高等数学多元函数微分在几何中的应用
高等数学公式大全及常见函数图像

高等数学公式大全及常见函数图像文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)高等数学公式导数公式: 基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。
多元函数微分学的应用习题及详细解答

(x, y) 0 下的极值点,下列选项正确的是( D )。
A.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0 C.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0
B.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0 D.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0
x 1 y 2 z 1. 1 1 1
5.已知曲面 z x2 y2 z2 上点 P 处的切平面 x 2y 2z 0 平行,求点 P 的坐标以及曲
面在该点的切平面方程。
解:曲面在点 P 处的法向量为 n Fx, Fy, Fz 2x, 2y, 2z 1 ,依题意,n 1, 2, 2 ,
(0, 0) 处取得极小值的一个充分条件是( A )。
A. f (0) 1, f (0) 0 C. f (0) 1, f (0) 0
B. f (0) 1, f (0) 0 D. f (0) 1, f (0) 0
(5)设 f (x, y)与(x, y) 均为可微函数,且y (x, y) 0,已知(x0, y0)是f (x, y)在约束条件
在何处?
解:行星表面方程为 x2 y2 z2 36 .令 L 6x y2 xz 60 (x2 y2 z2 36) ,求
解方程组 6 z 2x 0 , 2 y 2 y 0 , x 2z 0 ,则可得驻点
x
y
z
(4, 4, 2), ( 3, 0,3), (0, 0, 6) ,结合题意易知 H 在 (4, 4, 2) 处最小,且最小值为 12.
2x a2
2y b2
y
0,
y
b2 a2
x y
所以在点
a, 2
b 2
高等数学下册第7章多元函数微分法及其应用 (7)

故当 y y0, x x0时,有 f ( x, y0 ) f ( x0 , y0 ),
5
说明一元函数 f ( x, y0 )在 x x0处有极大值,
必有
f x ( x0 , y0 ) 0;
类似地可证
f y ( x0 , y0 ) 0.
从几何上看,这时如果曲面 z f ( x, y) 在点
21
例6
求椭球面
x2 a2
y2 b2
z2 c2
1 的内接长方体,
使长方体的体积为最大.
解 设长方体与椭球面在第一卦限内的接点坐标为
(x, y, z),则内接长方体的体积为8x构yz造, 函数
F
( x,
y,
z)
8 xyz
(
x2 a2
y2 b2
z2 c2
1),
得方程组
8
yz
2x a2
0,
8 xz
2y b2
求出实数解,得驻点.
第二步 对于每一个驻点( x0 , y0 ),
求出二阶偏导数的值A、B、C.
第三步 定出AC B2 的符号,再判定是否是极值.
8
例1 求函数f ( x, y) x3 y3 3x2 3 y2 9x的极值.
解 先解方程组
f x ( x, y) 3x2 6x 9 0,
x y 1 3,z 2 3 和 2
x y 1 3,z 2 3 2
dmax 9 5 3, dmin 9 5 3.
25
例8. 求函数f(x, y)=xy在闭区域x2 y2 1上的
最大值与最小值
解 由fx(x, y)=y=0, fy(x, y)得=x到=0函, 数在区域内 的唯一驻点为(0,0),且 f(0,0)下=0面.考虑函数在区域 的边界x2+ y2=1上的最大值与最小值.设
高等数学第9章多元函数微分学及其应用(全)

f ( x, y ) A 或 f x, y A( x x0,y y0 ).
31
二、二元函数的极限
定义 9.3
设二元函数z f ( P) f ( x, y ) 的定义域为D ,P0 ( x0 , y0 )
是D 的一个聚点,A 为常数.若对任给的正数 ,总存在 0 ,当
0 当 P( x, y) D 且 0 P0 P ( x x0 )2 ( y y0 ) 2 总有
f ( P) A , 则称A为 P P0 时的(二重)极限.
4
01
极限与连续
注意 只有当 P 以任何方式趋近于 P0 相应的 f ( P )
都趋近于同一常数A时才称A为 f ( P ) P P0 时的极限
P为E 的内点,如图9.2所示.
②边界点:如果在点P的任何邻域内,既有属于E 的点,也有不
属于E的点,则称点P 为E 的边界点.E 的边界点的集合称为E 的边
界,如图9.3所示.
P
E
图 9.2
P
E
图 9.3
16
一、多元函数的概念
③开集:如果点集E 的每一点都是E 的内点,则称E 为开集.
④连通集:设E 是平面点集,如果对于E 中的任何两点,都可用
高等数学(下册)(慕课版)
第九章 多元函数微分学及其应用
导学
主讲教师 | 张天德 教授
第九章
多元函数微分学及其应用
在自然科学、工程技术和社会生活中很多实际问题的解决需要引进多元
函数. 本章将在一元函数微分学的基础上讨论多元函数微分学及其应用.
本章主要内容包括:
多元函数的基本概念
偏导数与全微分
多元复合函数和隐函数求偏导
数学强化班(武忠祥)-高数第八章向量代数与解析几何及多元微分在几何上应用

数学强化班(武忠祥)-⾼数第⼋章向量代数与解析⼏何及多元微分在⼏何上应⽤第⼋章向量代数与空间解析⼏何及多元微分学在⼏何上的应⽤第⼀节向量1.数量积1)⼏何表⽰:αcos ||||b a b a =?. 2) 代数表⽰: z z y y x x b a b a b a ++=?b a . 3) 运算规律:i) 交换律: a b b a ?=?ii) 分配律: .)(c a b a c b a ?+?=+? 4) ⼏何应⽤:i) 求模: a a a ?=||ii) 求夹⾓: ||||cos b a ba ?=α iii) 判定两向量垂直: 0=??⊥b a b a 2.向量积1) ⼏何表⽰ b a ?是⼀向量. 模: αsin ||||||b a b a =?. ⽅向: 右⼿法则.2) 代数表⽰: zyx z y xb b b a a a k j ib a =?. 3) 运算规律 i) b a ?= )(a b ?-ii) 分配律: ?a (c b +)=b a ?+c a ?. 4)⼏何应⽤:i) 求同时垂直于a 和b 的向量: b a ?.ii) 求以a 和b 为邻边的平⾏四边形⾯积:=S |b a ?|.iii)判定两向量平⾏: ?b a //0=?b a . 3.混合积: c b a abc ??=)()( 1) 代数表⽰:zyxz y xz y xc c c b b b a a a =)(abc . 2) 运算规律:i) 轮换对称性: )()()(cab bca abc ==. ii) 交换变号: )()(acb abc -=. 3) ⼏何应⽤i) 平⾏六⾯体V =|)(|abc .ii)判定三向量共⾯: c b a ,,共⾯?(abc )=0.题型⼀向量运算例8.1 设,2)(=??c b a 则=+?+?+)()]()[(a c c b b a .解 )()]()[(a c c b b a +?+?+)(][a c c b b b c a b a +??+?+?+?=a cbc c b a c a c c a a b a c b a ??+??+??+??+??+??=)()()()()()( a c b c b a ??+??=)()( 4)(2=??=c b a .例8.2 已知3||,2||==b a ,则=??+))(()()(b a b a b a b a .解 22)())(()()(b a b a b a b a b a b a ?+?=??+ ),(c o s ),(s i n 222222∧∧+=b a b a b a b a 3622==b a .例8.3 已知2||,2||==b a ,且2=?b a ,则=?||b a.A)2 B)22 C)22D)1 解由于2),cos(==?∧b a b a b a ,⽽2,2==b a ,则21),cos(=∧b a ,从⽽4),(π=∧b a .故 22122),s i n (=?==?∧b a b a b a题型⼆向量运算的应⽤及向量的位置关系例8.4 已知}4,4,2{-=a ,}2,2,1{--=b ,求a 与b 的⾓平分线向量且使其模为32。
高等数学第六章多元函数微分法及应用第三节 全微分

dz f x (1,2)dx f y (1,2)dy 2 0.04 0 0.02 0.08
(1.04)2.02 1.08
V 2rhr r 2h
其余部分是 (r)2 (h)2的高阶无穷小,所以
V 2rhr r 2h o( (r)2 (h)2 )
2020/2/13
线性主部
无穷小量
3
二 全微分的定义
(Definition of total differential)
全微分存在.
xy
例如,
f
(
x,
y)
x2 y2
0
x2 y2 0 .
x2 y2 0
在 点 (0 ,0 )处 f x (0 ,0 ) f y (0 ,0 ) 0
z [ f x (0,0) x f y (0,0) y]
x y , (x)2 (y)2
2020/2/13
14
记全微分为 dz z dx z dy. x y
通常我们把二元函数的全微分等于它的两个 偏微分之和这件事称为二元函数的微分符合叠加 原理.
叠加原理也适用于二元以上函数的情况. 全微分的定义可推广到三元及三元以上函数
du u dx u dy u dz. x y z
2020/2/13
20
证 令 x cos , y sin ,
则 lim xy sin 1
( x , y )(0,0)
x2 y2
lim 2 sin cos sin 1
《应用高等数学》微分的定义及微分的几何意义

《应用高等数学》微分的定义及微分的几何意义微分的定义:微分是微积分中的一个重要概念,是研究函数变化率和函数的局部特性的工具。
微分的定义可以通过极限的方式来描述。
对于函数f(x),如果存在一个实数a和一个实数k,使得当x无限接近a时,函数f(x)的增量Δy和自变量增量Δx之比无限接近于k,即k = lim(Δy/Δx) = lim(f(x) - f(a))/(x - a),其中lim表示极限。
微分的几何意义:微分在几何上有着重要的意义,它可以用来描述函数的局部特性和刻画曲线的形状。
微分可视为函数曲线在其中一点处的切线斜率。
具体来说,微分的几何意义主要包括以下几个方面:1.切线的斜率:假设有一个函数曲线y=f(x),在其中一点P处的切线斜率就是函数在该点的导数f'(x),也称为函数的微分。
微分告诉我们,函数曲线在该点附近的变化速度,即函数值的增减率。
2.切线与曲线的切点:微分还可以确定函数曲线与其切线的切点位置。
给定一个曲线f(x)和一个点P,通过微分求解,可以得到切线与曲线的切点坐标。
3.泰勒展开:微分的另一个重要应用是构造泰勒展开式。
泰勒展开式可以将一个函数在其中一点展开为一个无穷级数,通过微分的概念,可以推导出泰勒展开式的表达式,并且可以利用泰勒展开式来逼近函数的近似值。
4.极值点:微分还可以帮助我们确定函数的极值点。
当函数在其中一点处的微分为零时,说明函数在该点处取得了极值。
通过对微分进行求解,可以求得函数的极值点。
总之,微分在几何上是一种刻画函数曲线局部特性的工具。
它不仅可以帮助我们理解函数的变化规律和刻画曲线的形状,还可以用于求解切线的斜率、切点的位置、构造泰勒展开式以及寻找极值点等问题。
微分是微积分中的重要概念,对于深入理解函数和曲线的性质具有重要意义。
关于高等数学公式大全

关于高等数学公式大全 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ·诱导公式:·和差角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式:空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z R y Q x P n ndiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系: 常数项级数: 级数审敛法:绝对收敛与条件收敛: 幂级数:函数展开成幂级数:一些函数展开成幂级数: 欧拉公式: 三角级数: 傅立叶级数:周期为l 2的周期函数的傅立叶级数: 微分方程的相关概念: 一阶线性微分方程: 全微分方程: 二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于曲线 的任意性 , 表明这些切线都在以 为法向量
的平面上 , 从而切平面存在 .
曲面 在点 M 的法向量:
n ( Fx (x0 , y0 , z0 ), Fy (x0 , y0 , z0 ), Fz (x0 , y0 , z0 ))
切平面方程
Fx (x0, y0, z0 ) (x x0 ) Fy (x0 , y0 , z0 ) ( y y0 ) Fz (x0, y0, z0 )(z z0 ) 0
z (x)
即
x 2y 3z 6
切向量 T (1, , )
2. 曲线为一般式的情况
光滑曲线
:
F ( x, G(x,
y, z) y, z)
0 0
当 J (F,G) 0 时, 可表示为
(y, z)
dy 1 (F,G) , dz 1 (F,G) , dx J (z, x) dx J (x, y) 曲线上一点 M (x0 , y0 , z0 ) 处的切向量为
xz 0
解法2 方程组两边对 x 求导, 得
x z
y x
解得 dy dx
1 1
yz
zx, yz
dz dx
1 1 yz
xy yz
11
11
曲线在点 M(1,–2, 1) 处有:
切向量
T
1xx,2ddyxyy2
Mz,z
2dz 0dx
6
M
(1, 0, 1)
点 M (1,–2, 1) 处的切向量
M
切线方程为 x x0 y y0 z z0
(t0 ) (t0 ) (t0 )
下面证明: 上过点 M 的任何曲线在该点的切线都
在同一平面上. 此平面称为 在该点的切平面.
证:
在 上,
F( (t), (t), (t) ) 0
T
两边在 t t0 处求导,注意 t t0 对应点M ,
x x0 (F , G)
( y, z) M
y y0 (F , G)
(z , x) M
z z0 (F , G) (x, y) M
法平面方程
(F , G) ( y, z)
(x x0 )
M
(F,G) (z , x)
( y y0 )
M
(F,G) (x, y)
(z z0) 0
M
法平面方程
M ( 1,–2, 1) 处的切线方程与法平面方程.
解法1 令
则
(F ,G)
2y 2z
(y, z) M 1 1
2(y z)
M
6;
M
x
切向量 T ( 6, 0, 6)
切线方程
yz
即
x
y
z
2
2
0
0
法平面方程 6 (x 1) 0 ( y 2) 6 (z 1) 0
即
f (t0) ((t0), (t0), (t0))
因此曲线 在点 M 处的
切线方程 法平面方程
x x0
(t0 )
y y0
(t0 )
z z0
(t0 )
f (t0)
M
(t0 )(x x0 ) (t0 ) ( y y0 ) (t0 )(z z0 ) 0
例4. 求曲线 x t, y t2, z t3在点 M (1, 1, 1) 处的切线
T 1, (x0), (x0)
1,
1 J
(F,G) (z, x)
,
M
1 (F,G) J (x, y)
M
, 且有
或 T (F,G) , (F,G) , (F,G) ( y, z) M (z , x) M (x, y) M
则在点 M (x0, y0, z0 )有
切线方程
T (1, 0, 1)
切线方程
即
法平面方程 1 (x 1) 0 ( y 2) (1) (z 1) 0
即
xz 0
三、曲面的切平面与法线
设 有光滑曲面
通过其上定点
任意引一条光滑曲线
点 M 的切向量为
设 t t0 对应点 M, 且 不全为0 . 则 在
T
T ((t0 ), (t0 ), (t0 ))
(F , G) ( y, z)
M
(
x
x0
)
(F (z
, ,
G) x)
M ( y y0 )
也可表为
(F,G) (x , y)
M (z z0) 0
x x0 y y0 z z0
Fx (M ) Fy (M ) Fz (M ) 0
Gx (M ) Gy (M ) Gz (M )
(自验证)
例5. 求曲线 x2 y2 z2 6, x y z 0 在点
第六节
第八章
多元函数微分学的几何应用
一、空间曲线的切线与法平面 二、曲面的切平面与法线
一、空间曲线的切线与法平面
空间光滑曲线在点 M 处的切线为此点处割线的极限位
置. 过点 M 与切线垂直的平面称为曲线在该点的法平面.
给定光滑曲线
:f (t) ((t), (t),(t)) 则当, , 不同时为 0 时, 在
过M点且垂直于切平面的直线
称为曲面 在点 M 的法线.
T
M
法线方程
x x0 Fx (x0 , y0 , z0 )
y y0 Fy (x0 , y0 , z0 )
z z0 Fz (x0 , y0 , z0 )
特别, 当光滑曲面 的方程为显式
时, 令
F(x, y, z) f (x, y) z
M
得 Fx (x0, y0, z0 ) (t0 ) Fy (x0 , y0 , z0 ) (t0 )
Fz (x0, y0, z0 )(t0 ) 0
令 T ((t0 ), (t0 ), (t0 ))
n (Fx (x0 , y0 , z0 ), Fy (x0 , y0 , z0 ), Fz (x0 , y0 , z0 )) 切向量 T n
方程与法平面方程.
解:x 1, y 2t, z 3t2, 点(1, 1, 1) 对应于
故点M 处的切向量为 T (1, 2, 3) 思考: 光滑曲线
因此所求切线方程为 x 1 y 1 z 1 1 23
:
zy
(x) (x)
的切向量有何特点?
法平面方程为
答:
:
x y
x
(x)
(x 1) 2 ( y 1) 3(z 1) 0
点M (x, y, z) 处的切向量及法平面的
T
M
法向量均为
f (t) ((t), (t), (t))
点向式可建立曲线的切线方程 利用
点法式可建立曲线的法平面方程
1. 曲线方程为参数方程的情况 给定光滑曲线
设上的点 M (x0, y0, z0) 对应t t0,(t0), (t0),(t0)不全 为0, 则 在点M 的导向量为