2012中考冲刺班辅导资料-----动点问题研究
中考拔尖班第二讲

中考拔尖班第二讲:函数动点综合【郭老师中考讲义2】函数动点综合所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类讨论函数思想方程思想数形结合思想转化思想动点坐标问题是近年来中考的的一个热点问题,解这类题目要“以静制动”,即把动态问题,变为静态问题来解。
一般方法是抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中两个变量X、Y的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。
第三,确定自变量的取值范围,画出相应的图象。
【热身】1.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=3.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.⑴试说明在运动过程中,原点O始终在⊙G上;⑵设点C的坐标为(x,y),试探求y与x之间的函数关系式,并写出自变量x的取值范围;⑶在整个运动过程中,点C运动的路程是多少?【精讲】2.如图1,平面直角坐标系xOy 中,抛物线212y x bx c =++与轴交于A 、B 两点,点C 是AB 的中点,CD ⊥AB 且CD =AB .直线BE 与轴平行,点F 是射线BE 上的一个动点,连接AD 、AF 、DF .(1)若点F 的坐标为(92,1),AF①求此抛物线的解析式;②点P 是此抛物线上一个动点,点Q 在此抛物线的对称轴上,以点A 、F 、P 、Q 为顶点构成的四边形是平行四边形,请直接写出点Q 的坐标;(2)若22b c +=-,2b t =--,且AB 的长为kt ,其中0t >.如图2,当∠DAF =45°时,求k 的值和∠DFA 的正切值.xy【小公式复习】● 韦达定理的延伸,X1,X2的代数式求解,二次函数在X 轴上截得的线段长为:21X X a -=●二次函数与x 轴交点,或者二次函数和一次函数相交交点 转化为一元二次方程来看 ●Delta 对于交点的影响3.已知:如图,抛物线y=a (x ﹣1)2+c 与x 轴交于点A (,0)和点B ,将抛物线沿x 轴向上翻折,顶点P 落在点P'(1,3)处. (1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x 轴的平行线交抛物线于C 、D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W ”型的班徽,“5”的拼音开头字母为W ,“W ”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W ”图案的高与宽(CD )的比非常接近黄金分割比(约等于0.618).请你计算这个“W ”图案的高与宽的比到底是多少?(参考数据:,,结果可保留根号)4.抛物线的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB=,求点M的坐标.5.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.6.在平面直角坐标系xOy中,已知二次函数y=的图象经过点A(2,0)和点B(1,﹣),直线l经过抛物线的顶点且与t轴垂直,垂足为Q.(1)求该二次函数的表达式;(2)设抛物线上有一动点P从点B处出发沿抛物线向上运动,其纵坐标y1随时间t(t≥0)的变化规律为y1=﹣+2t.现以线段OP为直径作⊙C.当点P在起始位置点B处时,试判断直线l与⊙C的位置关系,并说明理由;在点P运动的过程中,直线l与⊙C是否始终保持这种位置关系?请说明你的理由.。
中考动点问题专题教师讲义带答案

中考动点型问题专题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1 (2015•兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.对应训练1.(2015•白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
2012中考复习动点问题精选

B动点问题精选——青大附中数学组1、如图,在直角梯形ABCD 中,AB ∥DC ,∠D =90o,AC ⊥BC ,AB =10cm ,BC =6cm ,F 点以2cm /秒的速度在线段AB 上由A 向B 匀速运动,E 点同时以1cm /秒的速度在线段BC 上由B 向C 匀速运动,设运动时间为t 秒,当一个点运动到终点时,另一个点也停止运动. (1)点E 、F 移动的过程中,当BEF ∆为直角三角形时,求出t 的值;(2)四边形AFEC 的面积能否达到19.8cm 2?若能,请求出t 值,若不能,请说明理由; (3)点E 、F 移动的过程中,当BEF ∆为等腰三角形时,求出t 的值;(4)若点F 运动到B 点时继续沿射线AB 方向运动,点E 运动到C 点时继续在线段CD 上向D 点运动,到D 点后停止运动,点F 也随之停止运动;请问以点B 、D 、E 、F 为顶点的四边形能否成为平行四边形?若能,请求出t 的值,若不能,请说明理由。
答案:(1)1130,1350;(2)1.5,,3.5;(3)310,825,1760; (4)15112.2、如图,直角梯形ABCD 中,AB ∥DC ,90DAB ∠=︒,24AD DC ==,6AB =.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C -D -A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 的交点为E ,与折线A -C -B 的交点为Q .点M 运动的时间为t (秒).(1)当0.5t =时,求线段QM 的长; (2)当0<t <2时,若△PCQ 的面积为y ,请求y 关于出t 的函数关系式(3)当动点P 在线段CD 上运动时,是否存在某一时刻,使181=y S 梯形ABCD ?若存在,求出t 的值,若不存在,说明理由。
(4)点P 在线段DA 上运动时,是否存在某一时刻,可以使四边形AMQP 为正方形,若存在,请求出t 的值;若不存在,请说明理由.(5)点M 在线段AB 上运动时,是否可以使得以C 、P 、Q 为顶点的三角形为直角三角形,若可以,请直接写出t 的值(不需解题步骤);若不可以,请说明理由.A B C D (备用图1)B C D(备用图2)Q A B C D l M P (第2题)E解:(1)过点C 作CF AB ⊥于F ,则四边形AFCD 为矩形.∴4CF =,2AF =. 此时,Rt △AQM ∽Rt △ACF .∴QM CFAM AF =. 即40.52QM =,∴1QM =. (2)当0<t <2时,点P 在线段CD 上,设直线l 交CD 于点E 由(1)可得QM CFAM AF=即24=t QM ∴QM=2t . ∴QE=4-2t .∴S △PQC =0.5PC•QE=-t 2+2t ,即y=-t 2+2t , (3)由题意:4)62(2118122⨯+⨯=+-t t ; 解得:321=t ,342=t(4)当t >2时,如备用图1,4(2)6PA DA DP t t =-=--=-. 由(1)得,4BF AB AF =-=. ∴CF BF =. ∴45CBF ∠=︒. ∴6QM MB t ==-. ∴QM PA =. ∴四边形AMQP 为矩形.若矩形AMQP 为正方形.则需AM=AP , 即t t -=6 ∴3=t . (5)1t =或53或4.3、如图,在Rt ABC △中,90A ∠= ,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 解:(1) Rt A ∠=∠,6AB =,8AC =,10BC ∴=. Q ABCDl M P (第2题)EFABCD (备用图1)M QRF P点D 为AB 中点,132BD AB ∴==. 90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△,DH BDAC BC∴=, ∴5128103=⨯=⋅=AC BC BD DH (2)QR AB ∥,90QRC A ∴∠=∠= .C C ∠=∠ ,RQC ABC ∴△∽△, RQ QC AB BC ∴=,10610y x -∴=,即y 关于x 的函数关系式为:365y x =-+. (3)存在.按腰相等分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =. 1290∠+∠= ,290C ∠+∠= ,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫-+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x -+=,6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点, 11224CR CE AC ∴===.tan QR BAC CR CA == ,366528x -+∴=,152x ∴=.综上所述,当x 为185或6或152时,PQR △为等腰三角形.点评:建立函数关系式,实质就是把函数y 用含自变量x 的代数式表示;要求使PQR △为等腰三角形的x 的值,可假设PQR △为等腰三角形,找到等量关系,列出方程求解,由于题设中没有指明等腰三角形的腰,故还须分类讨论.4、如图,梯形ABCD 中,AD ∥BC,∠BAD=90°,CE ⊥AD 于点E,AD=8cm ,BC=4cm,AB=5cm 。
2012中考数学复习专题-动点问题

1、如图:已知
ABCD中,AB=7,BC=4,∠A=30°.
(1)点P从点A沿AB边向点B运动,速度为1cm/s.
若设运动时间为t(s),连接PC,当t为何值时,△PBC为等腰三 角形?
关键:1.构造出图形,并用代数式表示点移动的距离; 2.根据需满足的条件确定关系式.
D C
A
30°
4
P 7
t
7-t
A
则△ AQP~△ABC
AQ AP AB AC
5
t
Q
B
D
2t
P
C
5t 2t 10 6 15 t 7
2.在Rt△ABC中,∠C=90°,AC=6cm, BC=8cm, 点P由点A出发,沿AC向C运动,速度为2cm/s,同时 点Q由AB中点D出发,沿DB向B运动,速度为1cm/s, 连接PQ,若设运动时间为t(s) (0<t ≤3) (2)设△ APQ的面积为y( cm ),求y与t之间的函数关系。
A
M D
Q
B
C
P
Q
B
D
P
C
A
P
B
A
B
5. 最值问题(二次函数、 两点之间线段最短) P
6. 平行四边形 等腰梯形
思 路
化动为静
分类讨论
数形结合(常要构造图形)
构建方程模型、函数模型.
解:过点Q作QN⊥AC于点N,
2.(2)
t
Q
B
D
A
在RtABC中,C 90
Si nA 8 10
5
2t P
∟ N
QN 8 AQ 10
C
QN 8 5t 10
中考动点问题专题教师讲义带答案

中考动点型问题专题一、中考专题诠释所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
二、解题策略和解法精讲解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
三、中考考点精讲考点一:建立动点问题的函数解析式(或函数图像)函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.例1 (2015?兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P 在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.思路分析:分析动点P的运动过程,采用定量分析手段,求出S与t的函数关系式,根据关系式可以得出结论.解:不妨设线段AB长度为1个单位,点P的运动速度为1个单位,则:(1)当点P在A→B段运动时,PB=1-t,S=π(1-t)2(0≤t<1);(2)当点P在B→A段运动时,PB=t-1,S=π(t-1)2(1≤t≤2).综上,整个运动过程中,S与t的函数关系式为:S=π(t-1)2(0≤t≤2),这是一个二次函数,其图象为开口向上的一段抛物线.结合题中各选项,只有B符合要求.故选B.点评:本题结合动点问题考查了二次函数的图象.解题过程中求出了函数关系式,这是定量的分析方法,适用于本题,如果仅仅用定性分析方法则难以作出正确选择.对应训练1.(2015?白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.1.C考点二:动态几何型题目点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
中考冲刺数学压轴题押题预测专题5:动点问题

专题5:动点问题一、选择题1.(2012北京市4分)小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B 跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的【】A.点M B.点N C.点P D.点Q【答案】D。
【考点】动点问题的函数图象.【分析】分别在点M、N、P、Q的位置,结合函数图象进行判断,利用排除法即可得出答案:A、在点M位置,则从A至B这段时间内,弧AB上每一点与点M的距离相等,即y不随时间的变化改变,与函数图象不符,故本选项错误;B、在点N位置,则根据矩形的性质和勾股定理,NA=NB=NC,且最大,与函数图象不符,故本选项错误;C、在点P位置,则PC最短,与函数图象不符,故本选项错误;D、在点P位置,如图所示,①以Q为圆心,QA为半径画圆交AB于点E,其中y最大的点是y=y,AE的中垂线与弧AB的交点H;②在弧AB上,从点E到点C上,y逐渐减小;③QB=QC,即B C且BC的中垂线QN与BC的交点F是y的最小值点。
经判断点Q符合函数图象,故本选项正确。
故选D。
2. (2012浙江嘉兴、舟山4分)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A 的路径运动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是【】A.B.C.D.【答案】D。
【考点】动点问题的函数图象。
【分析】因为动点P按沿折线A→B→D→C→A的路径运动,因此,y关于x的函数图象分为四部分:A→B,B→D,D→C,C→A。
当动点P在A→B上时,函数y随x的增大而增大,且y=x,四个图象均正确。
当动点P在B→D上时,函数y在动点P位于BD中点时最小,且在中点两侧是对称的,故选项B错误。
当动点P在D→C上时,函数y随x的增大而增大,故选项A,C错误。
九年级数学中考复习教案动点问题

中考数学复习教案:动点问题【教学目标】1、知识目标:能够对点在运动变化过程中相伴随的数量关系、图形位置关系等进行观察研究。
2、能力目标:进一步发展学生探究性学习能力,培养学生动手、动脑、手脑和谐一致的习惯。
3、情感目标:培养浓厚的学习兴趣,养成与他人合作交流的习惯。
【重点难点】1、教学重点:化“动”为“静”2、教学难点:运动变化过程中的数量关系、图形位置关系【教学方法】实践操作、引导探究【教学用具】多媒体、几何画板软件【教学过程】图形中的点、线的运动,构成了数学中的一个新问题——动态几何。
它通常分为三种类型:动点问题、动线问题、动形问题。
在解这类题时,要充分发挥空间想象的能力,往往不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。
本节课来研究动态几何中的第一种类型——动点问题。
动点问题主要研究点在直线上运动、点在圆上运动两种情况。
点在直线上运动问题1:如图,在边长为4cm的正方形ABCD中,现有一动点P,从点A出发,以2cm/秒的速度,沿正方形的边经A-B-C-D到达点D。
设运动时间为x秒。
(1)当点P运动3.5秒时,点P到达什么位置?当点P运动秒时,点P到点A的距离为5cm;(2)连结始点A、动点P、终点D形成△APD,设其面积为S,求S与x的函数关系式;(3)如图,另有一动点Q,以1cm/秒的速度从点D出发,沿正方形的边经D-C-B到达点B,点P、Q分别从点A、D同时出发。
连结AP、PQ、QA,设△PAQ的面积为W,试求在点P、Q相遇前,W与x之间的关系式。
思路点拨:点在直线图形上运动,随着时间的变化,点的位置也会发生改变,与之相关的图形也在发生改变,所以解题时要分类讨论。
根据点的运动情况,正确画出图形,思考时多画几张草图。
在解第(3)小题时,有两个点在同时运动,而且运动的速度不同,要注意数形结合。
点在曲线上运动问题2:如图,已知⊙O弦AB 的长为60,点P 是⊙O上的动点(P 与A 、B 不重合),连结AP 、BP 。
中考压轴题十大类型之动点问题

念书破万卷下笔如有神第一讲中考压轴题十大种类之动点问题一、解题策略和解法精讲解决动点问题的要点是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,经过“对称、动点的运动”等研究手段和方法,来研究与发现图形性质及图形变化,在解题过程中浸透空间见解和合情推理。
在动点的运动过程中察看图形的变化情况,理解图形在不同样地址的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”研究题的基本思路 ,这也是动向几何数学问题中最中心的数学本质。
二、精讲精练1.(2011 吉林)如图,梯形 ABCD 中, AD∥BC,∠ BAD=90°, CE⊥ AD 于点E,AD=8cm,BC=4cm,AB=5cm.从初始时辰开始,动点 P,Q 分别从点 A,B 同时出发,运动速度均为 1cm/s,动点 P 沿 A-B-C-E 方向运动,到点 E 停止;动点 Q 沿 B-C-E- D 方向运动,到点 D 停止,设运动时间为x s,△ PAQ 2的面积为 y cm ,(这里规定:线段是面积为0 的三角形)解答以下问题:(1)当x=2s 时, y=_____ cm2;当x =9 s 时, y=_______ cm2.2(2)当5 ≤x ≤14时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出y4S 梯形ABCD时x 的值.15(4)直接写出在整个运动过程中,使 PQ 与四边形 ABCE 的对角线平行的所..有 x 的值.2.(2007 河北)如图,在等腰梯形 ABCD 中, AD∥BC,AB=DC=50,AD=75,BC=135.点 P 从点 B 出发沿折线段 BA-AD-DC 以每秒 5 个单位长的速度向点 C 匀速运动;点 Q 从点 C 出发沿线段 CB 方向以每秒 3 个单位长的速度匀速运动,过点 Q 向上作射线 QK⊥BC,交折线段 CD-DA-AB 于点 E.点 P、Q 同时开始运动,当点 P 与点 C 重合时停止运动,点 Q 也随之停止.设点 P、Q 运动的时间是 t 秒( t>0).(1)当点 P 抵达终点 C 时,求 t 的值,并指出此时BQ 的长;(2)当点 P 运动到 AD 上时, t 为何值能使 PQ∥DC ?(3)设射线 QK 扫过梯形 ABCD 的面积为 S,分别求出点 E 运动到 CD、DA 上时, S 与 t 的关系式;(4)△PQE 可否成为直角三角形?若能,写出 t 的取值范围;若不能够,请说明原因.A DK A DP EBQ CBC备用图3.(2008 河北)如图,在Rt△ABC中,∠ C=90°, AB=50,AC=30,D,E,F 分别是 AC,AB,BC 的中点.点 P 从点D出发沿折线 DE-EF-FC-CD 以每秒7 个单位长的速度匀速运动;点Q从点 B 出发沿BA方向以每秒 4 个单位长的速度匀速运动,过点 Q 作射线 QK AB ,交折线BC-CA于点 G .点 P,Q 同时出发,当点 P 绕行一周回到点D时停止运动,点Q也随之停止.设点P, Q 运动的时间是t秒( t 0 ).(1)D,F两点间的距离是;(2)射线QK可否把四边形CDEF分成面积相等的两部分?若能,求出t 的值.若不能够,说明原因;(3)当点 P 运动到折线EF FC 上,且点P又恰巧落在射线 QK 上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出 t 的值...C K CD F D FP GA EQB A E B备用图4(.2011 山西太原)如图,在平面直角坐标系中,四边形 OABC 是平行四边形.直线 l 经过O、C两点.点A的坐标为( 8,0),点B的坐标为( 11,4),动点P在线段 OA 上从点 O 出发以每秒 1 个单位的速度向点 A 运动,同时动点 Q 从点 A出发以每秒 2 个单位的速度沿A→ B→C 的方向向点 C 运动,过点 P 作 PM 垂直于 x 轴,与折线 O- C- B 订交于点 M.当 P、 Q 两点中有一点抵达终点时,另一点也随之停止运动,设点 P、Q 运动的时间为 t 秒 ( t 0 ) ,△ MPQ 的面积为 S.(1)点 C 的坐标为 ________,直线l的剖析式为 __________.(2)试求点 Q 与点 M 相遇前 S 与 t 的函数关系式,并写出相应的 t 的取值范围.(3)试求题 ( 2) 中当 t 为何值时, S 的值最大,并求出S 的最大值.(4)随着 P、Q 两点的运动,当点 M 在线段 CB 上运动时,设 PM 的延长线与直线 l 订交于点N.试试究:当t为何值时,△QMN为等腰三角形?请直接写出 t 的值.ylC BM Qyl C QBMOP AxylC M Q BO P A x5.( 2011四川重庆)如图,矩形ABCD 中,AB=6,BC=2 3,点 O 是 AB 的中点,点 P 在 AB 的延长线上,且 BP= 3.一动点 E 从 O 点出发,以每秒 1 个单位长度的速度沿OA 匀速运动,抵达A 点后,立刻以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1 个单位长度的速度沿射线PA 匀速运动,点E、F 同时出发,当两点相遇时停止运动.在点 E、F 的运动过程中,以 EF 为边作等边△EFG,使△EFG 和矩形 ABCD 在射线 PA 的同侧,设运动的时间为 t 秒(t≥0).(1)当等边△EFG 的边 FG 恰巧经过点 C 时,求运动时间 t 的值;(2)在整个运动过程中,设等边△ EFG 和矩形 ABCD 重叠部分的面积为 S,请直接写出 S与 t 之间的函数关系式和相应的自变量t 的取值范围;(3)设 EG 与矩形 ABCD 的对角线 AC 的交点为 H,可否存在这样的 t,使△AOH 是等腰三角形?若存在,求出对应的 t 的值;若不存在,请说明原因.D C D CEO B F P A E O B F P备用图 1D CAE O BF P备用图 2三、测试提高1. (2011 山东烟台)如图,在直角坐标系中, 梯形 ABCD 的底边 AB 在 x 轴上, 底边 CD 的端点 D 在 y 轴上.直线 CB 的表达式为 y4 x16,点 A 、D3 3的坐标分别为(- 4,0),(0,4).动点 P 自 A 点出发,在 AB 上匀速运动.动点 Q 自点 B 出发,在折线 BCD 上匀速运动,速度均为每秒 1 个单位.当其中一个动点抵达终点时, 它们同时停止运动. 设点 P 运动 t (秒)时,△OPQ 的面积为 S (不能够组成△ OPQ 的动点除外). (1)求出点 B 、C 的坐标; (2)求 S 随 t 变化的函数关系式;(3)当 t 为何值时 S 有最大值?并求出最大值.备用图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012中考冲刺班辅导资料-----动点问题研究1、【专题精讲】所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键: 动中求静. 即把动态问题,变为静态问题来解。
数学思想:分类思想函数思想方程思想数形结合思想转化思想方法技巧:一般方法是抓住变化中的“不变量”,以不变应万变,首先根据题意理清题目中两个变量X、Y的变化情况并找出相关常量,第二,按照图形中的几何性质及相互关系,找出一个基本关系式,把相关的量用一个自变量的表达式表达出来,然后再根据题目的要求,依据几何、代数知识解出。
第三,确定自变量的取值范围,画出相应的图象。
注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.动态几何问题是近年来中考数学试题的热点题型之一,常以压轴题型出现。
这类问题主要是集中代数、几何、三角、函数知识于一体,综合性较强。
常用到的解题工具有方程的有关理论,三角函数的知识和几何的有关定理。
研究历年来济南中考试卷中的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们在复习中研究对策,把握方向.只有这样,才能更好的培养解题素养,形成正确有效的解题方法和解题思路,更好的应对压轴性试题!2、经典例题:1、如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?2、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.3、如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长. (2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.4、在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.C M图165、如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.2012中考冲刺班辅导资料-----动点问题研究 答案1.解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ································································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t ===厘米/秒.··· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯, 解得803x =秒. ∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+, ∴点P 、点Q 在AB 边上相遇, ∴经过803秒点P 与点Q 第一次在边AB 上相遇.(12分)2.解(1)A (8,0)B (0,6) ················· 1分 (2)86OA OB == , 10AB ∴=点Q 由O 到A 的时间是881=(秒)∴点P 的速度是61028+=(单位/秒) ··· 1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==, 2S t = ················ 1分 当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ······································ 1分 21324255S OQ PD t t ∴=⨯=-+ ························································································· 1分(自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫⎪⎝⎭, ···················································································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ·································································· 3分3、解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==.······································································································ 1分在Rt ABK △中,sin 454AK AB =︒==cos 454BK AB =︒== ········································································· 2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ······························································ 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ·································································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ········································································································· 5分 即10257t t -= 解得,5017t = ·········································································································· 6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-(图①) A D C B K H (图②) A D C B G MN∴103t =·················································································································· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -== 又在Rt DHC △中,3cos 5CH c CD == ∴535t t -= 解得258t = ·············································································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC = 即553t t -= ∴258t = ·················································································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===- 解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC= A DCB M N (图③) (图④) A D CB M NH E(图⑤)A DCBH N MF即1102235tt -= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ··················· 9分4、.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC , 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4. ∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB =, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 运动,DE 经过点C .连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7. 22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】图4P图55、解:(1)Q (1,0) ········································································································· 1分 点P 运动速度每秒钟1个单位长度. ················································································· 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB中,10AB = 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MP AB AF BF ==. 1068t A M M P∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==.设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) ····························································· 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ································ 6分 此时P 的坐标为(9415,5310) . ························································································ 7分 (4) 当 53t =或29513t =时, OP 与PQ 相等. ······························································ 9分。