2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数的单调性》教案(绵阳中学赵志明)

合集下载

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《曲线与方程》

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《曲线与方程》

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《曲线与方程》第一篇:2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《曲线与方程》2010年第五届全国高中数学青年教师观摩与评比活动精品教案“曲线与方程”教学设计一、教学内容:人教版选修2—1第二章第一节:曲线与方程二、教材分析曲线属于“形”的范畴,方程则属于“数”的范畴,它们通过直角坐标系而联系在一起,曲线的方程是曲线几何的一种代数表示,方程的曲线则是代数的一种几何表示。

在直角坐标系中,点可由它的坐标来表示,而曲线是点的轨迹,所以曲线可用含x、y的方程来表示。

“曲线和方程”这节教材,揭示了几何中的“形”与代数中的“数”的统一,为“依形判数”和“就数论形”的相互转化奠定了扎实的基础,对解析几何教学有着深远的影响,曲线与方程的相互转化,是数学方法论上的一次飞跃。

由于曲线和方程的概念是解析几何中最基本的内容,因而学生用解析法研究几何图形的性质时,只有透彻理解曲线和方程的意义,才能算是寻得了解析几何学习的入门之径。

求曲线与方程的问题,也贯穿了这一章的始终,所以应该认识到,本节内容是解析几何的重点内容之一。

本节中提出的曲线与方程的概念,它既是对以前学过的函数及其图象、直线的方程、圆的方程等数学知识的深化,又是学习圆锥曲线的理论基础,它贯穿于研究圆锥曲线的全过程,根据曲线与方程的对应关系,通过研究方程来研究曲线的几何性质,是几何的研究实现了代数化。

数与形的有机结合,在本章中得到了充分体现。

●教学目标:1.通过感受曲线的方程和方程的曲线这一概念的生成过程,初步理解曲线的方程和方程的曲线的概念。

2.理解曲线的方程与方程的曲线的概念和集合相等的关系、渗透转化与化归的思想与数形结合的思想。

3.培养学生实事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神。

●教学重点理解曲线的方程和方程的曲线的概念。

第五届全国高中数学青年教师观摩与评比活动-函数的单调性说课稿

第五届全国高中数学青年教师观摩与评比活动-函数的单调性说课稿

函数的单调性(说课稿)各位老师,你们好!我今天说课的内容是全日制普通高中教科书第一册(上)第二章第三节《函数的单调性》。

以下我从六个方面来汇报我是如何研究教材、备课和设计教学过程的。

一、教材分析1、教材内容本节课是人教版第二章《函数》第三节函数单调性的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。

2、教材所处地位、作用函数的单调性是对函数概念的延续和拓展,也是后续研究几类具体函数的单调性的基础;此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用。

在方法上,教学过程中还渗透了数形结合、类比化归等数学思想方法。

它是高中数学中的核心知识之一,在函数教学中起着承上启下的作用。

二、学情分析1、知识基础高一学生已学习了函数的概念等知识,并且接触了一些特殊的单调函数。

2、认知水平与能力高一学生已初步具有数形结合思维能力,能在教师的引导下解决问题。

3、任教班级学生特点学生基础较扎实、思维较活跃,能较好地应用数形结合解决问题,但归纳转化的能力还有待进一步提高,观察讨论能力有待加强。

三、目标分析(一)知识技能1.让学生理解增函数和减函数的定义;2.根据定义证明函数的单调性;3.了解函数的单调区间的概念,并能根据图象说出函数的单调区间。

(二)过程与方法1.通过证明函数的单调性的学习,培养学生的逻辑思维能力;2.通过运用公式的过程,提高学生类比化归、数形结合的能力。

(三)情感态度与价值观让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲。

领会用从特殊到一般,再从一般到特殊的方法去观察分析事物。

由教学目标和学生的实际水平,我确定本节课的重、难点:教材的重点、难点、解决策略教学重点:函数单调性的概念与判断。

教学难点:利用函数单调性定义或者函数图象判断简单函数的单调性。

解决策略:本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。

[转帖]第五届全国高中数学青年教师观摩与评比活动《函数的表示法》(宁夏高晓萍)doc高中数学

[转帖]第五届全国高中数学青年教师观摩与评比活动《函数的表示法》(宁夏高晓萍)doc高中数学

[转帖]第五届全国高中数学青年教师观摩与评比活动《函数的表示法》(宁夏高晓萍) doc 高中数学宁夏银川市第九中学高晓萍一.教学目标1.明确函数的三种表示方法〔图象法、列表法、解析法〕,通过具体的实例,了解简单的分段函数及其应用。

2.通过解决实际咨询题的过程,在实际情境中能依照不同的需要选择恰当的方法表示函数,进展学生思维能力。

3 .通过一些实际生活应用,让学生感受到学习函数表示的必要性;通过函数的解析式与图象的结合渗透数形结合思想。

二.教学重点和难点教学重点:会依照不同的实际情境需要选择恰当的方法表示函数。

教学难点:分段函数的表示。

三.教学预备教具:直尺、多媒体设备。

四.教学过程设计〔一〕回忆旧知,复习引入1.复习函数的概念。

2.函数的三种表示法。

〔二〕实例引入,明白得新知回忆上节课中的三个实例:〔1〕炮弹发射:h 130t 5t2 ,(0 t 26)〔解析法〕2〕南极臭氧层的空泛:图象法〕〔3〕恩格尔系数:〔列表法〕示法表示。

学生交流讨论并回答。

解析法有两个优点:一是简明、精确地概括了变量间的关系;二是能够通过解析式求出任意一个自变量的值所对应的函数值. 中学时期所研究的要紧是能够用解析式表示的函数.图象法的优点:直观形象地表示自变量与相应的函数值变化的趋势,有利于我们通过图象来研究函数的性质.图象法在生产和生活中有许多应用,如企业生产图,股票指数走势图等.列表法的优点:不需要运算就能够直截了当看出与自变量的值相对应的函数值,简洁明了.列表法在实际生产和生活中也有广泛应用.如成绩表、银行的利率表等.在研究函数时,依照咨询题的特点,往往需要同时借助几种不同的函数表示法研究函数,如同时采纳解析法和图象法表示函数,加强数形结合,这是研究函数的常用方法.〔三〕例题精析、深化明白得1 .用三种表示法表示同一个函数。

例1.某种笔记本的单价是5元,买x(x 1,2,3,4,5)个笔记本需要y元,试用三种表示法表示函数y f(x).分析:注意本例的设咨询,此处"y f (x )〃有三种含义,它能够是解析表达 式,能够是图象,也能够是对应值表。

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-(云南姚艳萍)

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-(云南姚艳萍)

2010年第五届全国高中青年数学教师优秀课观摩与评选活动交流材料人教版全日制普通高级中学教科书(必修)第二册椭圆及其标准方程教学设计云南省玉溪市第一中学姚艳萍椭圆及其标准方程一、教学目标1.知识目标:掌握椭圆的定义,能正确推导椭圆的标准方程.2.能力目标:通过引导学生亲自动手尝试画椭圆,让学生发现椭圆的形成过程进而归纳出椭圆的定义 , 培养学生的动手能力、合作学习能力以及运用所学知识解决实际问题的能力.3.情感目标(1)通过椭圆定义的获得培养学生探索数学的兴趣.(2)通过椭圆标准方程的推导培养学生求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.二、重点、难点重点:掌握椭圆的定义及标准方程,理解坐标法的基本思想.难点:椭圆标准方程的推导与化简.三.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.四.教具准备:多媒体课件和自制教具:呼啦圈,绘图板、图钉、细绳.五、教学过程(一)创设情境,认识椭圆.材料1:对椭圆的感性认识.通过演示课前准备的生活中有关椭圆的实物和图片,让学生从感性上认识椭圆.材料2:“嫦娥一号”模拟轨道图.2007年10月24日,我国第一颗探月卫星“嫦娥一号”发射成功, 开始了举世瞩目的太空之旅,流传了几千年的飞天神话,变成了现实,这标志着我国航天事业又上了一个新台阶,这是中国人的骄傲.请问:“嫦娥一号”绕地球飞行的运行轨道是什么?(课件演示轨道图)引入课题:椭圆及其标准方程.(设计意图:利用多媒体,展示学生常见的椭圆形状的物品,让学生从感性上认识椭圆:通过“嫦娥一号”的轨道录像,让学生感受现实,激发学生的学习兴趣,培养爱国思想.)(二)动手实验,亲身体会.1.教师演示,引出研究思路.教师将一圆形的呼啦圈朝一方向用力压或拉,变成一椭圆形状的呼啦圈,以说明圆和椭圆的密切关系,点明可以像学习圆一样来学习椭圆.思考:在上一章圆的学习中我们知道:平面内到一定点的距离为定长的点的轨迹是圆.那么,到两定点距离之和等于常数的点的轨迹又是什么呢?(设计意图:对于生活中、数学中的圆,学生已经有一定的认识和研究,但对椭圆,学生只停留在直观感受,基于它俩的关系,引导学生用上一章所学,来研究椭圆.)2.学生分组试验.(1)取一条细绳;(2)把细绳的两端用图钉固定在板上的两点1F 、2F ;(3)用铅笔尖(M )把细绳拉紧,在板上慢慢移动观察画出的图形是什么? (教师巡视指导,展示学生成果)3.分析实验,得出规律.(1)在画出一个椭圆的过程中,细绳的两端的位置是固定的还是运动的?(2)在画椭圆的过程中,绳子的长度变了没有?说明了什么?(3)在画椭圆的过程中,绳子长度与两定点距离大小有怎样的关系?(4)改变绳子长度与两定点距离的大小,轨迹又是什么?学生总结规律:1212||||||MF MF F F +> 轨迹为椭圆;1212||||||MF MF F F +=轨迹为线段 ;1212||||||MF MF F F +<轨迹不存在.(设计意图:在本环节中并不是急于向学生交待椭圆的定义,而是设计一个实验,一来是为了给学生一个动手实验的机会,让学生体会椭圆上点的运动规律;二是通过实践思考,为进一步上升到理论做准备.)(三)总结归纳,形成概念.定义:平面内,到两个定点1F 、2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆.(在归纳椭圆定义的过程中,教师根据学生回答的情况,不断引导他们逐步加深理解并完善椭圆的定义,在引导中突出体现“常数”及“常数”的范围等关键词与相应的特征.) 问:椭圆定义还可以用集合语言如何表示?)22(221c a a MF MF >=+. (设计意图:通过学生观察、思考、讨论,概括出椭圆的定义,让学生全程参与概念的探究过程,加深理解,提高概括能力和数学语言的表达能力.)(四)合理建系,推导方程.1.复习求曲线的方程的基本步骤:⑴建系;⑵设点;⑶列式;⑷化简;(5)证明(可省略)(由学生回答,不正确的教师给予纠正.)2.如何选取坐标系?【学情预设】学生可能会建系如下几种情况:方案一:把F 1、F 2建在x 轴上,以F 1F 2的中点为原点;方案二:把F 1、F 2建在x 轴上,以F 1为原点;方案三:把F 1、F 2建在x 轴上,以F 1F 2与x 轴的左交点为原点;方案四:把F 1、F 2建在y 轴上,以F 1F 2的中点为原点;教师折椭圆,学生观察椭圆的几何特征(对称性),如何建系能使方程更简洁?学生讨论,经过比较确定方案一.(设计意图:积极鼓励学生用不同建系方法,让他们充分暴露自然思维,通过比较,得出最简洁的方案,而不是被动地接受教材或老师强加给的方法.)3.推导标准方程.选取建系方案,让学生动手,尝试推导.按方案一:以过1F 、2F 的直线为x 轴,线段12F F 的垂直平分或线为y 轴,建立平面直角坐标系.设)0(221>=c c F F ,点),(y x M 为椭圆上任意一点,则 {}a MF MF M P 221=+=(称此式为几何条件), ∴ 得()()a y c x y c x 22222=++++-(实现集合条件代数化), (想一想:下面怎样化简?)(1)教师为突破难点,进行引导设问:我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢?化简,得 )()(22222222c a a y a x c a -=+-.(2)b 的引入.由椭圆的定义可知,c a 22>, ∴220a c ->.让点M 运动到y 轴正半轴上(如图2),由学生观察图形直观获得a ,c 的几何意义,进而自然引进b ,此时设222c a b -=,于是得222222b a y a x b =+, 两边同时除以22b a ,得到方程:()222210x y a b a b +=>>(称为椭圆的标准方程). (3)建立焦点在y 轴上的椭圆的标准方程.要建立焦点在y 轴上的椭圆的标准方程,又不想重复上述繁琐的化简过程,如何做?方法1:按步骤列出方程,利用两方程结构的异同(结构相同,只是字母x ,y 交换了位置),直接得到方程. 方法2:(视情况决定讲与否(预设))借助于化归思想,抓住图1(前面方程推导时用过)与图3的联系(关于直线x y =对称)即可化未知为已知,将已知的焦点在x 轴上的椭圆的标准方程转化为焦点在y 轴上的椭圆的标准方程.只需将图1图2沿直线y x =翻折即可转化成图3;图1 图3 (4)教师应用多媒体,把其它建系得出的方程展示给学生,相比之下,其它的建系方式得到的方程不够简洁.(设计意图:椭圆的标准方程的导出,先放手给学生尝试,教师协从指导.再展示学生结果;教师对照图形,加以引导,让学生明白方程中字母的几何意义,对方程的理解有很大的作用;利用类比对称,化归的思想得出焦点在y 轴上的标准方程,避免重复的繁杂计算.)4.归纳概括,掌握特征.(1)椭圆标准方程形式:它们都是二元二次方程,左边是两个分式的平方和,右边是1;(2)椭圆标准方程中三个参数a , b , c 的关系:222c a b -=)0(>>b a ;(3)椭圆焦点的位置由标准方程中分母的大小确定.(五)尝试应用,范例教学.例1 下列哪些是椭圆的方程,如果是,判断它的焦点在哪个坐标轴上?并指明a 、b ,写出焦点坐标.注意:分母哪个大,焦点就在哪个坐标轴上,反之亦然.149)1(22=+y x 0225259)2(22=--y x 41625)3(22=+y x )0(11)4(2222≠=++m m y m x(设计意图:进一步巩固对椭圆标准方程形式的掌握.)例2写出适合下列条件的椭圆的标准方程:两个焦点的坐标分别是()40-,、()40,,椭圆上一点到两焦点距离的和等于10. 变式一:将上题焦点改为(0,4)-、(0,4),结果如何?变式二:将上题改为两个焦点的距离为8 ,椭圆上一点P 到两焦点的距离和等于10 ,结果如何?(学生直接抢答)例3 写出适合下列条件的椭圆的标准方程:两个焦点的坐标分别是()02-,、()02,,并且经过点P 3522⎛⎫- ⎪⎝⎭,. (先和学生一起简单分析条件中蕴涵的信息,再由学生自己动手完成.教师巡视,投影学生答案.学生讨论总结.)解题思路1:先根据已知条件设出焦点在y 轴上的椭圆方程的标准方程12222=+b x a y ()0>>b a ,再将椭圆上点的坐标3522⎛⎫- ⎪⎝⎭,代入此方程,并结合a 、b 、c 间的关系求出2a 、2b 的值,从而得到椭圆的标准方程为161022=+x y . (设计意图:学会用待定系数法球椭圆的标准方程.)解题思路2:利用椭圆定义(椭圆上的点3522⎛⎫- ⎪⎝⎭,到两个焦点()02-,、()02,的距离之和为常数2a )求出a 值,再结合已知条件和a 、b 、c 间的关系求出2b 的值,进而写出标准方程.(设计意图:使学生体会椭圆定义在解题中的重要作用.)(六)回顾反思,归纳提炼.1.椭圆定义;2.椭圆标准方程;3.解题思想方法.(七)课后作业,巩固提高.(八)板书设计:。

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数的概念》说明(重庆贺祠亮)

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《函数的概念》说明(重庆贺祠亮)

《函数的概念》教学设计说明一、函数概念的本质、地位、作用分析函数是中学数学最重要的基本概念之一,其核心内涵为非空数集到非空数集的一个对应;函数思想也是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础;它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础.本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法,初步运用函数思想理解和处理生活、社会中的简单问题.二、教学目标分析本堂课的教学目标是有梯度的,由浅入深:首先要通过丰富实例让学生了解函数是非空数集到非空数集的一个对应,了解构成函数的三要素;然后让学生理解函数概念的本质,抽象的函数符号的意义,(为常数)与的区别与联系,会求一些简单函数的定义域和函数值;并且让学生经历函数概念的形成过程,函数概念的辨析过程,函数定义域的求解过程以及求函数值的过程,渗透归纳推理、发展学生的抽象思维能力;通过经历以上过程,让学生体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用,体验函数思想;通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,感受数学的抽象性和的简洁美.通过例题的讲解,培养和提高学生观察问题、分析问题、解决问题的能力.三、教学问题诊断从学生知识层面看:学生在初中初步探讨了函数的相关知识,有一定的基础;通过集合的学习,对集合思想的认识也日渐提高,为重新定义函数,从根本上揭示函数的本质提供了知识保证.从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力.在学习的过程中学生主要存在以下困惑、困难:1.对“为什么要重新定义函数”存在困惑.学生在预习之前可能一直都有疑问:我们已经定义过函数了,为什么又要重新定义函数?学生可能认为自己学得很好了,再学习函数的定义有重复之嫌.2.学生由实例抽象概括出函数的概念时存在困难.教学中由实例抽象归纳出函数概念时,要求学生必须通过自己的努力探索才能得出,对学生的能力要求比较高.在通过“观察、分析、比较、归纳、概括”得出函数的概念时,学生在其中的任意一个环节出了问题都可能得不出函数的概念.3.对抽象符号的理解存在困难.四、本节课的教法特点以及预期效果分析本堂课的特点是概念教学,根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现问题中两个变量的关系,让学生归纳、概括出函数概念的本质,这也符合建构主义的教学理论.本节课对几个重要环节的处理方法是:为激发起学生学习的兴趣,引入三个问题:举出初中学过的一些函数、回忆初中函数的定义、利用初中函数的定义解决问题“”是否为函数.通过学生分组讨论后发现由于受认知能力的影响,利用初中所学函数知识很难回答这个问题,形成认知冲突,让学生带着悬念、带着认知冲突学习后面的知识,这样有利于激发学生的学习欲望.为了让学生抽象概括出函数的概念,通过对三个实际问题的分析、自学,让学生认识到生活中充满着变量间的依赖关系,由于实际背景的建立,为学生理解函数概念打下了感性基础.在学习实例一时,我设计了三个递进的问题来引导学生用集合与对应的语言来刻画函数关系.对后两个实例采取让学生先自学,老师再提问的方式来引导学生思考;通过对关键词的强调和引导,给学生思考、探索的空间,让学生发现、概括出它们的共同特征,进而引导学生从实际问题中抽象概括出函数的概念,培养了学生的抽象概括能力.教学中让学生体验数学发现和创造的历程,提高分析问题,解决问题的能力.本节课选自运动、自然界、经济生活中用三种不同方法表示的函数,既可以让学生感受到函数在许多方面的广泛应用,又可以使学生意识到对应关系不仅可以是明确的解析式,也可以是形象直观的曲线和表格,为下一节函数的表示方法描下伏笔.为了使学生正确理解函数的概念,首先让学生勾画出概念中的关键词,使学生加深理解函数的本质及构成函数的基本要素.对抽象的函数符号的理解也是本堂课的难点之一,应充分发挥学生的积极性,让学生发表意见,然后用一个生活化的例子来巩固对符号的理解:好比是“原料”,好比是“机器”,就好比是“成品”,向机器input(输入)一个原料,就output (输出)一个成品.这样学生理解起来就很容易了,同时也培养了学生的数学应用意识. 最后启发学生对本节课学习的内容进行总结,提醒学生重视研究问题的方法和过程.在本节课的教学中,以学生作为活动的主体, 总是创设恰当的问题情境,引导学生积极思考,大胆探索,最大限度地调动学生积极参与教学活动,在教学难点处适当放慢节奏,给学生充分的时间进行思考与讨论,适时地给予适当的思维点拨,必要时进行大面积提问,让学生做课堂的主人,充分发表自己的意见.这样既有利于化解难点、突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃,让学生在生生互动、师生互动中掌握知识,提升能力.教学过程中既注重锻炼学生独立解决问题的能力,又注重对学生交流合作意识和创新意识的培养.通过本节课的教学,希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.。

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《简单的线性规划问题》(天津市刘勇)

2010年第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案-《简单的线性规划问题》(天津市刘勇)

《简单的线性规划问题》教学设计(人教A版高中课标教材数学必修5第三章第3.3节)授课教师:刘勇天津市滨海新区汉沽一中指导教师:沈婕天津市中小学教育教学研究室张志坤天津市汉沽教育中心王瑞雪天津市滨海新区汉沽一中2010年10月《简单的线性规划问题》(第一课时)教学设计天津市滨海新区汉沽第一中学刘勇一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。

简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.本节教学重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.二、目标和目标解析(一)教学目标1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念.2. 会用图解法求线性目标函数的最大值、最小值.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识.(二)教学目标解析1. 了解线性规划模型的特征:一组决策变量(,)x y表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.2.使学生学会从实际优化问题中抽象、识别出线性规划模型.能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为画、移、求、答.3.教学中不但要教教材,还要教教材中的蕴含的方法.在探究如何求目标函数的最值时,通过以下几方面让学生领悟数形结合思想、化归思想在数学中的应用.(1)不定方程的解与平面内点的坐标的结合,进而产生了直线的方程.(2)线性目标函数解析式与直线的斜截式方程的结合.(3)线性目标函数的函数值与直线的纵截距的结合.(4)二元一次不等式(组)的解集与可行域的结合.(5)线性目标函数在线性约束条件下的最值与直线过可行域内的点时纵截距的最值的结合.这样就能使学生对数形结合思想的理解更透彻,为以后解析几何的学习和研究奠定基础, 使学生从更深层次理解“以形助数”的作用以及具体方法.4. 在线性规划问题的探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,培养解决运用已有知识解决新问题的能力.三、教学问题诊断分析本节课学生在学习过程中可能遇到以下疑虑和困难:(1)将实际问题抽象成线性规划问题;(2)用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?(3)数形结合思想的深入理解.为此教学中教师要千方百计地为学生创设探究情境,并作合理适度的引导,通过学生的积极主动思考,运用由特殊到一般的研究方法,借助于讨论、动手画图等形式进行深入探究.教师的引导是至关重要的,要做到既能给学生启示又能发展学生思维,让学生通过自己的探究获取直接经验.教学难点:用图解法求最优解的探索过程;数形结合思想的理解.教学关键:指导学生紧紧抓住化归、数形结合的数学思想方法找到目标函数与直线方程的关系四、教法分析新课程倡导学生积极主动、勇于探索的学习方式,课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.本节课以学生为中心,以问题为载体,采用启发、引导、探究相结合的教学方法.(1)设置“问题”情境,激发学生解决问题的欲望;(2)提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.(3)在教学中体现“重过程、重情感、重生活”的理念;(4)让学生经历“学数学、做数学、用数学”的过程.五、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,求出目标函数的最值.让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.六、教学过程(一)创设情境,激发探究欲望组织学生做选盒子的游戏活动.在下图的方格中,每列(x)与每行(y)的交汇处都放有一个盒子,每次你只能选其中的一个盒子,每个盒子对应一个分值,即为你的得分,而且该分值与盒子所在的行数和列数有关,且每次的关系式在变化,你会选哪个盒子?例如: 第一次:分值=x y+ (即: 列数+行数)第二次:分值=2- (即: 行数-列数×2)y x师生活动:教师组织学生做选盒子得分的游戏,学生用“运算—比较”的方法容易解决老师提出的问题.之后,给出图3,让学生在图中找目标函数2b x y =+的最大值,学生沿用上面计算的方法显然很复杂,于是学生的思维产生“结点”.引出课题,提出何为线性(即为一次的)?怎么规划(即求函数的最值)?是本节课的研究重点.【设计意图】数学是现实世界的反映.创设学生感兴趣的问题情境,从兴趣解决→稍有困难→有较大困难,使学生产生急于解决问题的内驱力,同时培养学生从实际问题抽象出数学模型的能力.(二)独思共议,引导探究方法x y 0 1 2 3 4 5 1 2 4 3 y 0 1 2 3 4 5 x 1 2 4 3图1 图2 x1 45 2 3 7 9 10 11 8 12O 图3引导学生由特殊到一般分析目标函数的函数值.问题1:当6b=时,求x,y的值.师生活动:学生通过计算找到三个点的坐标,并观察出三点共线,求出直线方程26y x=-+,教师引导学生观察6b=所对应的直线的纵截距.【设计意图】通过特殊问题,帮助学生理解问题的实质:求x,y的值即求不定方程的解.数形结合,将求变量x,y转化成求点的坐标(,)x y.观察6b=时三个盒子所在点的位置关系及直线的方程,使学生体会b值就是直线的纵截距.问题2.在图3中,求2b x y=+的最大值.师生活动:学生在教师的引导下分组讨论,求b的最大值.通过之前教师的引导及学生对上一节“二元一次不等式表示的平面区域”的学习,对学生的讨论结果有两种预案:预案1:学生通过由特殊到一般的分析,将目标函数2b x y=+转化成2y x b=-+,x,y在取得每个可行解时,b的取值就是直线2y x b=-+过(,)x y这个点时的纵截距,而所有这些直线都是平行的,因此只需平移直线看纵截距的最大值即可.预案2:根据上一节“二元一次不等式(组)所表示的平面区域”的知识,学生认为b取最大值时x、y的取值一定在直线26y x=-+的右上方的位置,为此就依次在这些位置上画平行于26y x=-+的直线,只要上面有点就不停的画,直至最后一点.师生活动:学生展示讨论结果,教师借助几何画板作演示、分析,渗透转化和数形结合的数学思想.并对学生的结论作出总结,先作直线2y x=-,再作平移,观察直线的纵截距.【设计意图】由特殊到一般,利用数形结合,寻求解题思路.(三)变式思考,深化探究思路1.将目标函数变成34b x y=+,求b的最大值.师生活动:通过学生将34b x y=+化成344by x=-+的形式,做直线34y x=-并进行平移,观察纵截距的最大值的回答过程,教师强调解题步骤:画、作、移、求.【设计意图】规范方法并检验学生对方法的理解程度,使学生感受由直线斜率的变化引起使b 取最大值的过程中点的变化.2.将目标函数变成34b x y =-,求b 的最大值.师生活动:教师引导学生比较此题和上题的区别,学生发现平移直线时若按上题的方法找纵截距的最大值便会出现问题,通过思考、讨论,找到本题需取截距最小的原因.【设计意图】通过目标函数的不同变式,让学生熟悉求最值的方法,尤其是直线中纵截距的符号为负的情况.借助“几何画板”集中呈现目标函数的图形变化,提高课堂效率,建立精准的数形联系.(四)规范格式,应用探究成果1.例1:(习题3.3A 组第3题)电视台应某企业之约播放两套连续剧,其中,连续剧甲每次播放时间为80min ,其中广告时间为1min ,收视观众为60万;连续剧乙每次播放时间为40min ,广告时间为1min ,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6min 广告,而电视台每周只能为该企业提供不多于320min 的节目时间.如果你是电视台的制片人,电视台每周应播映两套连续剧各多少次,才能获得最高的收视率?解:设甲播放x 次,乙播放y 次,收视观众z 万人次则6020z x y =+.8040320,6,0,0.x y x y x y +≥⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 用如下步骤求z 的最大值:(1)画出可行域;(2)作出直线0l :3y x =-(3)平移0l 至点A 处纵截距最大,即z 最大;(4)解方程组:80403206x y x y +=⎧⎨+=⎩ 得24x y =⎧⎨=⎩,因此max 200z =.答:甲播放2次,乙播放4次,收视观众最多为200万人次.师生活动:教师引领学生理解题意,让学生继续领会用表格形式描述数据的直观性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题.通过学生板演,教师规范写法,然后借助解题的过程介绍线性目标函数、线性约束条件、可行解、可行域、最优解及线性规划的数学概念.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2.反思例1解题过程,深入体会数形结合思想师生活动:教师引导学生纵观解题过程,体会在解题中“数”与“形”是怎样结合的,并加以总结.代数几何 线性目标函数6020z x y =+直线320z y x =-+ 线性目标函数的函数值 直线的纵截距线性约束条件(二元一次不等式(组)的解集)可行域 线性目标函数的最值直线的纵截距的最值 【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.3.例2:(课本例2)营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪.1kg 食物A 含有0.105kg 的碳水化合物,0.07kg 的蛋白质,0.14kg 的脂肪,花费28元; 1kg 食物B 含有0.105kg 的碳水化合物,0.14kg 的蛋白质,0.07kg 的脂肪,花费21元.为了满足饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg? 转化 图4师生活动:学生独自完成此题,由一位同学生展示自己的解题过程和结果.规范解题步骤和格式.解:设每天食用x kg 食物A ,y kg 食物B0.1050.1050.075,0.070.140.06,0.140.070.06,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩① 目标函数为2821z x y =+二元一次不等式组①等价于775,7146,1476,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩二元一次不等式组所表示的平面区域(图5),即可行域.考虑2821z x y =+,将它变形为4321z y x =-+. 这里4321z y x =-+是斜率为43-,随z 变化的一组平行直线,21z 是直线在y 轴上的截距,当21z 取最小值时,z 的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数2821z x y =+取得最小值.由图5可见,当直线2821z x y =+经过可行域上的点M 时,截距21z 最小,即z 最小. 解方程组775,147 6.x y x y +=⎧⎨+=⎩ 得M 的坐标为17x =,47y =. 所以282116z x y =+=.答:每天食用食物A 为17kg ,食物B 为47kg ,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.4.反思例2的求解过程.教师通过巡视发现错解的学生,帮助学生找到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.(五)归纳梳理,体会探究价值由学生和教师共同总结本节课所学到的知识.师生活动:先由学生总结学习的内容,教师作补充说明,尤其是本节课是如何经历的知识探究过程,如何运用化归与数形结合思想得到方法,以及如何通过数学建模解决实际问题.再有教师介绍数学是有用的,通过本节课看到了时间如何合理分配收获最大的问题,如何使消费最少保证饮食健康的问题,还有很多实际应用由学生自己查资料作为拓展作业.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六)目标检测题1.在线性约束条件5315153x yy xx y+≤⎧⎪≤+⎨⎪-≤⎩下,求①目标函数35z x y=+的最大值和最小值;②目标函数310z x y=-的最大值和最小值;2.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.。

第五届全国高中数学青年教师观摩与评比活动-《函数的奇偶性》说课稿

第五届全国高中数学青年教师观摩与评比活动-《函数的奇偶性》说课稿

函数的奇偶性(第一课时)教学设计一.教学目标1.知识目标:了解奇函数与偶函数的概念。

2.能力目标:(1)能从数和形两个角度认识函数奇偶性。

(2)能运用定义判断函数的奇偶性。

3.情感目标:(1)通过函数奇偶性概念的形成过程,培养学生的观察、归纳、抽象的能力,同时渗透数形结合、从特殊到一般的数学思想。

(2)通过对函数奇偶性的研究,培养学生对数学美的体验、乐于求索的精神,形成科学、严谨的研究态度。

二.教学重点、难点重点:对函数奇偶性概念的认识。

难点:1. 对函数奇偶性概念本质的认识。

2. 利用函数的奇偶性定义来判断函数奇偶性。

三.教学方法观察,归纳,启发探究相结合的教学方法。

四.教学过程(一)复习引入上节课我们研究了函数的单调性,今天我们将从对称的角度来研究函数的另一性质:函数的奇偶性。

对称同学们都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,引导学生回忆:问题1:什么样的图形是轴对称图形?什么样的图形是中心对称图形?问题2:你学过的函数中,哪些函数的图象是轴对称图形?哪些函数的图象是中心对称图形?(二)归纳探索、形成概念1.观察下列函数的图象:说明图象有什么样的特点?图象上运动的点的坐标之间有什么关系?①3)(x x f =(几何画板动态演示)问题3:你能说出什么是奇函数吗?2.得出奇函数、偶函数的定义及图形特征:(1)奇函数:如果对于函数)(x f y =的定义域D 内的任意一个x ,都有)()(x f x f -=-,则这个函数叫奇函数。

问题4:奇函数的图象具有什么样的对称性?奇函数的图象关于原点对称②2)(x x f =(几何画板动态演示)同学们可以自己通过类比得出偶函数的概念及图象性质。

(2)偶函数:如果对于函数)(x g y =的定义域D 内的任意一个x ,都有)()(x g x g =-,则这个函数叫偶函数。

偶函数的图象关于y 轴对称结论1:因此,函数的奇偶性,反映了函数图象在“整个”定义域上的“对称性”。

[转帖]第五届全国高中数学青年教师观摩与评比活动《函数的表示法》说课(宁夏高晓萍)doc高中数学

[转帖]第五届全国高中数学青年教师观摩与评比活动《函数的表示法》说课(宁夏高晓萍)doc高中数学

[转帖]第五届全国高中数学青年教师观摩与评比活动《函数的表示法》说课(宁夏高晓萍)doc高中数学«函数的表示法»教学设计讲明宁夏银川市第九中学高晓萍一、教材内容分析函数是高中数学的重要内容,函数的表示法是〝函数及其表示〞这一节的要紧内容之一。

学习函数的表示法,不仅是研究函数本身和应用函数解决实际咨询题所必须涉及的咨询题,也是加深对函数概念明白得所必须的。

同时,基于高中时期所接触的许多函数均可用几种不同的方式表示,因而学习函数的表示也是领会数学思想方法〔如数形结合、化归等〕、学会依照咨询题需要选择表示方法的重要过程。

学生在学习用集合与对应的语言刻画函数之前,比较适应于用解析式表示函数,但这是对函数专门不全面的认识。

在本节中,从引进函数概念开始,就比较注重函数的不同表示方法:解析法、图象法、列表法。

函数的不同表示法能丰富对函数的认识,关心明白得抽象的函数概念。

专门是在信息技术环境下,能够使函数在数形结合上得到更充分的表现,使学生更好地体会这一重要的数学思想方法。

因此,在研究函数时,应充分发挥图象直观的作用;在研究图象时要注意代数刻画,以求摸索和表述的精确性。

二、教学目标分析依照«一般高中数学课程标准»〔实验〕和新课改的理念,我从知识、能力和情感三个方面制订教学目标。

1.明确函数的三种表示方法〔图象法、列表法、解析法〕,通过具体的实例,了解简单的分段函数及其应用。

2.通过解决实际咨询题的过程,在实际情境中能依照不同的需要选择恰当的方法表示函数,进展学生思维能力。

3.通过一些实际生活应用,让学生感受到学习函数表示的必要性;通过函数的解析式与图象的结合渗透数形结合思想。

三、教学咨询题诊断分析〔1〕初中差不多接触过函数的三种表示法:解析法、列表法和图象法.高中时期重点是让学生在了解三种表示法各自优点的基础上,使学生会依照实际情境的需要选择恰当的表示方法。

因此,教学中应该多给出一些具体咨询题,让学生在比较、选择函数模型表示方式的过程中,加深对函数概念的整体明白得,而不再误以为函数差不多上能够写出解析式的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的单调性(教案)
(绵阳中学 数学组)
赵志明
一、教学目标:
1、理解增函数和减函数的定义;
2、会利用定义证明函数的单调性;
3、了解函数单调区间的概念,并能根据图象说出函数的单调区间;
4、通过本节知识的学习,使学生理解数形结合等思想方法在分析解决问题中的作用,领会从特殊到一般,从直观到抽象,从感性到理性的数学思维方法。

二、重点和难点:
1、教学重点:函数单调性的概念和判断;
2、教学难点:利用函数单调性的定义或者函数的图象判断函数的单调性。

三、教学方法和手段:
1、教学方法:采用探索发现法和启发式讲解法;
2、教学手段:利用多媒体直观、形象的动态功能,为函数单调性概念的理解提供直观、形象的认知基础;同时对函数在某一区间内的变化趋势进行动态演示,帮助学生理解。

四、教学过程: (一)问题情境:
(1)近六届世界杯进球数如下表: 画成折线图:
问题1:随着年份的不同,进球数有什么变化?进球数的变化和图象的变化有什
么联系? (2)绵阳市某天的气温变化曲线图:
问题2:随着时间的变化,温度的
变化趋势是?(上升?下降?)
事实上,在生活中,有很多数据的变化是有规律的,了解这些数据的变化

规律,对我们的生活很有帮助。

观察满足函数关系的数据变化规律往往是看:随着自变量的变化,函数值是如何变化的,这就是我们今天要研究的函数的单调性。

(板书课题) (二)建构定义:
1、引入直观性定义:
观察下列函数的图象,由学生讨论交流并回答下列问题(几何画板动态展示)
问题3:这两个函数图象有怎样的变化趋势?(上升?下降?)
问题4:函数2()f x x =在区间 内y 随x 的增大而增大,在区间 内 y 随x 的增大而减小;
从左到右,图象上升从左到右,图象下降 y 随x 的增大而增大y 随x 的增大而减小
教师说明直观性定义:称左边的函数在区间D 上单调递增函数,右边的函数则称为区间I 上单调递减函数。

2、严格数学语言定义:
多媒体展示:图象在区间D 内呈上升趋势
当x y 也增大
12x ,当21x x <时,有)()(21x f x f <
问题5:若区间内有两点21x x <时,有)()(21x f x f <,能否推出()f x 是单调递 增函数?
2
(2)()f x x
=(1)()1f x x =+y
2()x 1()x
1x 2x x y
x 2()f x
1()f x 0
1x 2x
构造反例,动画演示,引导学生对自变量取值的“任意性”的深刻理解。

定义:一般地,设函数)(x f 的定义域为I:
如果对于定义域I 内某个区间D 上的任意两个自变量的值12x x 、,当2
1x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是单调递增函数。

由学生类比得到减函数的定义:
如果对于定义域I 内某个区间D 上的任意两个自变量的值21x x 、,当2
1x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是单调递减函数。

注:
(1)21,x x 三大特征:①属于同一区间;②任意性;③有大小:通常规定21x x <; (2)相对于定义域,函数的单调性可以是函数的局部性质。

举例:2x y =在),0(+∞上是单调增函数,但在整个定义域上不是增(减)函数。

(三)定义应用:
例1、下图是定义在[-5,5]上的函数)(x f y =的图象,根据图象说出函数
)(x f y =的单调区间,以及在每一单调区间上,)(x f y =是增函数还是减函数。

分析:动画演示,帮助学生理解。

解:)(x f y =的单调区间有[-5,-2),[-2,1),[1,3),[3,5]。

其中)(x f y =在[-5,-2),[1,3)上是减函数; 在[-2,1), [3,5)上是增函数。

强调单调区间的写法:
问题6:可否写成[-5,-2)U[-2,1)? 问题7:写成[-5,-2)还是写成[-5,-2]? 多媒体展示构造反例说明:
(1)单调区间一般不能求并集;
(2)当端点满足单调性定义时,可开可闭。

例2、试判断函数x x x f +=2)( 在区间(0,+∞)上是增函数还是减函数?并给予证明。

分析:问1:除了图象法判定函数单调性还有什么方法? 2:如何用定义法判定函数单调性?
3:用定义判定函数单调性的关键是什么?(提示如何比较3和2的大小,从而引入作差法)
证明:函数x x x f +=2)( 在(0,+∞)上是增函数
设21x x 、 是(0,+∞)上的任意两个值,且21x x <
则)()(
)()(22212
121x
x x x x f
x f +-+
=-

(212
221)(x x x x -+-= )(212121))((x x x x x x -++-= )1)((2121++-=x x x x
又210x x <<,故021<-x x ,0121>++x x 则0)()(21<-x f x f ,即:)()(21x f x f <
因此,函数x x x f +=2)( 在(0总结定义法证明函数单调性的步骤:
1、取值:设任意21x x 、属于给定区间,且21x x <;
2、作差变形:)()(21x f x f -变形的常用方法:因式分解、配方、有理化等;
3、定号:确定)()(21x f x f -的正负号;
4、下结论:由定义得出函数的单调性。

思考题:
在上面证明中,你能理解12x x 、的任意性的意义吗?
解答:有了“任意性”在区间内不管取哪两个值,其证明过程都是一样的。

四、课堂练习:
(1)课本P65页1,
(2)证明:函数x y 3
=在),(∞+0上是减函数。

(动画演示帮助理解)
取值
下结论
定号
作差变形
课后思考:
函数)
(x f 在R 上单调递增,那么,
2
121)
()(x x x f x f --的符号有什么规律?若单调
递减,又该如何? 五、回顾小结:
1、函数单调性的定义;
2、判定函数单调性:
(1)方法:图象法,定义法;
(2)定义法步骤:取值,作差变形,定号,下结论。

六、课后作业:
1、必做题:课后练习1,4,6,
2、选做题: 课后练习7。

相关文档
最新文档