形,二面角D1-AD-B的大小为120°.(Ⅰ)求BD1与底面ABCD所成角的大小;(Ⅱ求二面角A-BD1-C的大小.ABC DA1B1C1 D12022年江苏省高考数学立体几何最后押题参考答案1.解:(1)过B 作BE //AD ,且BE =AD ,连CE 、D 1E ,那么∠D 1BE 为AD 与D 1B 所成角或其补角,在Rt △D 1DE 中,求得D 1E =5,在△ABD 中由余弦定理得BD =3,在Rt △D 1BD 中D 1B =2,在△D 1BE 中,D 1B 2+BE 2=D 1E 2,∴∠D 1BE =90°,所以AD 与D 1B 成的角为900. 〔也可以通过证实线面垂直来证实〕 〔2〕由〔1〕AD ⊥D 1B, 又AD ⊥D 1D,∴AD ⊥平面D 1BD,所以∠ABD 为AB 平面D 1BD 所成角,在Rt △ABD 中,∠ABD=300〔3〕延长AD 、BC 相交于点M,连接D 1M,那么D 1M 为平面D 1AD 与平面D 1BC 的交线,易证BD ⊥平面D 1AD,过D 作DN ⊥D 1M,连BN,那么由三垂线定理,得BN ⊥D 1M,∴∠BND 为平面D 1AD 与平面D 1BC 所成的角,在△ABM 中,AB =2CD, ∴D 为AM 的中点,DM =AM =1,在Rt △D 1DM 中,D 1D =DM =1,D 1M =2,∴DN ⊥D 1M,∴DN =12 D 1M =22在Rt △BDN 中,BD =3,DN =22,∴tan ∠BND =BD DN= 6.方法二:〔1〕〔向量法〕建立如下图的空间直角 坐标系D -xyz,那么D(0,0,0),A(32,-12,0〕 B(32,32,0),D 1 (0,0,1),C(0,1,0), AD →=(-32,12,0〕,D 1B →=(32,32,-1),∴AD →·D 1B →=-34+34+0=0,∴AD ⊥D 1B,故AD 与D 1B 所成的角为90°.〔2〕同法一〔3〕由〔1〕知AD ⊥D 1B,又D 1D ⊥平面ABCD,∴AD ⊥BD,平面D 1AD ⊥平面ABCD,∴BD⊥平面D 1AD,故平面D 1AD 的法向量为n 1=BD →=(-32,-32,0),设平面D 1BC 的法向量为n 2=(x ,y ,1),由n 2⊥BC,n 2⊥D 1B, BC →=(-32,-12,0〕,D 1B →=(32,32,-1),得⎩⎨⎧-32x -12y =032x +32y -1=0⇒⎩⎪⎨⎪⎧x =-13y =1∴ n 2=(-13,1,1), cos< n 1,n 2>=n 1·n 2|n 1|·|n 2|=-13·73=-77,所以平面D 1AD 与平面D 1BC 所成锐二面角的大小为arccos 77.2.解:方法一〔1〕证实:作B 1O ⊥AC 交AC 于点O,连接OB. ∵面B 1AC ⊥ABCD,所以B 1O ⊥ABCD,∵侧棱B 1A 、B 1B 、B 1C 与底面ABCD 所成的角均为45°,A D 1 AB C D A 1B 1C 1 E M N∴∠B 1AO=∠B 1BO=∠B 1CO=45°,∴△ B 1AO ≌△B 1BO ≌△B 1CO,所以B 1A= B 1B= B 1C,OA=OB=OC, ∴AC 是△ABC 外接圆的直径,所以AB ⊥BC,又AD//BC,AD≠BC , ∴四边形ABCD 是直角梯形.〔2〕分别取BC 中点M,B 1C 中点N,连结AM,AN,MN,那么MN//B 1B ∥A 1A ,又AD//BC,AD=21BC=MC,所以,ADCM 为平行四边形,所以AM//DC, 所以∠AMN 是异面直线AA 1与CD 所成角.由〔1〕,△B 1AO,△B 1BO,△B 1CO 是全等的等腰直角三角形, AB=BC,所以,△B 1AC,△BAC 是全等的等腰直角三角形. 设B 1O=a,那么MN=21B 1B=a22,AM=,1022a a BM AB =+ 由于AM=AN,所以在等腰三角形AMN 中,.10521cos ==AM MNAMN 所以,异面直线AA 1与CD 所成角为.105arccos〔3〕取B 1B 中点E,连结AE 、CE 、OE,由〔2〕知AE ⊥B 1B,CE ⊥B 1B, ∴B 1B ⊥平面AEC,∴平面B 1AB ⊥平面AEC,且交线就是AE,∴AC 在平面B 1AB 上的射影是AE,∴∠CAE 是AC 与平面B 1AB 所成的角 在等腰直角三角形B 1OB 中,E 是B 1B 的中点,∴1.,tan OE OE O Rt AOE OAE AO ∆=在中 ∴直线AC 与平面B 1AB 所成角的大小是.22arctan方法二〔1〕证实:作B 1O ⊥AC 交AC 于点O,连OB,∵面B 1AC ⊥面ABCD,∴B 1O ⊥面ABCD,∵侧棱B 1A 、B 1B 、B 1C 与底面ABCD 所成的角均为45°, ∴∠B 1AO=∠B 1BO=∠B 1CO=45°,∴△B 1AO ≌△B 1BO ≌△B 1CO, ∴B 1A= B 1B= B 1C,OA=OB=OC=OB 1,又AB=BC,所以OB ⊥AC,∴OA 、OB 、OB 1所在射线分别作为非负x 轴、非负y 轴、非负z 轴 建立空间直角坐标系,设OB 1=a,那么A 〔a ,0,0〕,B 〔0,a ,0〕,C 〔-a ,0,0〕, B 1〔0,0,a 〕,∴,0)0,,()0,,(22=-=--⋅-=⋅a a a a a a∴,,//.,BC AD BC AD BC AB BC AB ≠⊥⊥又即∴四边形ABCD 是直角梯形 〔2〕由〔1〕,△B 1AO,△B 1BO,△B 1CO 是全等的等腰直角三角形,∴△B 1AC,△BAC 是全等的等腰直角三角形. 那么11131(,,0),(,,0),(0,,),2222D a a CD a a B B a a -=-=-21111cos ,||||2aB B CD B B CD B B CD -⋅<>==⋅ ∴异面直线B 1B,CD 所成角的大小是.105arccos〔3〕设),,(111z y x =是平面B 1AB 的法向量.那么由111110000ax az n B A ax ay n AB ⎧-=⋅=⎧⎪⎨⎨-+=⋅=⎩⎪⎩得,取1,1,1(,11==n x 得那么,33232||||cos -=⋅-=⋅⋅<a aAC n 设AC 与平面AB 1B 所成角的大小为α,那么,36,sin cos >=<=αC 1C 1所以AC 与平面AB 1B 所成角的大小是36arccos .3.(Ⅰ)解:如图,作D 1O ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD,OB 与AD 交于点E ,连结PE.那么∠D 1BO 为BD 1与底面ABCD 所成的角. ∵AD ⊥D 1B ,∴AD ⊥OB , ∵D 1A=D 1D ,∴OA=OD , 于是OB 平分AD ,点E 为AD 的中点,所以D 1E ⊥AD.由此知∠D 1EB 为二面角D 1-AD -B 的平面角, ∴∠D 1EB=120°,∠D 1EO=60° 由可求得D 1E=3,,BE =3,∴D 1O=D 1E·sin60°=3×32=32,OE =12D 1E =32, OB =OE +EB =323,tan ∠D 1BO =D 1O OB =33,∠D 1BO =30°,即BD 1与底面ABCD 所成角的大小为30°.(Ⅱ)解法1:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.D 1(0,0,32),B(0,332,0),D 1B 中点G 的坐标为(0,334,0),连结AG.又知A(1,32,0),C(-2,32,0),由此得到:GA →=(1,-34,-34),D 1B →=(0,332,-32)于是有GA →·D 1B →=0,BC →·D 1B →=0 所以GA →⊥D 1B →,BC →⊥D 1B →, GA →与BC →的夹角θ等于所求二面角的平面角, 于是cos θ=GA →·BC →|GA →|·|BC →|=-277,注:也可先求两个平面的法向量,转化为两法向量的夹角.解法2:如图,取D 1B 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,那么AG ⊥D 1B ,FG//BC ,FG=12BC.∵AD ⊥D 1B ,∴BC ⊥D 1B ,FG ⊥D 1B ,∴∠AGF 是所求二面角的平面角.∵AD ⊥面D 1OB ,∴AD ⊥EG.又∵D 1E=BE ,∴EG ⊥BD 1,且∠D 1EG=60°.在Rt △D 1EG 中,EG= D 1E·cos60°=32.在Rt △D 1EG 中,EG=12AD=1.于是tan ∠GAE=EG AE =32,又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan 32.A BCD A 1B 1C 1D 1O E A。

专题04 立体几何(解析版)2025高考数学冲刺压轴大题

专题04 立体几何(解析版)2025高考数学冲刺压轴大题

专题04立体几何【题型简介】立体几何解答题是高考数学必考内容,该考点命题相对稳定,难度中等,是考生必须突破的核心内容之一.高考数学立体几何解答题,主要采用“论证与计算”相结合的方式,在命题上一般包含2~3小问,会涉及到空间点、线、面位置关系的判定与探究,特别是平行与垂直关系的证明;空间角(包括异面直线夹角、直线与平面所成角和二面角)或空间距离(包括空间几何体的体积、表面积和点到平面的距离等)的计算.立体几何在解题能力方面的要求是:在数学思想上,一般涉及转化与化归思想、数形结合思想、函数与方程思想;在解题方法上,一般涉及几何法、向量法,往往是两种方式相结合进行处理.【命题方向】命题方向一、线线角、线面角、二面角、距离问题命题方向二、翻折问题命题方向三、存在性问题命题方向四、开放性问题命题方向五、立体几何创新定义【典型例题】命题方向一、线线角、线面角、二面角、距离问题ABC DB⊥平面ABC;例1.(2023·天津和平·统考一模)在如图所示的几何体中,EA⊥平面,⊥====是AB的中点.,22,AC BC AC BC BD AE M⊥;(1)求证:CM EM(2)求直线EM与平面CDE所成角的正弦值;(3)求平面CME与平面CDE的夹角的余弦值.⊥,以C为原点,分别以CA,CB所在直线为x,y轴,过点C且与平面ABC垂【解析】(1)因为AC BC-,直的直线为z轴,建立如图所示的空间直角坐标系C xyz则()1,1,0M ,()2,0,1E ,所以()1,1,0CM = ,()1,1,1EM =-- ,所以1100CM EM ⋅=-++= ,所以CM EM ⊥ ,即CM EM ⊥;(2)因为()()2,0,1,0,2,2CE CD == ,设平面CDE 的法向量为(),,m x y z =,则20220m CE x z m CD y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,令1x =,可得()1,2,2m =- ,又()1,1,1EM =-- ,设EM 与平面CDE 所成角为θ,则33sin 333EM m EM m θ⋅===⋅ 即直线EM 与平面CDE 所成的角的正弦值为33;(3)由题()1,1,0CM = ,()2,0,1CE = ,设平面CME 的法向量(),,n a b c = ,由200n CE a c n CM a b ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,令1a =,则()1,1,2n =-- ,又平面CDE 的法向量()1,2,2m =- ,所以1246cos ,6114144m n m n m n⋅-+===++⨯++⋅ ,所以平面CME 与平面CDE 66本类试题一般分两种设问方式,一种是直接求解空间角或空间距离;另外一种是已知空间角或者空间距离,求解相关几何量的大小..解决这类问题一般需要先根据题意建立合适的空间直角坐标系,然后通过数学抽象将几何问题转化为代数问题,找到关键量的坐标表示(需引入参数,但要求尽可能少的参数,一般可以用共线向量处理),再用待定系数的方法进行直接运算,求解函数或方程,得出参数的具体值,最后还原到几何体中求解相应的几何量.变式提升1.(2023·全国·模拟预测)如图,在多面体ABCGF 中,ABC 为正三角形,FA ⊥平面ABC ,//FA CG ,24FA AB ==,D 为AB 的中点,E 为线段CG 上的动点.(1)若1CE =,求点F 到平面ABE 的距离;(2)若//CD 平面BEF ,求平面BEF 与平面BCE 所成锐二面角的余弦值.【解析】(1)解法一:因为FA ⊥平面ABC ,CD ⊂平面ABC ,所以FA CD ⊥.因为ABC 为正三角形,D 为AB 的中点,所以AB CD ⊥,又AB AF A = ,,AB AF ⊂平面ABF ,所以CD ⊥平面ABF .因为2AB =,所以CD =FA EC ∥,EC ⊄平面ABF ,AF ⊂平面ABF ,所以CE ∥平面ABF ,所以点E 到平面ABF 的距离等于点C 到平面ABF所以112432E ABF V -=⨯⨯⨯连接DE ,因为1CE =,所以2DE ==.因为AF ⊥平面ABC ,AF CG ∥,所以CG ⊥平面ABC ,AB ⊂ 平面ABC ,所以CG AB ⊥,又AB CD ⊥,CD CG C ⋂=,,CD CG ⊂平面CDE ,所以AB ⊥平面CDE ,因为DE ⊂平面CDE ,所以AB DE ⊥.设点F 到平面ABE 的距离为d ,则11222323F ABE d V d -=⨯⨯⨯⨯=,因为E ABF F ABE V V --=,所以233d =,解得d =.所以点F 到平面ABE 的距离为解法二:在平面ABC 内过A 作Ax AC ⊥,以A 为坐标原点,射线Ax ,AC ,AF 的方向分别为,,x y z 轴的正方向建立如图所示的空间直角坐标系A xyz -,由题易知()0,0,0A ,)B ,()0,2,1E ,()0,0,4F ,所以()0,0,4AF = ,)3,1,0AB = ,()0,2,1AE = ,设平面ABE 的法向量为()111,,m x y z = ,则00m AB m AE ⎧⋅=⎪⎨⋅=⎪⎩,即11113020y y z ⎧+=⎪⎨+=⎪⎩,令11x =,得(1,3,23m =- ,所以点F 到平面ABE 的距离331312AF m d m ⋅==++ (2)在平面ABC 内过A 作Ax AC ⊥,以A 为坐标原点,射线,,Ax AC AF 的方向分别为,,x y z 轴轴的正方向建立的空间直角坐标系A xyz -,则()0,0,0A ,)3,1,0B ,()0,0,4F ,()0,2,0C ,0321,2D ⎛⎫ ⎪ ⎪⎝⎭,设()0,2,E b ,则33,022CD ⎛⎫=- ⎪ ⎪⎝⎭,()3,1,4FB =- ,()0,2,4FE b =- .设平面BEF 的法向量为(),,n x y z = ,则00n FB n FE ⎧⋅=⎪⎨⋅=⎪⎩ ,即()340240y z y b z ⎧+-=⎪⎨+-=⎪⎩,令1z =,得)344,,162b b n ⎛⎫+-= ⎪ ⎪⎝⎭.因为CD ∥平面BEF ,所以0CD n ⋅= ,所以)3434306222b b +-⎛⎫+⨯-= ⎪⎝⎭,解得2b =,所以)3,1,1n = .取BC 的中点H ,连接AH ,则AH BC ⊥,33,022H ⎛⎫ ⎪ ⎪⎝⎭,因为FA ⊥平面ABC ,FA CG ∥,E 为线段CG 上的动点,所以EC ⊥平面ABC ,又AH ⊂平面ABC ,所以AH EC ⊥,又EC BC C = ,,EC BC ⊂平面BCE ,所以AH ⊥平面BCE ,所以平面BCE 的一个法向量为33,022AH ⎫=⎪⎪⎝⎭,所以平面BEF 与平面BCE 所成锐二面角的余弦值为cos ,n AH n AH n AH ⋅=⋅所以平面BEF 与平面BCE 所成锐二面角的余弦值为5.1.(2023·陕西咸阳·武功县普集高级中学统考一模)如图,直三棱柱111ABC A B C -中,1AC BC AA ==,D 为1CC 上一点.(1)证明:当D 为1CC 的中点时,平面1A BD ⊥平面11ABB A;(2)若90ACB ∠=︒,异面直线AB 和1A D 1B A D A --的余弦值.【解析】(1)证明:如图,分别取1A B ,11A B 的中点E ,F ,连接DE ,EF ,1FC ,易知1FE D C =,且FE ∥1C D ,∴1C DEF 是平行四边形,∴1C F DE ∥.由1111AC B C =,F 为11A B 的中点,可知111C F A B ⊥,而平面111A B C ⊥平面11ABB A ,且平面111A B C Ç平面1111ABB A A B =,1C F ⊂平面111A B C ,∴1C F ⊥平面11ABB A .又∵1C F DE ∥,∴DE ⊥平面11ABB A ,而DE ⊂平面1A BD ,∴平面1A BD ⊥平面11ABB A .(2)方法1:不妨设12AC BC AA ===,1C D m =,注意到11AB A B ∥,知11B A D ∠或其补角为异面直线AB 和1A D 所成角,在△11A B D中,11A B =,1A D =易知(22211cos 5B A D +-=∠解得1m =,即D 为1CC 的中点,如图,延长1A D 交AC 的延长线于F',连接BF ',过C 作CE DF '⊥'于E ',连接BE ',∵1,AC C C ⊂平面1A AF ',BC AC ⊥,1BC C C ⊥,1AC C C C = ,∴BC ⊥平面1A AF ',∴BC DF '⊥,又∵CE DF '⊥',∴DF '⊥平面BCE ',∴DF BE ''⊥∴BEC '∠为二面角1B AD A --的平面角,在Rt △'BCE 中,2BC =,CE '=tan BC BE C CE '∠='∴cos 6BE C '∠=,即二面角1B A D A --方法2:取C 为原点,直线CA ,CB ,1CC 分别为x ,y ,z 轴,建立如图所示的空间直角坐标系C xyz -,不妨设12AC BC AA ===,CD m =,则()2,0,0A ,()0,2,0B ,()12,0,2A ,()0,0,D m ,∴()2,2,0AB =- ,()12,0,2A D m =-- .∴111cos ,5AB A D AB A D AB A D -⋅--⋅==⋅ ,解得1m =.由已知可得平面1A AD 的一个法向量为()10,1,0n =,易知()12,2,2A B =-- ,()12,0,1A D =-- ,设平面1A BD 的法向量为()2,,n x y z =u u r ,由212100n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩ 得()()()(),,2,2,200,,2,0,1020x y z x y z x y z x z ⎧⋅--=-+-=⎧⎪⇒⎨⎨⋅--=+=⎪⎩⎩,可取()21,1,2n =--,则121212cos ,n n n n n n ⋅<>==⋅∴二面角1B A D A --1.(2022·全国·统考高考真题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求三棱锥F ABC -的体积.【解析】(1)由于AD CD =,E 是AC 的中点,所以AC DE ⊥.由于AD CD BD BD ADB CDB =⎧⎪=⎨⎪∠=∠⎩,所以ADB CDB ≅△△,所以AB CB =,故AC BE ⊥,由于DE BE E ⋂=,,DE BE ⊂平面BED ,所以AC ⊥平面BED ,由于AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)[方法一]:判别几何关系依题意2AB BDBC ===,60ACB ∠=︒,三角形ABC 是等边三角形,所以2,1,AC AE CE BE ====由于,AD CD AD CD =⊥,所以三角形ACD 是等腰直角三角形,所以1DE =.222DE BE BD +=,所以DE BE ⊥,由于AC BE E ⋂=,,AC BE ⊂平面ABC ,所以DE ⊥平面ABC .由于ADB CDB ≅△△,所以FBA FBC ∠=∠,由于BF BF FBA FBC AB CB =⎧⎪∠=∠⎨⎪=⎩,所以FBA FBC ≅ ,所以AF CF =,所以EF AC ⊥,由于12AFC S AC EF =⋅⋅ ,所以当EF 最短时,三角形AFC 的面积最小过E 作EF BD ⊥,垂足为F ,在Rt BED △中,1122BE DE BD EF ⋅⋅=⋅⋅,解得32EF =,所以223131,2222DF BF DF ⎛⎫=-==-= ⎪⎪⎝⎭,所以34BF BD =过F 作FH BE ⊥,垂足为H ,则//FH DE ,所以FH ⊥平面ABC ,且34FH BF DE BD ==,所以34FH =,所以111332333244F ABC ABC V S FH -=⋅⋅=⨯⨯= .[方法二]:等体积转换AB BC = ,60ACB ∠=︒,2AB =ABC ∴∆是边长为2的等边三角形,3BE ∴连接EFADB CDB AF CFEF ACBED EF BD ∆≅∆∴=∴⊥∴∆⊥∆ 在中,当时,AFC面积最小222,,2,,BED EF AD CD AD CD AC E AC DE BE BD BE EDBE DE EF BD BD ⊥==∴+=∴⊥⋅⊥∆== 为中点DE=1若在中,32113222BEF BF S BF EF ∆=∴=⋅=⋅11233F ABC A BEF C BEF BEF V V V S AC ---∆∴=+=⋅=⋅=命题方向二、翻折问题例2.(2023·广东梅州·统考一模)如图,在边长为4的正三角形ABC 中,E 为边AB 的中点,过E 作ED AC ⊥于D .把ADE V 沿DE 翻折至1A DE △的位置,连接1AC 、1AB .(1)F 为边1AC 的一点,若12CF FA = ,求证:BF //平面1A DE ;(2)当四面体1C EBA -的体积取得最大值时,求平面1A DE 与平面1A BC 的夹角的余弦值.【解析】(1)取AC 中点M ,连接MF ,MB因为在正三角形ABC 中,MB AC ⊥,又因为ED AC ⊥,所以//MB DE ,MB ⊄平面1A DE ,DE ⊂平面1A DE ,所以//MB 平面1A DE ,又有2CM MD = ,且12CF FA = ,所以1MF //DA,而MF ⊄平面1A DE ,1A D ⊂平面1A DE ,所以//MF 平面1A DE .有MF MB M = ,,MF MB ⊂平面MFB ,所以平面//MFB 平面1A DE ,又BF ⊂平面MFB ,因此//BF 平面1A DE .(2)因为11C BEA A BCE V V --=,又因为BCE 的面积为定值,所以当1A 到平面BCE 的距离最大时,四面体1C BEA -的体积有最大值,因为DE DC ⊥,1DE A D ⊥,1DC A D D = ,DC ,1A D ⊂平面1A DC ,所以DE ⊥平面1A DC ,因为DE ⊂平面ABC ,所以平面ABC ⊥平面1A DC ,当1A D CD ⊥时,平面ABC ⋂平面1A DC CD =,1A D ⊂平面1A DC 所以1A D ⊥平面ABC ,即在翻折过程中,点1A 到平面BCE 的最大距离是1A D ,因此四面体1C BEA -的体积取得最大值时,必有1A D ⊥平面ABC .如图,以点D 为原点,DE 为x 轴,DA 为y 轴,1DA 为z轴,建立空间直接坐标系,易知MB =DE =()0,0,0D,)E ,()0,3,0C -,()10,0,1A,()1,0B -,()10,1,0n = 为平面1A DE 的一个法向量,设平面1BCA 的法向量为()2,,n x y z =u u r ,()10,3,1AC =--,()2,0CB =由1223020A C n y z CB n y ⎧⋅=--=⎪⎨⋅=+=⎪⎩ ,令1y =-得:x =3z =,所以21,33n ⎛⎫=- ⎪ ⎪⎝⎭为平面1BCA的一个法向量,121212cos ,n n n n n n ⋅=== 所以平面1A DE 与平面1A BC的夹角(锐角)的余弦值为31.。

新高考数学高考数学压轴题 立体几何多选题分类精编附答案

新高考数学高考数学压轴题 立体几何多选题分类精编附答案

新高考数学高考数学压轴题 立体几何多选题分类精编附答案一、立体几何多选题1.如图①,矩形ABCD 的边2BC =,设AB x =,0x >,三角形BCM 为等边三角形,沿BC 将三角形BCM 折起,构成四棱锥M ABCD -如图②,则下列说法正确的有( )A .若T 为BC 中点,则在线段MC 上存在点P ,使得//PD 平面MATB .当)3,2x ∈时,则在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCDC .若使点M 在平面ABCD 内的射影落在线段AD 上,则此时该四棱锥的体积最大值为1 D .若1x =,且当点M 在平面ABCD 内的射影点H 落在线段AD 上时,三棱锥M HAB -6322++【答案】BCD 【分析】对于A ,延长AT 与DC 的延长线交于点N ,此时,DP 与MN 必有交点; 对于B ,取AD 的中点H ,表示出2223MH MT HT x --,验证当)3,2x ∈时,无解即可; 对于C ,利用体积公式21233V x x =⨯⨯-,借助基本不等式求最值即可; 对于D ,要求外接球半径与内切球半径,找外接圆的圆心,又内接圆半径为2323r =++【详解】对于A ,如图,延长AT 与DC 的延长线交于点N ,则面ATM ⋂面()MDC N MN =.此时,DP 与MN 必有交点,则DP 与面ATM 相交,故A 错误; 对于B ,取AD 的中点H ,连接MH ,则MH AD ⊥.若面MAD ⊥面ABCD ,则有2223MH MT HT x =-=- 当)3,2x ∈时,无解,所以在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCD故B 正确;对于C ,由题可知,此时面MAD ⊥面ABCD ,由B 可知,(3x ∈,所以()22222221223232331333232x x V x x x x ⎛⎫+-⎛⎫=⨯⨯-=-≤== ⎪ ⎪⎝⎭⎝⎭当且仅当223x x =-,即6x =时等号成立.故C 正确; 对于D ,由题可知,此时面MAD ⊥面ABCD ,且2MH =因为AHB ,MHB 都是直角三角形,所以M ABH -底面外接圆的圆心是中点,所以1R =,由等体积法,可求得内接圆半径为2323r =++,故61322R r +=,故D 正确.故选:BCD . 【点睛】本题从多个角度深度考查了立体几何的相关内容,注意辅助线的作法,以及求内接圆半径的公式、基本不等式、构造函数等核心思想.2.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P P 点有且只有一个 B .若12A P ,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 2D .若12A P 且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 2P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =P 在以1A 3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 603A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.3.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC 6 【答案】AC 【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112*********++=+++⋅+⋅+⋅=+++⨯⨯=AA AB ADAA AB AD AA AB AB AD AA AD ,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD=+-=+, 所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ,()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB AD AA AB AA AD ABAB AD BD ,1116cos ,23⋅<>===⋅B AC D BD BD AC AC,故D 不正确;对C ,112==AC BD ,在1A AC 中,111,2,3===A A AC AC ,所以22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 21∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.4.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -55【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故2252OD OG GD =+=,由矩形的性质知:15OB OE OF OB ====令四棱锥1D BB FE -的外接球半径为R ,则52R =,所以四棱锥1D BB FE -的外接球体积为35435V R ππ==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.5.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得1CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -外接球的体积是43π 【答案】BD 【分析】对于A ,取AD 中点E ,连接EC 交MD 与F ,可得到EN NF ⊥,又EN CN ⊥,且三线,,NE NF NC 共面共点,不可能;对于B ,可得由1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值),由余弦定理可得NC 是定值.对于C ,取AM 中点O ,连接1,B O DO ,假设1AM B D ⊥,易得AM ⊥面1ODB ,即可得OD AM ⊥,从而AD MD =,显然不一定成立.对于D ,当平面B 1AM ⊥平面AMD 时,三棱锥B 1﹣AMD 的体积最大,可得球半径为1,体积是43π. 【详解】对于A 选项:如图1,取AD 中点E ,连接EC 交MD 与F , 则11////NE AB NF MB ,,又11AB MB ⊥,所以EN NF ⊥, 如果1CN AB ⊥,可得EN CN ⊥,且三线,,NE NF NC 共面共点, 不可能,故A 选项不正确;对于B 选项:如图1,由A 选项可得1AMB EFN ≈△△,故1NEC MAB ∠=∠(定值),112NE AB =(定值),AM EC =(定值), 故在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+ 故CN 为定值,故B 选项正确.对于C 选项:如图,取AM 中点O ,连接1,B O DO , 由AB BM =,得1B O AM ⊥,假设1AM B D ⊥,111B D B O B =,所以AM ⊥面1ODB ,所以OD AM ⊥,从而AD MD =,显然不恒成立,所以假设不成立,可得C 选项不正确.对于D 选项:由题易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得12BO =2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,体积是43π.故D 选项正确. 故答案为:BD . 【点睛】本题主要考查了线面、面面平行与垂直的判定和性质定理,考查了空间想象能力和推理论证能力,属于难题.本题C 选项的解题的关键在于采用反证法证明,进而推出矛盾解题,D 选项求解的关键在于把握平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大.6.在三棱锥M ABC -中,下列命题正确的是( )A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1822PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点:(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.7.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 所成角的余弦值为223C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴, 建立空间直角坐标系,则(0,0,0),(6,0,0),(6,0,0)O D A ,(0,0,32),6,23,0),(6,23,0)P C B ,因为点Q 是PD 的中点,所以632,0,)22Q , 平面PAD 的一个法向量为(0,1,0)m =,6(QC=,显然m与QC不共线,所以CQ与平面PAD不垂直,所以A不正确;3632(6,23,32),(,0,),(26,22PC AQ AC=-==,设平面AQC的法向量为(,,)n x y z=,则3622260n AQ xzn AC⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z==,所以(1,2,n=-,设PC与平面AQC所成角为θ,则21sin36n PCn PCθ⋅===,所以cos3θ=,所以B正确;三棱锥B ACQ-的体积为1132B ACQ Q ABC ABCV V S OP--==⋅1116322=⨯⨯⨯=,所以C不正确;设四棱锥QABCD-外接球的球心为)Ma,则MQ MD=,所以22222222a a⎛⎫⎛⎫++-=++⎪ ⎪⎪ ⎪⎝⎭⎝⎭,解得0a=,即M为矩形ABCD对角线的交点,所以四棱锥Q ABCD-外接球的半径为3,设四棱锥Q ABCD-外接球的内接正四面体的棱长为x,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x,所以22362x⎛⎫=⎪⎪⎝⎭,得224x=,所以正四面体的表面积为244x⨯=,所以D正确.故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.8.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +170【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos AA AC AAC ''==∠=,所以217042222()105AC '=+-⨯⨯⨯-=. 故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.9.如图,已知矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是( )A .线段BM 的长是定值B .存在某个位置,使1DE AC ⊥ C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面1A DE 【答案】AC 【分析】取CD 中点F ,连接BF ,MF ,根据面面平行的判定定理可得平面//BMF 平面1A DE ,由面面平行的性质定理可知//BM 平面1A DE ,可判断D ;在BFM ∆中,利用余弦定理可求得BM a =为定值,可判断A 和C ;假设1DE A C ⊥,由线面垂直的判定定理可得DE ⊥平面1A CE ,由线面垂直的性质定理可知1DE A E ⊥,与11DA A E ⊥矛盾,可判断B . 【详解】解:取CD 的中点F ,连接BF ,MF ,∵M ,F 分别为1A C 、CD 中点, ∴1MF A D ∥,∵1A D ⊂平面1A DE ,MF ⊄平面1A DE , ∴MF 平面1A DE , ∵DF BE ∥且DF BE =, ∴四边形BEDF 为平行四边形, ∴BFDE ,∵DE ⊂平面1A DE ,BF ⊄平面1A DE , ∴BF ∥平面1A DE , 又BFMF F =,BF 、MF ⊂平面BMF ,∴平面//BMF 平面1A DE , ∵BM ⊂平面BMF , ∴BM ∥平面1A DE ,即D 错误,设22AB AD a ==,则112MF A D a ==,BF DE ==,145A DE MFB ︒∠=∠=,∴BM a ==,即BM 为定值,所以A 正确,∴点M 的轨迹是以B 为圆心,a 为半径的圆,即C 正确, ∵DE CE ==,2CD AB a ==,∴222DE CE CD +=,∴DE CE ⊥, 设1DE A C ⊥,∵1A C 、CE ⊂平面1A CE ,1AC CE C =,∴DE ⊥平面1A CE , ∵1A E ⊂平面1A CE ,∴1DE A E ⊥,与11DA A E ⊥矛盾, 所以假设不成立,即B 错误. 故选:AC . 【点睛】本题考查立体几何中的翻折问题,涉及到线段长度的求解、直线与平面位置关系的判定、点的轨迹的求解、反证法的应用等知识点,考查学生的空间立体感和推理论证能力.10.如图,正四棱锥S -BCDE 底面边长与侧棱长均为a ,正三棱锥A -SBE 底面边长与侧棱长均为a ,则下列说法正确的是( )A .AS ⊥CDB .正四棱锥S -BCDE 的外接球半径为2a C .正四棱锥S -BCDE 的内切球半径为212a ⎛⎫- ⎪ ⎪⎝⎭ D .由正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱 【答案】ABD 【分析】取BE 中点H ,证明BE ⊥平面SAH 即可证AS CD ⊥;设底面中心为1O ,有1122O B O S a ==,可求得球半径为22a ;用等体积法求内切球半径即可判断;由////SA DE BC 且==SA DE BC 可知多面体是一个三棱柱.【详解】 如图所示:A 选项:取BE 中点H 连接,AH SH ,正三棱锥A SBE -中,,AH BE SH BE ⊥⊥ 又AHSH H =,所以BE ⊥平面SAH ,则BE AS ⊥,又//BE CD 所以AS CD ⊥ ,故A 正确;B 选项:设底面中心为1O ,球心为O 半径为R ,因为正四棱锥S -BCDE 外接球球心在1O S 上,所以OS OB R ==,因为,正四棱锥S -BCDE 底面边长与侧棱长均为a所以112O B O S ==,由()22211OB O B O S OS =+-得22222R a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得2R =,故B 正确; C 选项:设内切球半径为r,易求得侧面面积为221sin 23S a π=⋅=,由等体积法得222111432334a a a r a r ⋅=⋅+⋅⋅⋅解得4a r = ,故C 错;D 选项:取SE 中点F ,连结AF ,DF ,BF ,则BFD ∠和BFA ∠分别是D SE B --和A SE B --的二面角的平面角,由)22222221cos 2322BF DF BD BFD BF DF a ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===-⋅⎛⎫⎪⎝⎭22222221cos 232a AF BF BA AFD AF BF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===⋅⎫⎪⎝⎭,故BFD ∠与BFA ∠互补,所以ASDE 共面,又因为AS AE ED SD ===,则ASDE 为平行四边形,故////AS ED BC 故正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱,所以D 正确 故选:ABD 【点睛】求外接球半径的常用方法:(1)补形法:侧面为直角三角形或正四面体或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;(2)利用球的性质:几何体在不同面均对直角的棱必然是球的直径;(3)定义法:到各个顶点距离均相等的点为球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.。

高考必刷小题 立体几何

高考必刷小题 立体几何
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11.如图所示,在正方体ABCD-A1B1C1D1中,E是平面ADD1A1的中心,M, N,F分别是B1C1,CC1,AB的中点,则下列说法正确的是 A.MN=12EF
√B.MN≠12EF √C.MN与EF异面
D.MN与EF平行
1 A.4
dm2
C.
3 4
dm2
√B.
2 4
dm2
D.34 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
根据题意,在平面VAC内,过点P作EF∥AC分别交VA,VC于点F,E, 在平面VBC内,过点E作EQ∥VB交BC于点Q, 在平面VAB内,过点F作FD∥VB交AB于点D,连接DQ,如图所示, 因为EF∥AC, 所以△VEF∽△VCA,设其相似比为k, 则VVAF=VVCE=AECF=k,0<k<1, 因为 VA=VB=VC=1,且两两垂直,所以 AC= 2,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
因为EF⊂平面VAC, 所以FD⊥EF, 所以四边形 FEQD 是矩形,即 S 矩形 FEQD=
FD·EF=(1-k)· 2k=- 2k-122+ 42,
所以当
k=12时,S
矩形 FEQD
有最大值
2 4.
故该截面面积的最大值是
对于A,如图(1),α∩β=l,m⊥l,n∥l,则满足m∥α,n∥β,m⊥n, 平面α与β不一定垂直,故A错误; 对于B,如图(2),α∩β=l,n∥l,m⊥α,则满足n∥β,m⊥n,平面 α与β不一定垂直,故B错误;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

押第6题 立体几何(新高考)(原卷版)--2023年新高考数学临考题号押题

押第6题 立体几何(新高考)(原卷版)--2023年新高考数学临考题号押题

押新高考卷6题立体几何考点3年考题考情分析立体几何2022年新高考Ⅰ卷第8题2022年新高考Ⅱ卷第7题2021年新高考Ⅰ卷第3题2021年新高考Ⅱ卷第5题2020年新高考Ⅰ卷第16题2020年新高考Ⅱ卷第13题立体几何会以单选题、多选题、填空题、解答题4类题型进行考查,单选题难度一般或较难,纵观近几年的新高考试题,分别考查棱锥的体积问题,圆锥的母线长问题,球体的内切外接及表面积体积问题,棱台的体积问题。

可以预测2023年新高考命题方向将继续以表面积体积问题、球体等问题展开命题.1.立体几何基础公式(1)所有椎体体积公式:sh V 31=(2)所有柱体体积公式:sh V =(3)球体体积公式:334R V π=(4)球体表面积公式:24R S π=(5)圆柱:rhr s s s sh V ππ22,2+=+==侧底表(6)圆锥:rl r s s s sh V ππ+=+==2,31侧底表2.长方体(正方体、正四棱柱)的体对角线的公式(1)已知长宽高求体对角线:2222c b a l ++=(2)已知共点三面对角线求体对角线:22322212l l l l ++=3.棱长为a 的正四面体的内切球的半径为612a ,外接球的半径为64a .4.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =.A .10πB .20π3.(2023·浙江台州·统考二模)如图所示的粮仓可以看成圆柱体与圆锥体的组合体圆柱部分的高为2米,底面圆的半径为A .3π立方米B .2π立方米4.(2023·江苏·统考一模)已知正四面体-P 的其余三个面都有且只有一个公共点,且公共点非该正四面体的顶点,则球A .612B .695.(2023·广东茂名·统考二模)如图所示,正三棱锥点M 在平面PAC 内,且点M 到平面ABC 的距离是点平行于直线PB 和AC ,则这个平面与三棱锥表面交线的总长为(A.241639+C.12839+6.(2023·浙江台州·统考二模)折至△A BD',使得线段A.34B7.(2023·江苏南通·海安高级中学校考一模)若将该容器任意放置均不能使水平面呈三角形,则A.15,66⎛⎫⎪⎝⎭B.13⎛⎝8.(2023·重庆·统考模拟预测)上运动,E,F分别为1AA,A.AP∥平面1B EFC.当P为中点时,AP与1A C 9.(2023·江苏连云港·统考模拟预测)线MN与平面BCD所成角的正切值是(A.2147B.310.(2023·河北保定·统考一模)A .2B .1211.(2023·山东潍坊·统考模拟预测)111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为(A .12πB .24π12.(2023·山东聊城·统考二模)型的体积为314cm ,则该模型的外接球的表面积为(A .220πcmB .10πcm 13.(2023·湖北武汉·统考模拟预测)当过A ,C ,P 三点的平面截球A .()222a+C .()23a +14.(2023·湖北·荆门市龙泉中学校联考二模)二面角P AB C --的大小为体积最大时,球O 的体积为(A .3π2B .15.(2023·湖南·校联考模拟预测)直于底面的四棱锥”,现有阳马在,AB BC 上,当空间四边形A .9πB .11π16.(2023·湖南益阳·统考模拟预测)是由8个等边三角形组成的正八面体,如图,某金刚石的表面积为则可雕刻成的最大球体积是()A .18πB .92π17.(2023·广东深圳·统考二模)设表面积相等的正方体、正四面体和球的体积分别为A .123V V V <<B .21<<V V 18.(2023·浙江杭州·统考一模)空间中四个点线CM 与平面ABC 所成的角为π3,则三棱锥A .36πB .48π19.(2023·浙江·统考二模)已知等腰直角MN 折起,使点A 到达点A '的位置,且平面球O 表面积的最小值为(A .8π3B .3π20.(2023·湖北武汉·华中师大一附中校联考模拟预测)腰直角三角形,DAC △是等边三角形,D ABC -外接球的表面积是(A .8πB .12π。

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》技巧及练习题附解析

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》技巧及练习题附解析

【最新】高考数学《空间向量与立体几何》专题解析一、选择题1.如图,在正方体1111ABCD A B C D -中,M , N 分别为棱111,C D CC 的中点,以下四个结论:①直线DM 与1CC 是相交直线;②直线AM 与NB 是平行直线;③直线BN 与1MB 是异面直线;④直线AM 与1DD 是异面直线.其中正确的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据正方体的几何特征,可通过判断每个选项中的两条直线字母表示的点是否共面;如果共面,则可能是相交或者平行;若不共面,则是异面. 【详解】①:1CC 与DM 是共面的,且不平行,所以必定相交,故正确;②:若AM BN 、平行,又AD BC 、平行且,AM AD A BN BC B ⋂=⋂=,所以平面BNC P 平面ADM ,明显不正确,故错误;③:1BN MB 、不共面,所以是异面直线,故正确; ④:1AM DD 、不共面,所以是异面直线,故正确; 故选C. 【点睛】异面直线的判断方法:一条直线上两点与另外一条直线上两点不共面,那么两条直线异面;反之则为共面直线,可能是平行也可能是相交.2.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r ,利用公式222PA R r ⎛⎫=+⎪⎝⎭可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为232sin3AB r π==PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为222223211233PA R r ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此,三棱锥P ABC -的外接球的表面积为222128443R πππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.3.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D 【解析】 【分析】先还原几何体,再根据锥体体积公式求结果. 【详解】几何体为一个三棱锥,高为33333,,所以体积为1127=33333=322V ⨯⨯⨯,选D. 【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.4.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为()A.34B.78C.1516D.2324【答案】B【解析】【分析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE-,该几何体的体积为11117 11132228⎛⎫-⨯⨯+⨯⨯=⎪⎝⎭故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.5.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .34 B .234C .517D .317【答案】D 【解析】 【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解. 【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯,则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅317172317==⨯⨯. 故选:D【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.6.在以下命题中:①三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r共面;②若两个非零向量a r ,b r 与任何一个向量都不能构成空间的一个基底,则a r ,b r共线;③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--u u u r u u u r u u u u r u u u u r,则P ,A ,B ,C 四点共面④若a r ,b r是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠r r r ,则{},,a b c r r r 构成空间的一个基底⑤若{},,a b c r r r 为空间的一个基底,则{},,a b b c c a +++r r r r r r构成空间的另一个基底;其中真命题的个数是( ) A .0 B .1C .2D .3【答案】D 【解析】 【分析】根据空间向量的运算法则,逐一判断即可得到结论. 【详解】①由空间基底的定义知,三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r,c r共面,故①正确;②由空间基底的定义知,若两个非零向量a r ,b r与任何一个向量都不能构成空间的一个基底,则a r ,b r共线,故②正确;③由22221--=-≠,根据共面向量定理知,,,P A B C 四点不共面,故③错误;④由c a b λμ=+r r r ,当1λμ+=时,向量c r 与向量a r ,b r构成的平面共面,则{},,a b c r r r 不能构成空间的一个基底,故④错误;⑤利用反证法:若{},,a b b c c a +++r r r r r r不构成空间的一个基底, 设()()()1a b x b c x c a +=++-+r r r r r r ,整理得()1c xa x b =+-r r r ,即,,a b c r r r共面,又因{},,a b c r r r 为空间的一个基底,所以{},,a b b c c a +++r r r r r r能构成空间的一个基底,故⑤正确.综上:①②⑤正确. 故选:D. 【点睛】本题考查空间向量基本运算,向量共面,向量共线等基础知识,以及空间基底的定义,共面向量的定义,属于基础题.7.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D 【解析】 【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解 【详解】 如图:作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M = ,16C M =,1'41C N =,得21122''N M M C N C =+,即1'90N MC ∠=︒故选D 【点睛】本题考查异面直线的求法,属于基础题8.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A 3B 6C 3D 3 【答案】B 【解析】 【分析】设1AA c=u u u v v ,AB a =u u u v v ,AC b =u u u v v,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v ;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,AB BC <>u u u v u u u u v,即可得所求角的余弦值. 【详解】设棱长为1,1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12a c ⋅=v v1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v又1AB ===u u u v1BC ===u u u u v111111cos ,AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u vu u u v u u u u v u u u v u u u u v即异面直线1AB 与1BC 所成角的余弦值为:6本题正确选项:B 【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.9.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130 B .140C .150D .160【答案】D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥, 在1Rt A AC ∆中,15A A=,可得AC ==同理可得BD ===,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8,因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.10.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( ) A .8π B .12πC .83πD .3π【答案】B 【解析】 【分析】依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =【详解】依据题意作出图形如下:设四面体P ABC -的外接球的半径为R , 因为球心O 在AB 上,所以AB 为球的直径, 所以2AB R =,且AC BC ⊥ 由23AC AB =可得:3AC R =, BC R =所以四面体P ABC -的体积为111333322ABC V S PO R R R ∆=⋅=⨯⨯⨯⨯= 解得:3R =所以球的表面积2412S R ππ== 故选:B 【点睛】本题主要考查了锥体体积公式及方程思想,还考查了球的表面积公式及计算能力,考查了空间思维能力,属于中档题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学冲刺押题:立体几何(上)【命题趋势预测】通过对近三年高考中立体几何的题型分析,编者对立体几何数的命题做出如下预测:●相对于其他一些考点而言,立体几何近三年的考查趋势较为稳定,所谓“稳定”,是指立体几何出题形式相对比较传统,难度居中,位置靠前,但重点突出,易于学生把握,能够很好的考查了学生对基础知识的掌握程度,所以预测在今年的高考中立体几何问题仍然将会保持“稳定”的一个趋势,不会出现偏题、怪题;●大部分的省市对立体几何的出题分为两个部分,一是选择、填空中的立体几何问题,二是解答题中基本立体几何的考查,通过两个部分,来了解学生对立体几何问题的掌握程度;因此,我们可以预测,在今年的高考中,大部分高考试卷会延续“选择+大题”或者“填空+大题”的考题形式;●立体几何的考点屈指可数,但可以灵活交汇,因此对编者根据对考试大纲的解读,预测今年高考中,在选择题、填空题中,针对性三视图求表面积和体积、球内接图形的体积计算,解答题一般有着简单的处理方法,那就是引入空间直角坐标系,利用向量来作为辅助工具进行运算;这样,大大降低了解答题的难度,变空间想象能力为基本运算能力.【高考冲刺押题】【押题1】如图1,平面四边形关于直线对称,,,.把沿折起(如图2),使二面角的余弦值等于.(1)求两点间的距离;(2)证明:平面;(3)求直线与平面所成角的正弦值.ABCD AC 3A 2C 2CD ABD BD C BD A 33C A,AC BCD AC ABD押题理由:本题对空间想象能力和基本计算能力有一定要求,具体考点如下:1、平面几何基础知识;2、余弦定理的应用;3、线面垂直的判定定理;4、二面角;5、线面成角的计算;6、等体积法的使用;7、向量法的使用.【押题2】如图,三棱柱111C B A ABC 中,1AA ⊥面ABC ,2,AC BC AC BC ,13AA ,D 为AC 的中点.(1)求证:11//BDC AB 面;(2)求二面角C BD C 1的余弦值;(3)在侧棱1AA 上是否存在点P ,使得1BDC CP 面?请证明你的结论.1(0,3,2)C B ,1(1,3,0)C D ,押题理由:本题是一道立体几何的综合问题,充分考查了学生对定理的应用即探究的数学思想,具体考点如下:[来源:学+科+网Z+X+X+K]1、线面平行的性质定理;2、中位线的性质定理;3、法向量的求解;4、使用向量法求二面角的余弦;5、使用向量法判定线面垂直.【押题3】如图,在边长为4的菱形ABCD中,0DAB.点,E F分别在边,CD CB上,60点E与点,C D不重合,EF AC,EF AC O.沿EF将CEF翻折到PEF的位置,使平面PEF⊥平面ABFED.(1)求证:BD⊥平面POA;(2)当PB取得最小值时,请解答以下问题:(i)求四棱锥P BDEF的体积;(ii)若点Q满足AQ=QP(0),试探究:直线OQ与平面PBD所成角的大小是否一定大于?并说明理由.4PB OB OP x x,故(23,2,)所以2222PB x x x,(23)22(3)10∵3,2,3PB,0,4,0BD,∴3230 40x y zy,又∵0∴2 sin2.∵[0,]2,∴4.因此直线OQ 与平面PBD 所成的角大于4,即结论成立.押题理由:本题综合性较强,是一道很好的高考类型题,具体考点如下:1、菱形的性质定理;2、面面垂直的性质定理;3、线面垂直的判定定理;4、二次函数的最值判定;5、两点间的距离公式;6、锥体的体积公式;7、平面法向量的求法;8、运用向量法求线面成角;9、三角函数的性质.【押题4】如图,直三棱柱中,,,,分别为,的中点.(1)求线段的长;(2)求证://平面;(3)线段上是否存在点,使平面?说明理由.111C B A ABC BC AC 21CC BC AC M NAC 11C B MN MN 11A ABB 1CC Q B A 1MNQ押题理由:本题空间感强,重点突出,考查了以下知识:1、勾股定理;2、平行四边形的性质;3、线面平行的判定定理;4、线面垂直的判定定理.【押题5】如图,在三棱柱ABCA1B1C1中,AB⊥AC,顶点A1在底面ABC上的射影恰为点B,且AB=AC=A1B=2.(1)求棱AA1与BC所成的角的大小;(2)在棱B1C1上确定一点P,使AP=14,并求出二面角P-AB-A1的平面角的余弦值.则cos〈n1,n2〉=n1・n2|n1|・|n2|=-25=-255,故二面角PABA1的平面角的余弦值是25 5.押题理由:本题基础性较强,重点考察利用向量的方法来求解空间角,考点有:1、向量的基本运算;2、向量法求线线成角;3、法向量的计算;4、向量法求二面角.【名校试题精选】【模拟训练1】已知:在如图所示的空间几何体ABCDEF中,M、N分别为EC、AB的中点,底面ABCD为菱形,且60BAD,ED⊥平面ABCD,ED∥BF,且ED=AD=2BF=2.(1)求证:MN∥平面BCF;(2)求二面角A―EF―C的余弦值.(注:其它解法如正确同样给分)思路点拨:(1)可以证明平面MPN平行与平面FBC,通过面面平行证明线面平行;(2)建立直角坐标系,通过向量法求出二面角的余弦.【模拟训练2】如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是正方形,且SD=AD,E是SA的中点.(1)求证:直线BA⊥平面SAD;(2)求直线SA与平面BED的夹角的正弦值.思路点拨:(1)可以证明“SD⊥AB、AD⊥AB”,进而证明线面垂直;(2)建立空间直角坐标系,利用向量法可以求出直线S A与平面BED所成角的正弦值.【模拟训练3】如图,四棱锥P-ABCD的底面ABCD是直角梯形,∠DAB=∠ABC=90o,PA⊥底面ABCD,PA=AB=AD=2,BC =1,E为PD的中点.(1)求证:CE∥平面PAB;[来源:学&科&网Z&X&X&K](2)求PA与平面ACE所成角的大小;PAB CDE(3)求二面角E-AC-D的大小.设PA 与平面ACE 所成角为,则sin =|PQ →||AP →|=23,∴=arcsin 23.另解:易得向量AP →在n 上的射影长为d ==43设PA 与平面ACE 所成角为,则sin =d |AP →|=23,∴=arcsin 23.(3) 显然,AP →为平面ABCD 的法向量,cos<,AP →>=46=23.∴二面角E -AC -D 的大小为arccos 23思路点拨:(1)可以证明“CE ∥BF ”,从而证明CE ∥平面PAB ;(2)做出PA 与平面ACE 所成角,然后利用正弦的定义式求解;(3)由面积射影定理得cos =S △AGCS △AEC.注:也可以使用向量法进行求解.488(1,2,2)(, ,)9993n PQ nn n AP n AP【模拟训练4】如图,边长为a 的正方体ABCD-A 1B 1C 1D 1中,E为CC 1的中点.(1)求直线A 1E 与平面BDD 1B 1所成的角的正弦值(2)求点E 到平面A 1DB 的距离(2)设n =)1,,(y x 为平面A 1DB 的法向量,)0,,(),,0,(1a a DB a a DA 01DA n ,0DBn 1,1yx………………………………………8分)1,1,1(n 又3(0,,),22a DE n DE a d a n………………………11分即点E 到平面1A DB 的距离为32a .…………………………………………………12分思路点拨:(1)建立空间直角坐标系,利用向量法求出线面成角的正弦值;(2)建立空间直角坐标系,利用向量法求点到面的距离.E A 1DCBAB 1C 1D 1【模拟训练5】在等腰梯形PDCB (见图a )中,DC//PB ,PB=3DC=3,PD=2,DAPB ,垂足为A ,将PAD 沿AD 折起,使得PA AB ,得到四棱锥P-ABCD (见图b ).在图b 中完成下面问题:(1)证明:平面PAD平面PCD;(2)点M 在棱P B 上,平面AMC 把四棱锥P-ABCD 分成两个几何体(如图b ),当这两个几何体的体积之比:5:4PMACDMABCV V 时,求PM MB的值;(3)在(2)的条件下,证明:PD//平面A MC.[来源:学科网]所以1PA ,2AB ,122PAPDAD.…………6分设h MN ,则思路点拨:(1)可以证明“DC平面PAD ”,进而证明平面PAD平面PCD ;(2)利用体积公式,将“:5:4PMACDMABCV V ”转化为高度的比,进而求出高,最后计算出2:1:MBPM 的值;(3)使用数量关系说明“在平面PBD 中,有MO PD //”,进而证明PD//平面AMC .【模拟训练6】如图,在直三棱柱111ABC A B C 中,90BAC ,12,AB AC AA E 是BC 中点.(1)求证:1//AB 平面1AEC ;(2)若棱1AA 上存在一点M ,满足11B MC E ,求AM 的长;(3)求平面1AEC 与平面11ABB A 所成锐二面角的余弦值.因为AC 平面1ABB A 1,取平面1ABB A 1的法向量为(0,2,0)AC ………………11分所以3cos ,3||||AC n AC nAC n ………………13分平面1AEC 与平面1ABB A 1所成锐二面角的余弦值为33………………14分思路点拨:(1)连接1A C 交1AC 于点O ,连接EO ,可以证明1//EO A B ,所以1//AB 平面1AEC ;(2)建立直角坐标系,将11B M C E 转化为两向量的数量积为0,可以求出AM 的长;(3)计算两个平面的法向量12,n n ,利用法向量求出平面1AEC 与平面11ABB A 所成锐二面角的余弦值.【模拟训练7】如图,三棱柱ABC-A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C。

(1)求证:平面AA1B1B⊥平面BB1C1C;(2)求二面角B-AC-A1的余弦值.【详细解析】(1)由侧面AA1B1B为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,又AB平面AA1B1B,所以平面AA1B1B⊥BB1C1C.…4分[来源:学*科*网Z*X*X*K]思路点拨:(1)可以证明AB⊥平面BB1C1C,进而说明平面AA1B1B⊥平面BB1C1C;(2)建立平面直角坐标系,通过向量法求二面角B-AC-A1的余弦值.【模拟训练8】已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形(1)求证:;(2)求证:;(3)设为中点,在边上找一点,使平面,并求的值.∵N B C C B 1111平面,N B C BC 11平面,思路点拨:(1)可以证明“11//C B BC ”,进而说明;(2)可以证明“111,C B BN N B BN ”;(3)利用向量法求出P 点的坐标,进而确定的值.【模拟训练9】如图,ABC 是等腰直角三角形,,2,90a AC ACB E D ,分别为AB AC,的中点,沿DE 将ADE 折起,得到如图所示的四棱锥.BCDE A(1)在棱B A 上找一点F ,使//EF 平面CDA (2)当四棱锥BCDF A 体积取最大值时,求平面CD A 与平面BE A r夹角的佘弦值. 由A H AD 知,点H 和D 重合时,四棱锥A BCDE 的体积取最大值.思路点拨:(1)取C A 的中点G ,可以证明//EF DG ,进而证明线面平行;(2)建立直角坐标系,利用向量法求出两个平面成角的余弦值.【模拟训练10】如图,已知菱形ABCD 的边长为6,∠BAD =60o,AC ∩BD =O .将菱形ABCD 沿对角线AC 折起,使BD =3,得到三棱锥B-ACD .(1)若点M 是棱BC 的中点,求证:OM//平面ABD ;[来源:学_科_网Z_X_X_K](2)求二面角A-BD-O 的余弦值;(3)设点N 是线段BD 上一个动点,试确定点N 的位置,使得CN =,并证明你的结论.242思路点拨:(1)可以证明“OM//AB”,进而证明线面平行;(2)建立平面直角坐标系,利用向量法求两个平面成角的余弦;(3)“设”,可以得到“”,解出方程即可.111(,,),N x y z BN BD 22279(33)42。

相关文档
最新文档